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A Maximum entropy transformations

To guarantee as much diversity as possible in our model of common corruptions,
we follow the principle of maximum entropy to define our distributions of trans-
formations [8]. Note that using a set of augmentations that guarantees maximum
entropy comes naturally when trying to optimize the sample complexity derived
from certain information theoretic generalization bounds, both in the clean [42]
and corrupted setting [28]. Specifically, the principle of maximum entropy pos-
tulates favoring those distributions that are as unbiased as possible given the set
of constraints that defines a family of distributions. In our case, these constraints
are given in the form of an expected strength, i.e., σ2, desired smoothness, i.e.,
K, and/or some boundary conditions, e.g.,, the displacement field must be zero
at the borders of an image.

Let us make this formal. In particular, let I denote the space of all images x :
R2 → R3, and let f : I → I denote a random image transformation distributed
according to the law µ. Further, let us define a set of constraints C ⊆ F , which
restrict the domain of applicability of f , i.e., f ∈ C, and where F denotes the
space of functions I → I. The principle of maximum entropy postulates using
the distribution µ which has maximum entropy given the constraints:

maximize
µ

H(µ) =

∫
F

dµ(f) log(µ(f)) (8)

subject to f ∈ C ∀f ∼ µ,

where H(µ) represents the entropy of the distribution µ [8]. In its general form,
solving Eq. (8) for any set of constraints C is intractable. However, leveraging
results from statistical physics, we will see that for our domains of interest,
Eq. (8) has a simple solution. In what follows we derive those distributions for
each of our family of transformations.

A.1 Spectral domain

As we introduced in Sec. 2, we propose to parameterize our family of spectral
transformations using an FIR filter of size Kω ×Kω. That is, we are interested
in finding a maximum entropy distribution over the space of spectral transfor-
mations with a finite spatial support.

Nevertheless, on top of this smoothness constraint we are also interested
in controlling the strength of the transformations. We define the strength of a
distribution of random spectral transformations applied to an image x, as the
expected L2 norm of the difference between the clean and transformed images,
i.e.,

Eω∥x− ω(x)∥22 = Eω′∥ω′ ∗ x∥22, (9)

which using Young’s convolution inequality is bounded as

Eω′∥ω′ ∗ x∥22 ≤ ∥x∥21 Eω′∥ω′∥22. (10)
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Indeed, we can see that the strength of a distribution of random smooth spectral
transformations is governed by the expected norm of its filter. In the discrete
domain, this can be simply computed as

Eω′∥ω′∥22 =

Kω∑
i=1

Kω∑
j=1

Eω′ω′2
i,j . (11)

Considering this, we should then look for a maximum entropy distribution
whose samples satisfy

C =
{
ω′ ∈ RKω×Kω ∧ Eω′∥ω′∥22 = K2

ωσ
2
ω |ω ∼ µω

}
. (12)

Now, note that this set is defined by an equality constraint involving a sum
of K2

ω quadratic random variables. In this sense, we know that the Equipartition
Theorem [1] applies and can be used to identify the distribution of maximum
entropy. That is, the solution of Eq. (8) in the case that C is given by Eq. (12),
is equal to the distribution of FIR filters whose coefficients are iid with law
N (0, σ2

ω).

A.2 Spatial domain

The distribution of diffeomorphisms of maximum entropy with a fixed norm
was derived by Petrini et al. in [32]. The derivation is similar to the spectral
domain, but with the additional constraint that the diffeomorphisms produce a
null displacement at the borders of the image.

A.3 Color domain

We can follow a very similar route to derive the distribution of maximum entropy
among all color transformations, where, specifically, we constraint the transfor-
mations to yield γ(0) = 0 and γ(1) = 1 on every channel independently. Doing
so, the derivation of the maximum entropy distribution can follow the same steps
as in [32].

B PRIME implementation details

In this section, we provide additional details regarding the implementation of
PRIME described in Sec. 3. Since the parameters of the transformations are
empirically selected, we first provide more visual examples for different values of
smoothness K and strength σ. Then, we give the exact values of the parameters
we use in our experiments supported by additional visual examples and we also
describe the parameters we use for the mixing procedure.
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B.1 Additional transformed examples

We provide additional visual examples for each of the primitives of PRIME illus-
trating the effect of the following two factors: (i) smoothness controlled by pa-
rameterK, and (ii) strength of the transformation σ on the resulting transformed
images created by the primitives. Figs. 6, 7 and 8 demonstrate the resulting spec-
trum of images created by applying spectral, spatial and color transformations
while varying the parameters K and σ. Notice how increasing the strength σ
of each transformation drifts the augmented image farther away from its clean
counterpart, yet produces plausible images when appropriately controlled.

K
=

3

= 0.5 = 1.0 = 2.0 = 4.0

K
=

5
K

=
7

Fig. 6. Example images (IN) generated with spectral transformations from our common
corruptions model. In each row, we enlarge the transformation strength σω from left
to right. From top to bottom, we increase the spectral resolution of the filter Kω.
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K
=

20
0

= 0.5 = 1.0 = 2.0 = 4.0

K
=

40
0

K
=

60
0

Fig. 7. Example images (IN) generated with spatial transformations from our common
corruptions model. In each row, we enlarge the transformation strength στ from left
to right. From top to bottom, we increase the cut frequency Kτ .

K
=

12
5

= 0.005 = 0.01 = 0.02 = 0.04

K
=

25
0

K
=

50
0

Fig. 8. Example images (IN) generated with color transformations from our common
corruptions model. In each row, we enlarge the transformation strength σγ from left
to right. From top to bottom, we increase Kγ .
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B.2 Transformation parameters

We now provide the parameters of each transform that we selected and used
in our experiments. In general, the values might vary for inputs of different
dimensionality and resolution (i.e., CIFAR-10/100 vs ImageNet images).

Spectral transform Regarding the spectral transform of Eq. (3) we found out
that, for the FIR filter ω′, a size of Kω = 3 results into semantically preserving
images for CIFAR-10/100 and ImageNet. For the latter, one can stretch the filter
size to 5 × 5 or even 7 × 7, but then slight changes on the strength, σω, might
destroy the image semantics. Eventually, given Kω = 3, we observed that σω = 4
is good enough for CIFAR-10/100 and ImageNet.

Spatial transform Concerning the spatial transform of Eq. (5), for the cut-off
parameter Kτ we followed the value regimes proposed by Petrini et al. [32] and
set Kτ = 100 for CIFAR-10/100; Kτ = 500 for ImageNet. Furthermore, for a
given Kτ , Petrini et al. also compute the appropriate bounds for the transfor-
mation strength, σ2

τmin
≤ σ2

τ ≤ σ2
τmax

, such that the resulting diffeomorphism re-
mains bijective and the pixel displacement does not destroy the image. In fact, in
their original implementation6, Petrini et al. directly sample στ ∼ U(στmin , στmax)
instead of explicitly setting the strength. In our implementation, we also follow
the same approach.

Color transform Regarding the color transform of Eq. (6) we found out that
for CIFAR-10/100 a cut-off value of Kγ = 10 and a strength of σγ = 0.01 re-
sult into semantically preserving images for CIFAR-10/100; while for ImageNet,
the corresponding values are Kγ = 500 and σγ = 0.05. As for the bandwidth
(consecutive frequencies) ∆ we observed that a value of ∆ = 20 was memory
sufficient for ImageNet, but for CIFAR-10/100, due to its lower dimensionality,
we can afford all the frequencies to be used, e.g., ∆ = Kγ .

Finally, as mentioned in Sec. 3, we randomly sample the strength of the transfor-
mations σ from a uniform distribution of given minimum and maximum values.
Regarding the maximum, we always set it to be the one we selected through
visual inspection, while the minimum is set to 0. Fig. 9 displays additional aug-
mented images created by applying each of the primitive transformations in our
model using the aforementioned set of parameters on ImageNet. Our choice of
parameters produces diverse image augmentations, while retaining the semantic
content of the images.

6 The official implementation of Petrini et al. diffeomorphisms can be found at https:
//github.com/pcsl-epfl/diffeomorphism.

https://github.com/pcsl-epfl/diffeomorphism
https://github.com/pcsl-epfl/diffeomorphism
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clean spectral spatial color

Fig. 9. Example images (IN) generated with the transformations of our common cor-
ruptions model. Despite the perceptibility of the introduced distortion, the image se-
mantics are preserved.
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B.3 Parameters for mixing procedure

Regarding the mixing parameters of our experiments, we fix the total number
of generated transformed images (width) to be n = 3. As for the composition
of the transformations (depth), we follow a stochastic approach such that, on
every iteration i ∈ {1, . . . , n}, only m̂ ∈ [1,m] compositions are performed, with
m = 3. In fact, in Algorithm 1 we do not explicitly select randomly a new m̂ for
every i but we provide the identity operator Id instead. This guarantees that, in
some cases, no transformation is performed.

C Detailed experimental setup

We now provide all the experimental details for the performance evaluation of
Sec. 4. All models are implemented in PyTorch [48] and are trained for 100 epochs
using a cyclic learning rate schedule [49] with cosine annealing and a maximum
learning rate of 0.2 unless stated otherwise. For IN, we fine-tune a regularly
pretrained network (provided in PyTorch) with a maximum learning rate of
0.01 following Hendrycks et al. [20]. We use SGD optimizer with momentum
factor 0.9 and Nesterov momentum [47]. On C-10 & C-100, we set the batch
size to 128 and use a weight decay of 0.0005. On IN-100 and IN, the batch size
is 256 and weight decay is 0.0001. We employ ResNet-18 [19] on C-10, C-100
and IN-100; and use ResNet-50 for IN. The augmentation hyperparameters for
AugMix and DeepAugment are the same as in their original implementations.

D Additional mixing examples

Continuing Sec. 5.2, we present additional examples in Fig. 10 to demonstrate the
significance of mixing in PRIME. We observe that the mixing procedure is capa-
ble of constructing augmented images that look perceptually similar to common
corruptions. To illustrate this, we provide several examples in Fig. 10 for PRIME
(upper half) and AugMix (lower half) on CIFAR-10 and ImageNet-100. As shown
in Figs. 10a and 10b, mixing spectral transformations with the clean images tends
to create weather-like artefacts resembling frost and fog respectively. Carefully
combining clean and spatially transformed images produces blurs (Fig. 10c) and
even elastic transform (Fig. 10e). Moreover, blending color augmentation with
clean image produces shot noise as evident in Fig. 10d; Whereas spectral+color
transformed image looks similar to snow corruption (Fig. 10f). All these obser-
vations explain the good performance of PRIME on the respective corruptions.

Apart from the mixing in PRIME, the mixing in AugMix also plays a crucial
role in its performance. In fact, a combination of translate and shear operations
with the clean image create blur-like modifications that resemble defocus blur
(Fig. 10g) and motion blur (Fig. 10i). This answers why AugMix excels at blur
corruptions and is even better than DeepAugment against blurs (cf. Tab. 6). In
addition, on CIFAR-10, notice that mixing solarize and clean produces impulse
noise-like modifications (Fig. 10j), which justifies the improvements on noise
attained by AugMix (refer Tab. 5).
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PRIME

clean
PRIME

clean + spectral
ImageNet-100-C

frost

(a) clean+spectral
≈ frost

clean
PRIME

clean + spectral + spectral
ImageNet-100-C

fog

(b) clean+spectral
+spectral ≈ fog

clean
PRIME

spatial + spatial
ImageNet-100-C

glass_blur

(c) spatial+spatial
≈ glass blur

clean
PRIME

clean + color
ImageNet-100-C

shot_noise

(d) clean+color
≈ shot noise

clean
PRIME

clean + spatial spatial
ImageNet-100-C
elastic_transform

(e) clean+spatial ◦ spatial
≈ elastic transform

(f) spectral+color
≈ snow

AugMix

clean
AugMix

clean + trans + trans
ImageNet-100-C

defocus_blur

(g) clean+translate
+translate ≈ defocus blur

clean
AugMix

trans + shear  shear
ImageNet-100-C
elastic_transform

(h) translate+shear ◦ shear
≈ elastic transform

clean
AugMix

shear + trans + trans
CIFAR-10-C
motion_blur

(i) shear+translate+
translate ≈ motion blur

clean
AugMix

clean + solarize
CIFAR-10-C

impulse_noise

(j) clean+solarize
≈ impulse noise

Fig. 10. The mixing procedure creates distorted images that look visually similar to
the test-time corruptions. In each example (CIFAR-10/ImageNet-100), we show the
clean image, the PRIME/AugMix augmented image and the corresponding common
corruption that resembles the image produced by mixing. We also report the mixing
combination used for recreating the corruption. ◦ stands for composition and + repre-
sents convex combination (mixing). (Top 3 rows): PRIME, and (Last 2 rows): AugMix.
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E SimCLR nearest neighbours

Regarding the minimum distances in the SimCLRv2 embedding space of Tab. 3,
we also provide in Fig. 11 some visual examples of the nearest neighbours of
each method. In general, we observe that indeed smaller distance in the embed-
ding space typically corresponds to closer visual similarity in the input space,
with PRIME generating images that resemble more the corresponding common
corruptions, compared to AugMix. Nevertheless, we also notice that for “Blurs”
AugMix generates images that are more visually similar to the corruptions than
PRIME, an observation that is on par with the lower performance of PRIME
(without JSD) on blur corruptions (cf. Tab. 6) compared to AugMix.

Corruption AugMix (no) AugMixPRIME (no) PRIME
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Fig. 11. Examples of nearest neighbours in SimCLRv2 embedding space. Columns:
(first): the common corruption; (second): AugMix transformations (no mixing); (third):
PRIME transformations (no mixing); (fourth): AugMix; (fifth): PRIME.



10 A. Modas et al.

Table 4. Percentiles of the minimum cosine distances in the ResNet-50 SimCLRv2
embedding space between 100 augmented samples from 1000 ImageNet images, and
their corresponding common corruptions.

Method
Min. cosine distance (×10−3) (↓)
5% 10% 25% 50% 75%

None (clean) 0.33 0.64 1.97 6.43 17.44

AugMix (w/o mix) 0.17 0.31 1.04 3.55 10.71
PRIME (w/o mix) 0.04 0.07 0.24 1.87 7.11

AugMix 0.11 0.21 0.69 2.61 8.37
PRIME 0.08 0.12 0.32 1.61 5.76

F Cosine distance statistics

Recall that in Tab. 3 we provide the average and the median of the minimum
cosine distances computed in the SimCLRv2 embedding space. We now provide
in Tab. 4 the values for different percentiles of these distances. We observe that
the behaviour is consistent across different percentiles: PRIME (with or without
mixing) is always producing feature representations that are more similar to
the common corruptions, compared to any version of AugMix. Note also that
for smaller percentiles (5%, 10%, 25%) it seems that PRIME without mixing
reaches even lower values than PRIME. However, the difference with respect to
PRIME can be considered as insignificant since it is in the order of 10−5 (note
that all values in the table are in the order of 10−3); while a larger population
of images (> 1000) would potentially smooth out this difference.

G Embedding space visualization

To qualitatively compare how diverse are the augmentations of PRIME with
respect to other methods, we can follow the procedure in [41]. We randomly
select 3 images from ImageNet, each one belonging to a different class. For each
image, we generate 100 transformed instances using AugMix and PRIME, while
with DeepAugment we can only use the original images and the 2 transformed
instances that are pre-generated with the EDSR and CAE image-to-image net-
works that DeepAugment uses. Then, we pass the transformed instances of each
method through a ResNet-50 pre-trained on ImageNet and extract the features
of its embedding space. On the features extracted for each method, we perform
PCA and then visualize the projection of the features onto the first two princi-
pal components. We visualize the projected augmented space in Fig. 12, which
demonstrates that PRIME generates more diverse (larger variance) features than
AugMix and DeepAugment.
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Fig. 12. Projections of augmentations generated by different methods on the embed-
ding space of a ResNet-50.

H Performance per corruption

Beyond the average corruption accuracy that we report in Tab. 1, we also pro-
vide here the performance of each method on the individual corruptions. The
results on CIFAR-10/100 and ImageNet/ImageNet-100 are shown on Tab. 5
and Tab. 6 respectively. Compared to AugMix on CIFAR-10/100, the improve-
ments from PRIME are mostly observed against Gaussian noise (+7.6%/12.3%),
shot noise (+3.3%/7.0%), glass blur (+6.4%/11.0%) and JPEG compression
(+1.3%/2.6%). These results show that PRIME can really push the performance
against certain corruptions in CIFAR-10/100-C despite the fact that AugMix is
already good on these datasets. However, AugMix turns out to be slightly bet-
ter than PRIME against impulse noise, defocus blur and motion blur modifica-
tions; all of which have been shown to be resembled by AugMix created images
(see Fig. 10). With ImageNet-100, PRIME enhances the diversity of augmented
images, and leads to general improvements against all corruptions except cer-
tain blurs. On ImageNet, we observe that, in comparison to DeepAugment, the
supremacy of PRIME is reflected on almost every corruption type, except some
blurs and pixelate corruptions where DeepAugment is slightly better. When
PRIME is used in conjunction with DeepAugment, compared to AugMix com-
bined with DeepAugment, our method seems to lack behind only on blurs, while
on the rest of the corruptions achieves higher robustness.

Table 5. Per-corruption accuracy of different methods on C-10/100 (ResNet-18).

Dataset Method Clean CC
Noise Blur Weather Digital

Gauss. Shot Impulse Defoc. Glass Motion Zoom Snow Frost Fog Bright. Contr. Elastic Pixel. JPEG

C-10
Standard 95.0 74.0 45.1 58.7 54.9 83.2 53.3 76.9 79.1 83.1 79.3 89.0 93.6 76.3 83.9 75.1 77.9
AugMix 95.2 88.6 79.3 84.8 85.8 94.1 78.9 92.4 93.4 89.7 89.0 91.9 94.3 90.5 90.5 87.6 87.5
PRIME 94.2 89.8 86.9 88.1 88.6 92.6 85.3 90.8 92.2 89.3 90.5 89.8 93.7 92.4 90.1 88.1 88.8

C-100
Standard 76.7 51.9 25.3 33.7 26.6 60.8 47.1 55.5 57.6 60.8 56.2 62.5 72.2 53.2 63.4 50.1 52.7
AugMix 78.2 64.9 46.7 55.1 60.6 76.2 47.3 72.6 74.3 67.4 64.4 69.9 75.5 67.4 69.6 64.9 61.8
PRIME 78.4 68.2 59.0 62.1 68.1 74.0 58.3 70.5 72.3 68.9 68.5 69.8 76.8 74.4 70.1 65.5 64.4
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Table 6. Per-corruption accuracy of different methods on IN-100 (ResNet-18) and IN
(ResNet-50). † indicates that JSD consistency loss is not used. ∗Models taken from [9].

Dataset Method Clean CC
Noise Blur Weather Digital

Gauss. Shot Impulse Defoc. Glass Motion Zoom Snow Frost Fog Bright. Contr. Elastic Pixel. JPEG

IN-100

Standard 88.0 49.7 30.9 29.0 22.0 45.6 44.6 50.4 53.9 43.8 46.2 50.5 78.6 42.9 68.8 68.0 70.6
AugMix 88.7 60.7 45.2 45.8 43.4 58.7 53.3 69.5 71.0 49.1 52.7 60.2 80.7 59.6 73.3 73.6 74.7
DA 86.3 67.7 76.3 75.6 75.7 64.2 61.7 61.3 62.7 54.4 62.8 55.7 81.6 49.7 69.9 83.3 80.6
PRIME 85.9 71.6 80.6 80.0 80.1 57.2 66.3 66.2 68.2 61.5 68.2 57.2 81.2 68.3 73.7 82.9 81.9

DA+AugMix 86.5 73.1 75.2 75.8 74.9 74.1 68.5 76.0 72.1 59.9 66.8 61.4 82.1 72.4 73.1 83.8 81.1
DA+PRIME 84.9 74.9 81.1 80.9 81.2 70.5 74.2 72.0 71.5 66.3 73.6 56.6 81.9 72.8 74.8 83.4 82.3

IN

Standard∗ 76.1 39.2 29.3 27.0 23.8 38.8 26.8 38.7 36.2 32.5 38.1 45.4 68.0 39.0 45.3 44.8 53.4
AugMix∗ 77.5 48.3 40.6 41.1 37.7 47.7 34.9 53.5 49.0 39.9 43.8 47.1 69.5 51.1 52.0 57.0 60.3
DA∗ 76.7 52.6 56.6 54.9 56.3 51.7 40.1 48.7 39.5 44.2 50.3 52.1 71.1 48.3 50.9 65.5 59.3

PRIME† 77.0 55.0 61.9 60.6 60.9 47.6 39.0 48.4 46.0 47.4 50.8 54.1 71.7 58.2 56.3 59.5 62.2

DA+AugMix 75.8 58.1 59.4 59.6 59.1 59.0 46.8 61.1 51.5 49.4 53.3 55.9 70.8 58.7 54.3 68.8 63.3

DA+PRIME† 75.5 59.9 67.4 67.2 66.8 56.2 47.5 54.3 47.3 52.8 56.4 56.3 71.7 62.3 57.3 70.3 65.1

I Performance per severity level

We also want to investigate the robustness of each method on different severity
levels of the corruptions. The results for CIFAR-10/100 and ImageNet/ImageNet-
100 are presented in Tab. 7 and Tab. 8 respectively. With CIFAR-10/100, PRIME
predominantly helps against corruptions with maximal severity and yields +3.9%
and +7.1% gains on CIFAR-10 and CIFAR-100 respectively. Besides on ImageNet-
100, PRIME again excels at corruptions with moderate to higher severity. This
observations also holds when PRIME is employed in concert with DeepAug-
ment. With ImageNet too this trend continues, and we observe that, compared
to DeepAugment, PRIME improves significantly on corruptions of larger severity
(+3.4% and +5.5% on severity levels 4 and 5 respectively). Also, this behaviour
is consistent even when PRIME is combined with DeepAugment and is compared
to DeepAugment+AugMix, where we see that again on levels 4 and 5 there is a
significant improvement of +2.1% and +3.7% respectively.

Table 7. Average accuracy for each corruption severity level of different methods on
C-10 and C-100 (ResNet-18).

Dataset Method Clean CC Avg.
Severity

1 2 3 4 5

C-10
Standard 95.0 74.0 87.4 81.7 75.7 68.3 56.7
AugMix 95.2 88.6 93.1 91.8 89.9 86.7 81.7
PRIME 94.2 89.8 92.8 91.6 90.4 88.6 85.6

C-100
Standard 76.7 51.9 66.7 59.4 52.8 45.0 35.4
AugMix 78.2 64.9 73.3 70.0 66.6 61.3 53.4
PRIME 78.4 68.2 74.0 71.6 69.2 65.6 60.5
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Table 8. Average accuracy for each corruption severity level of different methods on
IN-100 (ResNet-18) and IN (ResNet-50). † indicates that JSD consistency loss is not
used. ∗Models taken from RobustBench [9].

Dataset Method Clean CC Avg.
Severity

1 2 3 4 5

IN-100

Standard 88.0 49.7 73.5 61.0 49.8 37.2 27.0
AugMix 88.7 60.7 80.4 71.8 63.8 50.3 37.2
DA 86.3 67.7 81.2 75.4 69.9 61.2 50.8
PRIME 85.9 71.6 81.7 77.5 73.4 66.9 58.4

DA+AugMix 86.5 73.1 82.7 78.0 75.5 69.6 59.9
DA+PRIME 84.9 74.9 82.0 78.7 76.4 71.8 65.5

IN

Standard∗ 76.1 39.2 60.6 49.8 39.8 27.7 18.0
AugMix∗ 77.5 48.3 66.7 58.3 51.1 39.1 26.5
DA∗ 76.7 52.6 69.0 61.7 55.4 44.9 32.1

PRIME† 77.0 55.0 68.9 63.1 56.9 48.3 37.6

DA+AugMix 75.8 58.1 70.3 64.5 60.5 53.0 42.2

DA+PRIME† 75.5 59.9 70.8 66.3 61.6 55.1 45.9

J Performance on other corruptions

Finally, to examine the universality of PRIME, we evaluate the performance
of our ImageNet-100 trained models against two other corrupted datasets: (i)
ImageNet-100-C (IN-100-C) [29], and (ii) stylized ImageNet-100 (SIN-100) [17].
While IN-100-C is composed of corruptions that are perceptually dissimilar to
those in IN-100-C, stylized IN-100 only retains global shape information and
discard local texture cues from IN-100 test images, via style transfer. Thus, it
would be interesting test the performance of PRIME against these datasets since
it would serve as a indicator for general corruption robustness of PRIME. More
information about the corruption types contained in IN-100-C is available in the
original paper [29].

Tab. 9 enumerates the classification accuracy of different standalone ap-
proaches against IN-100-C on average, individual corruptions in IN-100-C and
SIN-100. We can see that PRIME surpasses AugMix and DeepAugment by 4%
and 1.2% respectively on IN-100-C. PRIME particularly helps against certain
distortions such as blue noise sample (BSmpl), inverse sparkles and plasma noise.
PRIME also works well against style-transferred images in SIN-100 and improves

Table 9. Classification accuracy of different methods on IN-100-C, IN-100-C and Styl-
ized IN-100 (SIN-100) with ResNet-18.

Method Clean
IN-100-C IN-100-C IN-100-C

SIN-100
Avg. Avg. BSmpl Brown Caustic Ckbd CSine ISpark Perlin Plasma SFreq Spark

Standard 88.0 49.7 55.1 47.6 71.3 70.1 66.4 29.5 45.7 72.1 34.6 34.9 78.4 18.8
AugMix 88.7 60.7 61.0 63.0 73.2 75.3 69.4 39.9 44.9 77.4 42.8 44.7 79.8 28.0
DA 86.3 67.7 63.8 77.1 76.6 72.6 60.9 42.9 44.3 78.0 43.4 64.5 77.8 29.9

PRIME 85.9 71.6 65.0 74.9 74.3 73.2 59.2 53.4 47.5 76.8 48.6 66.9 75.5 33.1
+1.5x epochs 86.1 72.5 65.9 77.1 75.6 74.1 59.4 54.0 46.3 77.6 50.4 67.7 76.4 34.1
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Table 10. Classification accuracy of different methods on IN-C, IN-C, ImageNet-R
(IN-R) and Stylized IN (SIN) with ResNet-50. † indicates that JSD consistency loss is
not used. ∗Models taken from RobustBench [9].

Method Clean
IN-C IN-C IN-C

IN-R SIN
Avg. Avg. BSmpl Brown Caustic Ckbd CSine ISpark Perlin Plasma SFreq Spark

Standard∗ 76.1 39.2 40.0 36.2 57.8 54.1 46.1 14.4 20.9 61.6 24.3 19.0 65.2 36.2 7.4
AugMix∗ 77.5 48.3 46.5 59.5 56.5 59.1 51.7 25.6 21.6 65.3 23.1 36.2 66.4 41.0 11.2
DA∗ 76.7 52.6 48.3 60.1 61.1 57.7 46.8 25.4 24.4 68.4 26.5 45.6 66.8 42.2 14.2

PRIME† 77.0 55.0 49.6 59.5 61.4 60.1 48.1 26.9 28.3 66.5 36.4 41.9 66.5 42.2 14.0

accuracy by 5.1% over AugMix and 3.2% over DeepAugment. Besides, the di-
versity of our method means that we can actually get a better performance by
increasing the number of training epochs. With 1.5x training epochs, we observe
about 1% accuracy refinement on each benchmark.

We also perform a similar analysis with ImageNet trained models and evalu-
ate their robustness on three other distribution shift benchmarks: (i) IN-C [29],
(ii) SIN [17] as described previously and (iii) ImageNet-R (IN-R) [20]. ImageNet-
R contains naturally occurring artistic renditions (e.g., paintings, embroidery,
etc.) of objects from the ImageNet dataset. The classification accuracy achieved
by different methods on these datasets is listed in Tab. 10. On IN-C, PRIME
outperforms AugMix and DeepAugment by 3.1% and 1.3% respectively. Besides,
PRIME also obtains competitive results on IN-R and SIN datasets. Altogether,
our empirical results indicate that the performance gains obtained by PRIME
indeed translate to other corrupted datasets.

K Unsupervised domain adaptation

Recently, robustness to common corruptions has also been of significant interest
in the field of unsupervised domain adaptation [2,37]. The main difference is
that, in domain adaptation, one exploits the limited access to test-time corrupted
samples to adjust certain network parameters. Hence, it would be interesting to
investigate the utility of PRIME under the setting of domain adaption.

To that end, we combine our method with the adaption trick of [37]. Specif-
ically, we adjust the batch normalization (BN) statistics of our models using a
few corrupted samples. Suppose zs ∈ {µs, σs} are the BN mean and variance
estimated from the training data, and zt ∈ {µt, σt} are the corresponding statis-
tics computed from n unlabelled, corrupted test samples, then we re-estimate
the BN statistics as follows:

ẑ =
N

N + n
zs +

n

N + n
zt. (13)

We consider three adaptation scenarios: single sample (n = 1, N = 16), partial
(n = 8, N = 16) and full (n = 400, N = 0) adaptation. Here, we do not perform
parameter tuning for N . As shown in Tab. 11, simply correcting BN statistics
using as little as 8 corrupted samples pushes the corruption accuracy of PRIME
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from 71.6% to 75.3%. In general, PRIME yields cumulative gains in combination
with adaptation and has the best IN-100-C accuracy.

Table 11. Performance of different methods in concert with domain adaptation on
IN-100. Partial adaptation uses 8 samples; full adaptation uses 400 corrupted samples.
Network used: ResNet-18.

IN-100-C acc. (↑) IN-100 (↑)

Method w/o single partial full single

Standard 49.7 53.8 62.0 63.9 88.1
AugMix 60.7 65.5 71.3 73.0 88.3
DA 67.7 70.2 72.7 74.6 86.3
PRIME 71.6 73.5 75.3 76.6 85.7

L Comparison with other methods

In addition to the two well-established baselines from AugMix and DeepAugment
in Tab. 1, we also compare the performance of PRIME with more baselines in
Tab. 12. In particular, we report the results of methods that use ResNet-18 on
C-10/100 and ResNet-50 on IN. For keeping the comparisons fair, we exclude
few of the very recent works that rely on ensembling or use transformations that
overlap with Common Corruptions or use non-standard architectures. On C-10,
AugMax achieves the highest robustness, with PRIME being only 0.5% behind,
while on C-100, PRIME is by 2.5% better than AugMax. Note, though, that
(i) AugMax is trained for 2× more epochs and, (ii) is roughly 10× slower than
PRIME, since it requires 10 additional backward passes. On IN, PRIME is by
far the best performing method, while its complexity is much lower than the
very heavy AdA method.
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Table 12. Performance comparison of PRIME with additional baselines. †Use extra
data.

Dataset Method
Clean Common Corruption
Acc (↑) Acc (↑) mCE (↓)

C-10

Standard 95.0 74.0 26.0
CARDS [13]] 95.6 76.1 23.9
RLAT [24] 93.1 84.1 15.9
AugMax-DuBIN [41] 95.7 90.3 9.7
PRIME 94.2 89.8 10.2

C-100
Standard 76.7 51.9 48.1
AugMax-DuBIN 78.6 65.7 34.3
PRIME 78.4 68.2 31.8

IN

Standard 76.1 38.1 76.7
Stylized-IN [17] 74.8 45.5 69.3

AdA† [5] 73.2 – 75.0
PRIME 77.0 55.0 57.5

AdA+DA+AugMix† 69.2 – 62.9

PRIME+DA† 75.5 59.9 51.3
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