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Abstract. Despite their impressive performance on image classification
tasks, deep networks have a hard time generalizing to unforeseen cor-
ruptions of their data. To fix this vulnerability, prior works have built
complex data augmentation strategies, combining multiple methods to
enrich the training data. However, introducing intricate design choices
or heuristics makes it hard to understand which elements of these meth-
ods are indeed crucial for improving robustness. In this work, we take
a step back and follow a principled approach to achieve robustness to
common corruptions. We propose PRIME, a general data augmenta-
tion scheme that relies on simple yet rich families of max-entropy image
transformations. PRIME outperforms the prior art in terms of corruption
robustness, while its simplicity and plug-and-play nature enable combi-
nation with other methods to further boost their robustness. We analyze
PRIME to shed light on the importance of the mixing strategy on synthe-
sizing corrupted images, and to reveal the robustness-accuracy trade-offs
arising in the context of common corruptions. Finally, we show that the
computational efficiency of our method allows it to be easily used in both
on-line and off-line data augmentation schemes1.

1 Introduction

Deep image classifiers do not work well in the presence of various types of distri-
bution shifts [14,18,39]. Most notably, their performance can severely drop when
the input images are affected by common corruptions that are not contained
in the training data, such as digital artefacts, low contrast, or blurs [21,29]. In
general, “common corruptions” is an umbrella term coined to describe the set
of all possible distortions that can happen to natural images during their acqui-
sition, storage, and processing lifetime, which can be very diverse. Nevertheless,
while the space of possible perturbations is huge, the term “common corrup-
tions” is generally used to refer to image transformations that, while degrading
the quality of the images, still preserve their semantic information.

⋆ The first two authors contributed equally to this work.
1 Our code is available at https://github.com/amodas/PRIME-augmentations

https://github.com/amodas/PRIME-augmentations
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Fig. 1. Images generated with PRIME, a simple method that uses a family of max-
entropy transformations in different visual domains to create diverse augmentations.

Building classifiers that are robust to common corruptions is far from trivial.
A naive solution is to include data with all sorts of corruptions during training,
but the sheer scale of all possible types of typical perturbations that might affect
an image is simply too large. Moreover, the problem is per se ill-defined since
there exists no formal description of all possible common corruptions.

To overcome this issue, the research community has recently favoured increas-
ing the “diversity” of the training data via data augmentation schemes [10,22,20].
Intuitively, the hope is that showing very diverse augmentations of an image to
a network would increase the chance that the latter becomes invariant to some
common corruptions. Still, covering the full space of common corruptions is
hard. Hence, current literature has mostly resorted to increasing the diversity
of augmentations by designing intricate data augmentation pipelines, e.g., intro-
ducing DNNs for generating varied augmentations [20,5], or coalescing multiple
techniques [41], and thus achieve good performance on different benchmarks.
This strategy, though, leaves a big range of unintuitive design choices, making
it hard to pinpoint which elements of these methods meaningfully contribute to
the overall robustness. Meanwhile, the high complexity of recent methods [41,5]
makes them impractical for large-scale tasks. Whereas, some methods are tai-
lored to particular datasets and might not be general enough. Nonetheless, the
problem of building robust classifiers is far from completely solved, and the gap
between robust and standard accuracy is still large.

In this work, we take a step back and provide a systematic way for de-
signing a simple, yet effective data augmentation scheme. By focusing on first
principles, we formulate a new mathematical model for semantically-preserving
corruptions, and build on basic concepts to characterize the notions of transfor-
mation strength and diversity using a few transformation primitives. Relying on
this model, we propose PRIME, a data augmentation scheme that draws trans-
formations from a max-entropy distribution to efficiently sample from a large
space of possible distortions (see Fig. 1). The performance of PRIME, alone, al-
ready tops the current baselines on different common corruption datasets, whilst
it can also be combined with other methods to further boost their performance.
Moreover, the simplicity and flexibility of PRIME allows to easily understand
how each of its components contributes to improving robustness.
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Altogether, the main contributions of our work include:

• We introduce PRIME, a simple method that is built on a few guiding prin-
ciples, which efficiently boosts robustness to common corruptions.

• We experimentally show that PRIME, despite its simplicity, achieves state-
of-the-art robustness on multiple corruption benchmarks.

• Last, our thorough ablation study sheds light on the necessity of having di-
verse transformations, on the role of mixing in the success of current meth-
ods, on the potential robustness-accuracy trade-off, and on the importance
of online augmentations.

Overall, PRIME is a simple model-based scheme that can be easily under-
stood, ablated, and tuned. Our work is an important step in the race for robust-
ness against common corruptions, and we believe that it has the potential to
become the new baseline for learning robust classifiers.

2 General model of visual corruptions

In this work, motivated by the “semantically-preserving” nature of common
corruptions, we leverage the long tradition of image processing in developing
techniques to manipulate images while retaining their semantics, and construct
a principled framework to characterize a large space of visual corruptions.

Let x : [0, 1]2 → [0, 1]3 be a continuous image2 mapping pixel coordinates r =
(r1, r2) to RGB values. We define our model of common corruptions as the action
on x of the following additive subgroup of the near-ring of transformations [4]

Tx =

{
n∑

i=1

λi g
i
1 ◦ · · · ◦ gim(x) : gij ∈ {ω, τ, γ}, λi ∈ R

}
, (1)

where ω, τ and γ are random primitive transformations which distort x along
the spectral (ω), spatial (τ), and color (γ) domains. As we will see, defining
each of these primitives in a principled and coherent fashion will be enough to
construct a set of perturbations which covers most types of visual corruptions.

To guarantee as much diversity as possible in our model, we follow the princi-
ple of maximum entropy to define our distributions of transformations [8]. Note
that using a set of augmentations that guarantees maximum entropy comes
naturally when trying to optimize the sample complexity derived from certain
information-theoretic generalization bounds, both in the clean [42] and corrupted
settings [28]. Specifically, the principle of maximum entropy postulates favoring
those distributions that are as unbiased as possible given the set of constraints
that define a family of distributions. In our case, these constraints are given in
the form of an expected strength σ2, some boundary conditions, e.g., the dis-
placement field must be zero at the borders of an image, and finally the desired
smoothness level K. The principle of smoothness helps formalize the notion of
physical plausibility, as most naturally occurring processes are smooth.

2 In practice, we will work with discrete images on a regular grid.
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Let I denote the space of all images, and let f : I → I be a random image
transformation distributed according to the law µ. Further, let C ⊆ F be a set
of constraints that restricts the domain of applicability of f , i.e., f ∈ C, with F
denoting the space of functions I → I. The maximum entropy principle postu-
lates using the distribution µ which has maximum entropy given the constraints:

maximize
µ

H(µ) = −
∫
F

dµ(f) log(µ(f)) (2)

subject to f ∈ C ∀f ∈ supp(µ),

where H(µ) represents the entropy of the distribution µ [8]. In its general form,
solving Eq. (2) for any set of constraints C is intractable. In Appendix A, we
formally derive the analytical expressions for the distributions of each of our
family of transformations, by leveraging results from statistical physics [1].

In what follows, we describe the analytical solutions to Eq. (2) for each of our
basic primitives. In general, these distributions are governed by two parameters:
K to control smoothness, and σ2 to control strength. These transformations fall
back to identity mappings when σ2 = 0, independently of K.

Spectral domainWe parameterize the distribution of random spectral transfor-
mations using random filters ω(r), such that the transformation output follows

ω(x)(r) = (x ∗ (δ + ω′)) (r), (3)

where, ∗ is the convolution operator, δ(r) represents a Dirac delta, i.e., identity
filter, and ω′(r) is implemented in the discrete grid as an FIR filter of size
Kω × Kω with i.i.d random entries distributed according to N (0, σ2

ω). Here,
σ2
ω governs the transformation strength, while larger Kω yields filters of higher

spectral resolution. The bias δ(r) retains the output close to the original image.

Spatial domain We model our distribution of random spatial transformations,
which apply random perturbations over the coordinates of an image, as

τ(x)(r) = x(r + τ ′(r)). (4)

This model has been recently proposed in [32] to define a distribution of random
smooth diffeomorphisms in order to study the stability of neural networks to
small spatial transformations. To guarantee smoothness but preserve maximum
entropy, the authors propose to parameterize the vector field τ ′ as

τ ′(r) =
∑

i2+j2≤K2
τ

βi,j sin(πir1) sin(πjr2), (5)

where βi,j ∼ N (0, σ2
τ/(i2 + j2)). Such choice guarantees that the resulting mapping

is smooth according to the cut frequency Kτ , while σ2
τ determines its strength.

Color domain Following a similar approach, we define the distribution of ran-
dom color transformations as random mappings γ between color spaces

γ(x)(r) = x(r) +

Kγ∑
n=0

βn ⊙ sin (πnx(r)) , (6)
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Algorithm 1: PRIME

Input: Image x, primitives G = {Id, ω, τ γ}, where Id is the identity operator
Output: Augmented image x̃

1 x̃0 ← x
2 for i ∈ {1, . . . , n} do
3 x̃i ← x
4 for j ∈ {1, . . . ,m} do
5 g ∼ U(G) ▷ Strength σ ∼ U(σmin, σmax)
6 x̃i ← g(x̃i)

7 end

8 end
9 x̃←

∑n
i=0 λix̃i ▷ λ ∼ Dir(1): Random Dirichlet convex coefficients

where βn ∼ N (0, σ2
γI3), with ⊙ denoting elementwise multiplication. Again, Kγ

controls the smoothness of the transformations and σ2
γ their strength. Compared

to Eq. (5), the coefficients in Eq. (6) are not weighted by the inverse of the
frequency, and have constant variance. In practice, we observe that reducing the
variance of the coefficients for higher frequencies creates color mappings that are
too smooth and almost imperceptible, so we decided to drop this dependency.

Finally, we note that our model can be easily extended to include other dis-
tributions of maximum entropy transformations that suit an objective task. For
example, one might add the distribution of maximum entropy additive pertur-
bations given by η(x)(r) = x(r) + η′(r), where η′(r) ∼ N (0, σ2

η). Nonetheless,
since most benchmarks of visual corruptions disallow the use of additive pertur-
bations during training [21], we do not include an additive perturbation category.

Overall, as demonstrated by our results in Secs. 4.2 and 5.2, our model is
very flexible and can cover a large part of the semantic-preserving distortions. It
also allows to easily control the strength and style of the transformations with
just a few parameters. Moreover, changing the transformation strength enables
to control the trade-off between corruption robustness and standard accuracy,
as shown in Sec. 5.3. In what follows, we use this model to design an efficient
augmentation scheme to build classifiers robust to common corruptions.

3 PRIME: A simple augmentation scheme

We now introduce PRIME, a simple yet efficient augmentation scheme that uses
our PRImitives of Maximum Entropy to confer robustness against common
corruptions. The pseudo-code of PRIME is given in Algorithm 1, which draws
a random sample from Eq. (1) using a convex combination of a composition of
basic primitives. Below we describe the main implementation details.

Parameter selection It is important to ensure that the semantic information
of an image is preserved after it goes through PRIME. As measuring semantic
preservation quantitatively is not simple, we subjectively select each primitive’s
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spectral

Fig. 2. Images generated with the transformations of our common corruptions model.
Despite the perceptibility of the distortion, the image semantics are preserved.

parameters based on visual inspection, ensuring maximum permissible distortion
while retaining the semantic content of the image. However, to avoid relying on
a specific strength for each transformation, PRIME stochastically generates aug-
mentations of different strengths by sampling σ from a uniform distribution, with
different minimum and maximum values for each primitive. Figure 2 shows some
visual examples for each kind of transformation, while additional visual examples
along with the details of all the parameters can be found in Appendix B.

For the color primitive, we observed that fairly large values for Kγ (in the
order of 500) are important for covering a large space of visual distortions. Un-
fortunately, implementing such a transformation can be memory inefficient. To
avoid this issue, PRIME uses a slight modification of Eq. (6) and combines a
fixed number ∆ of consecutive frequencies randomly chosen in the range [0,Kγ ].

Mixing transformations The concept of mixing has been a recurring theme
in the augmentation literature [45,44,22,41] and PRIME follows the same trend.
In particular, Algorithm 1 uses a convex combination of n basic augmentations
consisting of the composition of m of our primitive transformations. In general,
the convex mixing procedure (i) broadens the set of possible training augmen-
tations, and (ii) ensures that the augmented image stay close to the original
one. We later provide empirical results which underline the efficacy of mixing
in Sec. 5.2. Overall, the exact mixing parameters are provided in Appendix B.
Note that, the basic skeleton of PRIME is similar to that of AugMix. However,
as we will see next, incorporating our maximum entropy transformations leads
to significant gains in common corruptions robustness over AugMix.

4 Performance analysis

In this section, we compare the classification performance of our method on mul-
tiple datasets with that of two current approaches: AugMix and DeepAugment
(DA). In Appendix L, we also compare PRIME with additional baselines. We
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Table 1. Clean and corruption accuracy, and mean corruption error (mCE) for dif-
ferent methods with ResNet-18 on C-10, C-100, IN-100 and ResNet-50 on IN. mCE is
the mean corruption error on common corruptions un-normalized for C-10 and C-100;
normalized relative to standard model on IN-100 and IN. † indicates that JSD consis-
tency loss is not used. ∗Models taken from [9].

Dataset Method
Clean Common Corruption
Acc (↑) Acc (↑) mCE (↓)

C-10
Standard 95.0 74.0 24.0
AugMix 95.2 88.6 11.4
PRIME 94.2 89.8 10.2

C-100
Standard 76.7 51.9 48.1
AugMix 78.2 64.9 35.1
PRIME 78.4 68.2 31.8

IN-100

Standard 88.0 49.7 100.0
AugMix 88.7 60.7 79.1
DA 86.3 67.7 68.1
PRIME 85.9 71.6 61.0

DA+AugMix 86.5 73.1 57.3
DA+PRIME 84.9 74.9 54.6

IN

Standard∗ 76.1 38.1 76.7
AugMix∗ 77.5 48.3 65.3
DA∗ 76.7 52.6 60.4

PRIME† 77.0 55.0 57.5

DA+AugMix 75.8 58.1 53.6

DA+PRIME† 75.5 59.9 51.3

illustrate that PRIME significantly advances the corruption robustness over that
of AugMix and DeepAugment on all the benchmarks3.

4.1 Training setup

We consider the CIFAR-10 (C-10), CIFAR-100 (C-100) [25], ImageNet-100 (IN-
100) and ImageNet (IN) [11] datasets. IN-100 is a 100-class subset of IN obtained
by selecting every 10th class in WordNet ID order. We train a ResNet-18 [19]
on C-10, C-100 and IN-100; and a ResNet-50 on IN for 100 epochs. Following
AugMix, and for a complete comparison, we also integrate the Jensen-Shannon
divergence (JSD)-based consistency loss in PRIME which compels the network to
learn similar representations for differently augmented versions of the same input
image. Detailed training setup appears in Appendix C. We evaluate our trained
models on the common corrupted versions (C-10-C, C-100-C, IN-100-C, IN-C) of
the aforementioned datasets. The common corruptions [21] constitute 15 image

3 In Appendix K, we also show that our method yields additional benefits when em-
ployed in concert with unsupervised domain adaptation [37].
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distortions each applied with 5 different severity levels. These corruptions can
be grouped into four categories, viz. noise, blur, weather and digital.

4.2 Robustness to common corruptions

In order to assess the effectiveness of PRIME, we evaluate its performance
against C-10, C-100, IN-100 and IN common corruptions. The results are sum-
marized in Tab. 14. Amongst individual methods, PRIME yields superior results
compared to those obtained by AugMix and DeepAugment alone and advances
the baseline performance on the corrupted counterparts of the four datasets. As
listed, PRIME pushes the corruption accuracy by 1.2% and 3.3% on C-10-C and
C-100-C respectively over AugMix. On IN-100-C, a more complicated dataset,
we observe significant improvements wherein PRIME outperforms AugMix by
10.9%. In fact, this increase in performance hints that our primitive transforma-
tions are actually able to cover a larger space of image corruptions, compared
to the restricted set of AugMix. Interestingly, the random transformations in
PRIME also lead to a 3.9% boost in corruptions accuracy over DeepAugment
despite the fact that DeepAugment leverages additional knowledge to augment
the training data via its use of pre-trained architectures. Moreover, PRIME pro-
vides cumulative gains when combined with DeepAugment, reducing the mean
corruption error (mCE) of prior art (DA+AugMix) by 2.7% on IN-100-C. Lastly,
we also evaluate the performance of PRIME on full IN-C. However, we do not
use JSD in order to reduce computational complexity. Yet, even without the
JSD loss, PRIME outperforms, in terms of corruption accuracy, both AugMix
(with JSD) and DeepAugment by 6.7% and 2.4% respectively, while the mCE is
reduced by 7.8% and 2.9%. And last, when PRIME is combined with DeepAug-
ment, it also surpasses the performance of DA+AugMix (with JSD), reaching a
corruption accuracy of almost 60% and an mCE of 51.3%. Note here, that, not
only PRIME achieves superior robustness, but it does so efficiently. Compared to
standard training on IN-100, AugMix requires 1.20x time and PRIME requires
1.27x. In contrast, DA is tedious and we do not measure its runtime since it
also requires the training of two large image-to-image networks for producing
augmentations, and can only be applied offline.

5 Robustness insights using PRIME

In this section, we exploit the simplicity and the controllable nature of PRIME to
investigate different aspects behind robustness to common corruptions. We first
analyze how each transformation domain contributes to the overall robustness
of the network. Then, we empirically locate and justify the benefits of mixing
the transformations of each domain. Moreover, we demonstrate the existence of
a robustness-accuracy trade-off, and, finally, we comment on the low-complexity
benefits of PRIME in different data augmentation settings.

4 We provide the per-corruption performance of every method in Appendix H.
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Table 2. Impact of the different max-entropy primitives (ω: spectral, γ: color, τ :
spatial) in PRIME on common corruption accuracy (↑) of a ResNet-18. All the trans-
formations are essential for the performance of PRIME. The JSD loss is not used.

Transform IN-100-C Noise Blur Weather Digital IN-100

None 49.7 27.3 48.6 54.8 62.6 88.0
ω 64.1 60.7 55.4 66.6 72.9 87.3
τ 53.8 30.1 56.2 57.6 65.4 87.0
γ 59.9 67.4 52.6 54.4 67.1 86.9
ω+τ 64.5 58.5 57.3 66.8 73.9 87.7
ω+γ 67.5 77.2 55.7 65.3 74.2 87.1
τ+γ 63.3 74.7 57.4 56.2 67.8 86.2
ω+τ+γ 68.8 78.8 58.3 66.0 74.8 87.1

5.1 Contribution of transformations

We want to understand how the transformations in each domain of Eq. (1) con-
tribute to the overall robustness. To that end, we conduct an ablation study
on IN-100-C by training a ResNet-18 with the max-entropy transformations of
PRIME individually or in combination. As shown in Tab. 2, spectral transfor-
mations mainly help against blur, weather and digital corruptions. Spatial oper-
ations also improve on blurs, but on elastic transforms as well (digital). On the
contrary, color transformations excel on noises and certain high frequency digital
distortions, e.g., pixelate and JPEG artefacts, and have minor effect on weather
changes. Besides, incrementally combining the transformations lead to cumula-
tive gains e.g., spatial+color help on both noises and blurs. Yet, for obtaining the
best results, the combination of all transformations is required. This means that
each transformation increases the coverage over the space of possible distortions
and the increase in robustness comes from their cumulative contribution.

5.2 The role of mixing

In most data augmentation methods, besides the importance of the transforma-
tions themselves, mixing has been claimed as an essential module for increasing
diversity in the training process [45,44,22,41]. In our attempt to provide insights
on the role of mixing in the context of common corruptions, we found out that
it is capable of constructing augmented images that look perceptually similar to
their corrupted counterparts. In fact, the improvements on specific corruption
types observed in Tab. 2 can be largely attributed to mixing. As exemplified
in Fig. 3, careful combinations of spectral transformations with the clean image
introduce brightness and contrast-like artefacts that look similar to the corre-
sponding corruptions in IN-C. Also, combining spatial transformations creates
blur-like artefacts that look identical to zoom blur in IN-C. Finally, notice how
mixing color transformations helps fabricate corruptions of the “noise” category.
This means that the max-entropy color model of PRIME enables robustness to
different types of noise without explicitly adding any during training.
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spectral spectral
PRIME

spectral spectral
PRIME

PRIME PRIME

Fig. 3. Mixing produces images that are visually similar to the test-time corruptions.
Each example shows the clean image, the PRIME image and the common corruption
that resembles the image produced by mixing. We also report the mixing combination
used for recreating the corruption. See Appendix D for additional examples.

Note that one of the main goals of data augmentation is to achieve maximum
coverage of the space of possible distortions using a limited transformation bud-
get, i.e., within a few training epochs. The principle of max-entropy guarantees
this within each primitive, but the effect of mixing on the overall space is harder
to quantify. In this regard, we can use the distance in the embedding space, ϕ,
of a SimCLRv2 [7] model as a proxy for visual similarity [46,30]. We are inter-
ested in measuring how mixing the base transformations changes the likelihood
that an augmentation scheme generates some sample during training that is vi-
sually similar to some of the common corruptions. To that end, we randomly
select N = 1000 training images {xn}Nn=1 from IN, along with their C = 75
(15 corruptions of 5 severity levels) associated common corruptions {x̂c

n}Cc=1,
and generate for each of the clean images another T = 100 transformed samples
{x̃t

n}Tt=1 using each augmentation scheme. Moreover, for each corruption x̂c
n we

find its closest neighbor x̃t
n from the set of generated samples using the cosine

distance in the embedding space. Our overall measure of fitness is

1

NC

N∑
n=1

C∑
c=1

min
t

{
1−

(
ϕ(x̂c

n)
⊤ϕ(x̃t

n)

∥ϕ(x̂c
n)∥2 ∥ϕ(x̃t

n)∥2

)}
. (7)

Table 3 shows the values of this measure applied to AugMix and PRIME,
with and without mixing. For reference, we also report the values of the clean (no
transform) images {xn}Nn=1. More percentile scores can be found in Appendix F.
Clearly, mixing helps reduce the distance between the common corruptions and
the augmented samples from both methods. We also observe that PRIME, even
with only 100 augmentations per image – in the order of the number of training
epochs – can generate samples that are twice as close to the common corruptions
as AugMix. In fact, the feature similarity between training augmentations and
test corruptions was also studied in [29], with an attempt to justify the good per-
formance of AugMix on C-10. Yet, we see that the fundamental transformations



PRIME: A Few Primitives Can Boost Robustness to Common Corruptions 11

Table 3. Minimum cosine distances in the ResNet-50 SimCLRv2 embedding space
between 100 augmented samples from 1000 ImageNet images, and their corresponding
common corruptions.

Method
Min. cosine distance (×10−3)

Avg. (↓) Median (↓)
None (clean) 25.38 6.44

AugMix (w/o mix) 20.57 3.56
PRIME (w/o mix) 10.61 1.88

AugMix 17.48 2.61
PRIME 7.71 1.61

of AugMix are not enough to span a broad space guaranteeing high perceptual
similarity to IN-C. The significant difference in terms of perceptual similarity
in Tab. 3 between AugMix and PRIME may explain the superior performance
of PRIME on IN-100-C and IN-C (cf. Tab. 1)5.

5.3 Robustness vs. accuracy trade-off

An important phenomenon observed in the literature of adversarial robustness
is the so-called robustness-accuracy trade-off [16,40,33], where technically ad-
versarial training [27] with smaller perturbations (typically smaller ε) results
in models with higher standard but lower adversarial accuracy, and vice versa.
In this sense, we want to understand if the strength of the image transforma-
tions introduced through data augmentations in PRIME can also cause such
phenomenon in the context of robustness to common corruptions. As described
in Sec. 2, each of the transformations of PRIME has a strength parameter σ,
which can be seen as the analogue of ε in adversarial robustness. Hence, we can
easily reduce or increase the strength of the transformations by setting σ̂ = ασ,
where α ∈ R+. Then, by training a network for different values of α we can
monitor its accuracy on the clean and the corrupted datasets.

We train a ResNet-18 on C-10 and IN-100 using the setup of Sec. 4.1. For
reducing complexity, we do not use the JSD loss and train for 30 epochs. This
sub-optimal setting could cause some performance drop compared to the results
of Tab. 1, but we expect the overall trends in terms of accuracy and robustness
to be preserved. Regarding the scaling of the parameters’ strength, for C-10 we
set α ∈ [10−3, 102] and sample 100 values spaced evenly on a log-scale, while for
IN-100 we set α ∈ [10−2, 102] and we sample 20 values.

The results are presented in Fig. 4. For both C-10 and IN-100, it seems that
there is a sweet spot for the scale around α = 0.2 and α = 1 respectively, where
the accuracy on common corruptions reaches its maximum. For α smaller than
these values, we observe a clear trade-off between validation and robust accuracy.
While the robustness to common corruptions increases, the validation accuracy
decays. However, for α greater than the sweet-spot values, we observe that the

5 A visualization of the augmented space using PCA can be found in Appendix G.
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Fig. 4. Robustness vs. accuracy of a ResNet-18 (w/o JSD) on CIFAR-10 (left) and
ImageNet-100 (right), when trained multiple times with PRIME. On each training
instance, the transformation strength is scaled by α. Note the different scale in axes.

trade-off ceases to exist since both the validation and robust accuracy present
similar behaviour (slight decay). In fact, these observations indicate that robust
and validation accuracies are not always positively correlated and that one might
have to slightly sacrifice validation accuracy in order to achieve robustness.

5.4 Sample complexity

Finally, we investigate the necessity of performing augmentation during training
(on-line augmentation), compared to statically augmenting the dataset before
training (off-line augmentation). On the one hand, on-line augmentation is use-
ful when the dataset is huge and storing augmented versions requires a lot of
memory. Besides, there are cases where offline augmentation is not feasible as it
relies on pre-trained or generative models which are unavailable in certain sce-
narios, e.g., DeepAugment [20] or AdA [5] cannot be applied on C-100. On the
other hand, off-line augmentation may be necessary to avoid the computational
cost of generating augmentations during training.

To this end, for each of the C-10 and IN-100 training sets, we augment
them off-line with k = 1, 2, . . . , 10 i.i.d. PRIME transformed versions. Then,
for different values of k, we train a ResNet-18 on the corresponding augmented
dataset and report the validation and common corruption accuracy. For the
training setup, we follow the settings of Sec. 4.1, but without JSD loss. Finally,
since we increase the training set size by (k+1), we divide the number of training
epochs by the same factor to keep the same overall number of gradient updates.

The performance on common corruptions is presented in Fig. 5. Notice that,
even for k = 1, the robustness to common corruptions is already quite good. In
fact, for IN-100 the accuracy (65%) is already better than AugMix (60.7% with
JSD loss cf. Tab. 1). Regarding C-10, we see that for k = 4 the actual difference
with respect to the on-line augmentation is almost negligible (88.8% vs. 89.3%),
especially considering the overhead of transforming the data at every epoch.
Technically, this means that augmenting C-10 with 4 PRIME counterparts is
enough for achieving good robustness to common corruptions. Finally, we also
see in Fig. 5 that the corruption accuracy on IN-100 presents a very slow improve-
ment after k = 4. Comparing the accuracy at k = 4 (67.2%) to the one obtained
with on-line augmentation and without JSD (68.8% cf. Tab. 2) we observe a
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Fig. 5. Accuracy of a ResNet-18 (w/o JSD) on CIFAR-10 (left) and ImageNet-100
(right) when augmenting the training sets with additional PRIME counterparts off-line.
Dashed lines represent the accuracy achieved by training under the same setup, but
generating the transformed samples during training (on-line augmentation). Validation
accuracy is omitted because it is rather constant: around 93.4% for CIFAR-10 and
around 87% for ImageNet-100.

gap of 1.6%. Hence, given the cost of on-line augmentation on such large scale
datasets, simply augmenting the training with 4 extra PRIME samples presents
a good compromise for achieving competitive robustness. Still, the 1.6% increase
introduced by on-line augmentation is rather significant, hinting that generating
transformed samples during training might be necessary for maximizing perfor-
mance. In this regard, the lower computational complexity of PRIME allows it
to easily achieve this +1.6% gain through on-line augmentation, as it only re-
quires 1.27× additional training time compared to standard training, and only
1.06× compared to AugMix, but with much better performance. This can be a
significant advantage with respect to complex methods, like DeepAugment, that
cannot be even applied on-line (require heavy pretraining).

6 Related work

Common corruptions Towards evaluating the robustness of deep neural net-
works (DNNs) to natural distribution shifts, the authors in [21] proposed com-
mon corruptions benchmarks (CIFAR-10-C and ImageNet-C) constituting 15
realistic image distortions. Later studies [20] considered the example of blurring
and demonstrated that performance improvements on these common corrup-
tions do generalize to real-world images, which supports the use of common
corruptions benchmarks. Recent work [29] showed that current augmentation
techniques undergo a performance degradation when evaluated on corruptions
that are perceptually dissimilar from those in ImageNet-C. In addition to com-
mon corruptions, current literature studies other benchmarks e.g., adversarially
filtered data [23], artistic renditions [20] and in-domain datasets [34]. In Ap-
pendix J, we show that PRIME also improves robustness on these benchmarks.

Improving corruption robustness Data augmentation has been a central
pillar for improving the generalization of DNNs [12,45,10,44,26]. A notable aug-
mentation scheme for endowing corruption robustness is AugMix [22], which
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employs a careful combination of stochastic augmentation operations and mix-
ing. AugMix attains significant gains on CIFAR-10-C, but it does not perform as
well on larger benchmarks like ImageNet-C. DeepAugment (DA) [20] addresses
this issue and diversifies the space of augmentations by introducing distorted
images computed by perturbing the weights of image-to-image networks. DA,
combined with AugMix, achieves the current state-of-the-art on ImageNet-C.
Other schemes include: (i) worst-case noise training [35] or data augmentation
through Fourier-based operations [38], (ii) inducing shape bias through stylized
images [17], (iii) adversarial counterparts of DeepAugment [5] and AugMix [41],
(iv) pre-training and/or adversarial training [43,24], (v) constraining the total
variation of convolutional layers [36] or compressing the model [13] and (vi)
learning the image information in the phase rather than amplitude [6] Besides,
Vision Transformers [15] have been shown to be more robust to common cor-
ruptions than standard CNNs [3,31] when trained on big data. It would thus be
interesting to study the effect of extra data alongside PRIME in future works.
Finally, unsupervised domain adaptation [2,37] using a few corrupted samples
has also been shown to provide a considerable boost in corruption robustness.
Nonetheless, domain adaptation is orthogonal to this work as it requires knowl-
edge of the target distribution.

7 Concluding remarks

We took a systematic approach to understand the notion of common corruptions
and formulated a universal model that encompasses a wide variety of semantic-
preserving image transformations. We then proposed a novel data augmentation
scheme called PRIME, which instantiates our model of corruptions, to confer ro-
bustness against common corruptions. From a practical perspective, our method
is principled yet efficient and can be conveniently incorporated into existing
training procedures. Moreover, it yields a strong baseline on existing corruption
benchmarks outperforming current standalone methods. Additionally, our thor-
ough ablations demonstrate that diversity among basic augmentations (primi-
tives) – which AugMix and other approaches lack – is essential, and that mixing
plays a crucial role in the success of both prior methods and PRIME. In gen-
eral, while complicated methods like DeepAugment perform well, it is difficult
to understand, ablate and apply these online. Instead, we show that a simple
model-based stance with a few guiding principles can be used to build a very
effective augmentation scheme that can be easily understood, ablated and tuned.
We believe that our insights and PRIME pave the way for building robust mod-
els in real-life scenarios. PRIME, for instance, provides a ready-to-use recipe for
data-scarce domains such as medical imaging.
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