Supplementary Material for Rotation Regularization Without Rotation

Takumi Kobayashi

takumi.kobayashi@aist.go.jp

1 Proofs

We denote vectors by bold lowercase letters, e.g., \boldsymbol{x} , and normalized vectors by using $\bar{}$, e.g., $\bar{\boldsymbol{x}} = \frac{\boldsymbol{x}}{\|\boldsymbol{x}\|_2}$; thus, $\boldsymbol{x} \in \mathbb{R}^D \Rightarrow \bar{\boldsymbol{x}} \in \mathbb{S}^{D-1}$, the hyper-sphere in \mathbb{R}^D . Matrices are denoted by bold uppercase letters, e.g., \boldsymbol{R} .

Lemma 1. A vector $\bar{\boldsymbol{x}} \in \mathbb{S}^{D-1}$ is rotated by an angle α through a rotation matrix \boldsymbol{R}_{α} . So rotated vector is described by using a differential vector $\exists \bar{\boldsymbol{z}} \in \mathbb{S}^{D-2}$ which is in the orthogonal complement space to the input vector $\bar{\boldsymbol{x}}$ as

$$\boldsymbol{R}_{\alpha}\bar{\boldsymbol{x}} = \cos\alpha\,\bar{\boldsymbol{x}} + \sin\alpha\,\bar{\boldsymbol{z}}, \quad where \; \|\bar{\boldsymbol{z}}\|_2 = 1, \; \bar{\boldsymbol{x}}^{\top}\bar{\boldsymbol{z}} = 0. \tag{1}$$

Proof. Fig. 1 would be helpful to grasp relationships among the following vectors. Let the rotated vector be denoted by $\bar{\boldsymbol{\xi}} = \boldsymbol{R}_{\alpha} \bar{\boldsymbol{x}}$ which satisfies

$$\bar{\boldsymbol{x}}^{\top} \bar{\boldsymbol{\xi}} = \cos \alpha. \tag{2}$$

We define the differential vector \boldsymbol{z} as

$$\boldsymbol{z} = \bar{\boldsymbol{\xi}} - \cos \alpha \bar{\boldsymbol{x}},\tag{3}$$

and it has the following properties;

$$\bar{\boldsymbol{x}}^{\top}\boldsymbol{z} = \bar{\boldsymbol{x}}^{\top}\bar{\boldsymbol{\xi}} - \cos\alpha \,\|\bar{\boldsymbol{x}}\|_{2}^{2} = 0 \tag{4}$$

$$|\boldsymbol{z}\|_{2}^{2} = \|\bar{\boldsymbol{\xi}}\|_{2}^{2} + \cos^{2}\alpha \,\|\bar{\boldsymbol{x}}\|_{2}^{2} - 2\cos\alpha \,\bar{\boldsymbol{x}}^{\top}\bar{\boldsymbol{\xi}} = 1 - \cos^{2}\alpha = \sin^{2}\alpha, \qquad (5)$$

where we apply (2). Since $0 \le \alpha < \frac{\pi}{2}$, the differential vector \boldsymbol{z} is thus described by using $\bar{\boldsymbol{z}} = \frac{\boldsymbol{z}}{\|\boldsymbol{z}\|_2}$ as

$$\boldsymbol{z} = \sin \alpha \, \boldsymbol{\bar{z}} \quad \text{where } \| \boldsymbol{\bar{z}} \|_2 = 1, \, \boldsymbol{\bar{x}}^\top \boldsymbol{\bar{z}} = 0.$$
 (6)

It should be noted that \bar{z} is laid on the hyper-sphere \mathbb{S}^{D-2} embedded in the D-1 dimensional subspace orthogonal to $\bar{x} \in \mathbb{R}^{D}$. \Box

Fig. 1. Reparameterization of a rotated vector.

2 T. Kobayashi

Lemma 2. Projection of random vectors \bar{a} uniformly distributed on a unit hyper sphere \mathbb{S}^{m-1} into a unit-length vector $\bar{b} \in \mathbb{S}^{m-1}$ follows Beta distribution.

$$\bar{\boldsymbol{a}} \sim Unif(\mathbb{S}^{m-1}), \ \bar{\boldsymbol{b}} \in \mathbb{S}^{m-1}, \ u = \frac{1 + \bar{\boldsymbol{a}}^{\top} \bar{\boldsymbol{b}}}{2} \Rightarrow u \sim Beta\left(\frac{m-1}{2}, \frac{m-1}{2}\right).$$
 (7)

For the higher dimensional case $m \gg 1$, it approaches Gaussian distribution as

$$\bar{\boldsymbol{a}}^{\top} \bar{\boldsymbol{b}} \sim \mathcal{N}\left(0, \frac{1}{\sqrt{m}}\right) \tag{8}$$

Proof. As shown in Fig. 2, we consider the probability density of dt region at $t = \bar{a}^{\top} \bar{b}$ along \bar{b} . It is proportional to a surface volume dV on \mathbb{S}^{m-1} , a gray-colored belt in Fig. 2 which is composed of the length $\frac{dt}{\sqrt{1-t^2}}$ and the hyper volume of \mathbb{S}^{m-2} with radius $\sqrt{1-t^2}$ and thereby computed as

$$\mathbf{p}(t)dt \propto dV \propto (\sqrt{1-t^2})^{m-2} \frac{dt}{\sqrt{1-t^2}} = (1-t^2)^{\frac{m-3}{2}} dt.$$
(9)

Due to $\bar{a}^{\top}\bar{b} = t = 2u - 1$, the probability density function q(u) is described by

$$q(u)du = p(t)dt \propto \left\{1 - (2u - 1)^2\right\}^{\frac{m-3}{2}} \cdot 2du = 2(4u - 4u^2)^{\frac{m-3}{2}}du$$
(10)

$$=2^{m-2}u^{\frac{m-3}{2}}(1-u)^{\frac{m-3}{2}}du \propto u^{\frac{m-1}{2}-1}(1-u)^{\frac{m-1}{2}-1}du,$$
(11)

which corresponds to the Beta distribution, $Beta(u; \beta, \beta) \propto u^{\beta-1}(1-u)^{\beta-1}$ with $\beta = \frac{m-1}{2}$. Thus, the mean and variance of u are

$$E_{u\sim Beta}[u] = \frac{1}{2}, \ Var_{u\sim Beta}[u] = \frac{\beta^2}{4\beta^2(2\beta+1)} = \frac{1}{4(2\beta+1)} = \frac{1}{4m}.$$
 (12)

Asymptotic property of the Beta distribution as $\beta \to \infty$ is

$$Beta(\beta,\beta) \to \mathcal{N}\left(\frac{1}{2}, \frac{1}{2\sqrt{2\beta+1}}\right),\tag{13}$$

the proof of which is found such as in [7]. It is applied to $u \sim Beta(\beta, \beta)$ with $\beta = \frac{m-1}{2}$ to produce

$$\bar{\boldsymbol{a}}^{\top} \bar{\boldsymbol{b}} = 2u - 1 \sim \mathcal{N}\left(0, \frac{1}{\sqrt{m}}\right). \qquad \Box \qquad (14)$$

Fig. 2. Projection from a hyper sphere \mathbb{S}^{m-1} into a unit-length vector \bar{b} .

Theorem 1. Random rotation matrix \mathbf{R}_{α} of an angle α is applied to an inner product between two unit-length vectors $\bar{\mathbf{w}} \in \mathbb{R}^D$ and $\bar{\mathbf{x}} \in \mathbb{R}^D$ where $\bar{\mathbf{w}}^{\top} \bar{\mathbf{x}} = \cos \theta$. Then, the inner product is endowed with stochasticity by the random \mathbf{R}_{α} and is statistically described by

$$\bar{\boldsymbol{w}}^{\top}\boldsymbol{R}_{\alpha}\bar{\boldsymbol{x}} = \cos\alpha\cos\theta + (2\eta - 1)\sin\alpha\sin\theta \text{ where } \eta \sim Beta\Big(\frac{D-2}{2}, \frac{D-2}{2}\Big).$$
(15)

For the higher dimensional case $D \gg 1$, it approaches Gaussian distribution as

$$\bar{\boldsymbol{w}}^{\top} \boldsymbol{R}_{\alpha} \bar{\boldsymbol{x}} = \cos \alpha \cos \theta + \frac{\epsilon}{\sqrt{D-1}} \sin \alpha \sin \theta \text{ where } \epsilon \sim \mathcal{N}(0,1).$$
(16)

Proof. By applying Lemma 1, we can obtain

$$\bar{\boldsymbol{w}}^{\top}\boldsymbol{R}_{\alpha}\bar{\boldsymbol{x}} = \bar{\boldsymbol{w}}^{\top}\left(\cos\alpha\,\bar{\boldsymbol{x}} + \sin\alpha\,\bar{\boldsymbol{z}}\right) = \cos\alpha\cos\theta + \sin\alpha\,\bar{\boldsymbol{w}}^{\top}\bar{\boldsymbol{z}}.$$
 (17)

Due to the randomness of the rotation matrix \mathbf{R}_{α} , $\bar{\mathbf{z}}$ is uniformly drawn from \mathbb{S}^{D-2} embedded in the subspace \mathbb{R}^{D-1} perpendicular to $\bar{\mathbf{x}}$; so, $\bar{\mathbf{z}} = (\mathbf{I} - \bar{\mathbf{x}}\bar{\mathbf{x}}^{\top})\bar{\mathbf{z}}$. In that subspace, the inner product $\bar{\mathbf{w}}^{\top}\bar{\mathbf{z}}$ is described by

$$\bar{\boldsymbol{w}}^{\top} \bar{\boldsymbol{z}} = \bar{\boldsymbol{w}}^{\top} (\boldsymbol{I} - \bar{\boldsymbol{x}} \bar{\boldsymbol{x}}^{\top}) \bar{\boldsymbol{z}} = \sin \theta \, \hat{\boldsymbol{w}}^{\top} \bar{\boldsymbol{z}}, \tag{18}$$

where $\hat{\boldsymbol{w}} = \frac{(\boldsymbol{I} - \bar{\boldsymbol{x}}\bar{\boldsymbol{x}}^{\top})\bar{\boldsymbol{w}}}{\|(\boldsymbol{I} - \bar{\boldsymbol{x}}\bar{\boldsymbol{x}}^{\top})\bar{\boldsymbol{w}}\|_2}$ is in the subspace \mathbb{R}^{D-1} and $\|(\boldsymbol{I} - \bar{\boldsymbol{x}}\bar{\boldsymbol{x}}^{\top})\bar{\boldsymbol{w}}\|_2 = \sin\theta$ as shown in Fig. 3. Then, based on the stochasticity $\bar{\boldsymbol{z}} \sim Unif(\mathbb{S}^{D-2})$, Lemma 2 with m = D - 1 statistically rewrites the inner product into

$$\bar{\boldsymbol{w}}^{\top}\bar{\boldsymbol{z}} = \sin\theta(2\eta - 1),\tag{19}$$

where $\eta \sim Beta(\frac{D-2}{2}, \frac{D-2}{2})$. (17) and (19) lead to (15) and the asymptotic property of Beta distribution shown in Lemma 2 produces (16) with m = D - 1.

Fig. 3. Projection from \bar{w} into the subspace perpendicular to \bar{x} .

4 T. Kobayashi

2 Hyper parameters of comparison methods

In DropOut [13], we employ small probability p = 0.2 to mask feature elements according to the analysis [8] and preliminary experiments. For the margin-based losses, based on the preliminary experiments, we apply angular margin parameter of m = 0.1 in ArcFace [2], m = 0.1 in CosFace [14] and $\alpha = \sqrt{0.1}$ in NoisySoftmax [1].

3 Datasets

The details of the datasets that we use in Sec. 5 of the main manuscript are shown below. Except for CALTECH101 [3], we use the train/test splits provided in the respective datasets; for SUN397 [16], we use the first split out of 10 splits given in the dataset. In CALTECH101, following the standard protocol, we randomly draw 30 training samples per category and use the remaining samples as test.

	(a) Long-tailed	l datasets				
IMAGENET-LT [9] <i>i</i> NAT2018 [5] PLACES-LT [9]						
category raining sample test sample	1000 objects 115,846 50,000	8142 sp 437,5 24,4	vecies 365 s 13 62 26 36	scenes ,500 ,500		
ajority : minority	1,280:5	1,000	: 2 4,98	30:5		
	(b) Downstream	n datasets				
Cub200 [15] Air	CRAFT100 [11] C	Car196 [6]	Sun397 [16]	Caltech101 [3]		
200 birds 5,994 5,794	100 planes 6,667 3,333	$196 \ cars \\ 8,144 \\ 8,041$	397 scenes 19,850 19,850	101 objects 3,030 5,647		
(c) I	Person re-identif	ication dat	asets			
Market1501 [17] DukeMTMC [12]						
trn. categor trn. sample tst. categor query sampl gallery samp	y 750 identiti y 750 identiti y 751 identiti a 3,368 a 19,732	ies 70 ies 70	2 identities 16,522 2 identities 2,228 17 661	-		
	category raining sample test sample ijority : minority CUB200 [15] AIR 200 birds 5,994 5,794 (c) F (trn. category trn. sample tst. category query sample	(a) Long-tailed IMAGENET-LT [category 1000 objects raining sample 115,846 test sample 50,000 ajority : minority 1,280 : 5 (b) Downstrear CUB200 [15] AIRCRAFT100 [11] C 200 birds 100 planes 5,994 6,667 5,794 3,333 (c) Person re-identifi trn. category 750 identiti trn. sample 12,936 tst. category 751 identiti query sample 3,368 gallery sample 19,732	$(a) \text{ Long-tailed datasets} \\ \hline \text{IMAGENET-LT [9] } i\text{NAT20} \\ \hline \text{category} & 1000 \text{ objects} & 8142 \text{ sp} \\ \text{raining sample} & 115,846 & 437,5 \\ \text{test sample} & 50,000 & 24,42 \\ \text{ajority : minority} & 1,280 : 5 & 1,000 \\ \hline (b) \text{ Downstream datasets} \\ \hline \text{CUB200 [15] AIRCRAFT100 [11] CAR196 [6]} \\ \hline 200 \text{ birds} & 100 \text{ planes} & 196 \text{ cars} \\ 5,994 & 6,667 & 8,144 \\ 5,794 & 3,333 & 8,041 \\ \hline \text{CC} \text{ Person re-identification dat} \\ \hline \text{MARKET1501 [17] DUK1} \\ \hline \text{trn. category} & 750 \text{ identities} & 702 \\ \text{trn. sample} & 12,936 \\ \text{tst. category} & 751 \text{ identities} & 702 \\ \text{query sample} & 3,368 \\ \text{gallery sample} & 19, 732 \\ \hline \end{array}$	(a) Long-tailed datasets IMAGENET-LT [9] i NAT2018 [5] PLACE category 1000 objects 8142 species 365 s raining sample 115,846 437,513 62 test sample 50,000 24,426 36 ajority : minority 1,280 : 5 1,000 : 2 4,98 (b) Downstream datasets CUB200 [15] AIRCRAFT100 [11] CAR196 [6] SUN397 [16] 200 birds 100 planes 196 cars 397 scenes 5,994 6,667 8,144 19,850 5,794 3,333 8,041 19,850 (c) Person re-identification datasets MARKET1501 [17] DUKEMTMC [12] trn. category 750 identities 702 identities trn. sample 12,936 16,522 153,368 2,228 guery sample 3,368 2,228 gallery sample 19,732 17 661		

4 Discriminativity of feature representation

We apply t-SNE [10] to show the feature distributions of ResNet10 backbone trained on IMAGENET-LT dataset by using the baseline softmax loss and ours with statistical rotation regularization. Fig. 4 demonstrates that our method improves feature distribution in comparison to the softmax loss.

The discriminativity of features is quantitatively measured by means of discriminant score [4], the ratio of between-class feature variance to within-class one; $tr(\Sigma_B)/tr(\Sigma_W)$. Table 1 demonstrates that our method improves the score, contributing to intra-class compactness as well as inter-class separability.

Fig. 4. Visualization of ResNet10 feature distributions on IMAGENET-LT via t-SNE [10]. Each point indicates a sample drawn from major, middle and minor classes on the validation set.

	IMAGENET-LT	iNat2018	PLACES-LT	
	$\operatorname{ResNet10}$	$\operatorname{ResNet50}$	ResNet10	ResNet152
Softmax Loss Ours	0.385 0.692	1.475 1.747	0.270 0.495	0.372 0.672

Table 1. Discriminant score $tr(\Sigma_B)/tr(\Sigma_W)$. Higher is better.

References

- Chen, B., Deng, W., Du, J.: Noisy softmax: Improving the generalization ability of dcnn via postponing the early softmax saturation. In: CVPR. pp. 4021–4030 (2017)
- Deng, J., Guo, J., Niannan, X., Zafeiriou, S.: Arcface: Additive angular margin loss for deep face recognition. In: CVPR (2019)

- 6 T. Kobayashi
- Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. In: Computer Vision and Pattern Recognition Workshop (2004)
- 4. Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press, Boston (1990)
- 5. iNatrualist: The inaturalist 2018 competition dataset. https://github.com/ visipedia/inat_comp/tree/master/2018 (2018)
- Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3d object representations for finegrained categorization. In: Workshop on 3D Representation and Recognition (2013)
- 7. Leemis, L.: http://www.math.wm.edu/~leemis/chart/UDR/PDFs/BetaNormal.pdf
- 8. Li, X., Chen, S., Hu, X., Yang, J.: Understanding the disharmony between dropout and batch normalization by variance shift. In: CVPR. pp. 2682–2690 (2019)
- Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., Yu, S.X.: Large-scale long-tailed recognition in an open world. In: CVPR. pp. 2537–2546 (2019)
- van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. Journal of Machine Learning Research 9, 2579–2605 (2008)
- Maji, S., Rahtu, E., Kannala, J., Blaschko, M.B., Vedaldi, A.: Fine-grained visual classification of aircraft. arXiv:1306.5151 (2013)
- 12. Ristani, E., Solera, F., Zou, R., Cucchiara, R., Tomasi, C.: Performance measures and a data set for multi-target, multi-camera tracking. In: ECCV Workshop (2016)
- Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout : A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research 15, 1929–1958 (2014)
- 14. Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J., Li, Z., Liu, W.: Cosface: Large margin cosine loss for deep face recognition. In: CVPR. pp. 5265–5274 (2018)
- Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F., Belongie, S., Perona, P.: Caltech-UCSD Birds 200. Tech. Rep. CNS-TR-2010-001, California Institute of Technology (2010)
- 16. Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: Large-scale scene recognition from abbey to zoo. In: CVPR (2010)
- Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person reidentification: A benchmark. In: ICCV (2015)