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1 Proofs

We denote vectors by bold lowercase letters, e.g., x, and normalized vectors by
using ¯, e.g., x̄ = x

∥x∥2
; thus, x ∈ RD ⇒ x̄ ∈ SD−1, the hyper-sphere in RD.

Matrices are denoted by bold uppercase letters, e.g., R.

Lemma 1. A vector x̄ ∈ SD−1 is rotated by an angle α through a rotation matrix
Rα. So rotated vector is described by using a differential vector ∃z̄ ∈ SD−2 which
is in the orthogonal complement space to the input vector x̄ as

Rαx̄ = cosα x̄+ sinα z̄, where ∥z̄∥2 = 1, x̄⊤z̄ = 0. (1)

Proof. Fig. 1 would be helpful to grasp relationships among the following vectors.
Let the rotated vector be denoted by ξ̄ = Rαx̄ which satisfies

x̄⊤ξ̄ = cosα. (2)

We define the differential vector z as

z = ξ̄ − cosαx̄, (3)

and it has the following properties;

x̄⊤z = x̄⊤ξ̄ − cosα ∥x̄∥22 = 0 (4)

∥z∥22 = ∥ξ̄∥22 + cos2 α ∥x̄∥22 − 2 cosα x̄⊤ξ̄ = 1− cos2 α = sin2 α, (5)

where we apply (2). Since 0 ≤ α < π
2 , the differential vector z is thus described

by using z̄ = z
∥z∥2

as

z = sinα z̄ where ∥z̄∥2 = 1, x̄⊤z̄ = 0. (6)

It should be noted that z̄ is laid on the hyper-sphere SD−2 embedded in the
D − 1 dimensional subspace orthogonal to x̄ ∈ RD. □

Fig. 1. Reparameterization of a rotated vector.
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Lemma 2. Projection of random vectors ā uniformly distributed on a unit hyper
sphere Sm−1 into a unit-length vector b̄ ∈ Sm−1 follows Beta distribution.

ā ∼ Unif (Sm−1), b̄ ∈ Sm−1, u =
1 + ā⊤b̄

2
⇒ u ∼ Beta

(m− 1

2
,
m− 1

2

)
. (7)

For the higher dimensional case m ≫ 1, it approaches Gaussian distribution as

ā⊤b̄ ∼ N
(
0,

1√
m

)
(8)

Proof. As shown in Fig. 2, we consider the probability density of dt region at
t = ā⊤b̄ along b̄. It is proportional to a surface volume dV on Sm−1, a gray-
colored belt in Fig. 2 which is composed of the length dt√

1−t2
and the hyper

volume of Sm−2 with radius
√
1− t2 and thereby computed as

p(t)dt ∝ dV ∝ (
√

1− t2)m−2 dt√
1− t2

= (1− t2)
m−3

2 dt. (9)

Due to ā⊤b̄ = t = 2u− 1, the probability density function q(u) is described by

q(u)du = p(t)dt ∝
{
1− (2u− 1)2

}m−3
2 · 2du = 2(4u− 4u2)

m−3
2 du (10)

= 2m−2u
m−3

2 (1− u)
m−3

2 du ∝ u
m−1

2 −1(1− u)
m−1

2 −1du, (11)

which corresponds to the Beta distribution, Beta(u;β, β) ∝ uβ−1(1−u)β−1 with
β = m−1

2 . Thus, the mean and variance of u are

Eu∼Beta[u] =
1

2
, Varu∼Beta[u] =

β2

4β2(2β + 1)
=

1

4(2β + 1)
=

1

4m
. (12)

Asymptotic property of the Beta distribution as β → ∞ is

Beta(β, β) → N
(
1

2
,

1

2
√
2β + 1

)
, (13)

the proof of which is found such as in [7]. It is applied to u ∼ Beta(β, β) with
β = m−1

2 to produce

ā⊤b̄ = 2u− 1 ∼ N
(
0,

1√
m

)
. □ (14)

radius:

(a) (b)
Fig. 2. Projection from a hyper sphere Sm−1 into a unit-length vector b̄.
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Theorem 1. Random rotation matrix Rα of an angle α is applied to an inner
product between two unit-length vectors w̄ ∈ RD and x̄ ∈ RD where w̄⊤x̄ = cos θ.
Then, the inner product is endowed with stochasticity by the random Rα and is
statistically described by

w̄⊤Rαx̄ = cosα cos θ+(2η−1) sinα sin θ where η ∼ Beta
(D−2

2
,
D−2

2

)
. (15)

For the higher dimensional case D ≫ 1, it approaches Gaussian distribution as

w̄⊤Rαx̄ = cosα cos θ +
ϵ√

D−1
sinα sin θ where ϵ ∼ N (0, 1). (16)

Proof. By applying Lemma 1, we can obtain

w̄⊤Rαx̄ = w̄⊤ (cosα x̄+ sinα z̄) = cosα cos θ + sinα w̄⊤z̄. (17)

Due to the randomness of the rotation matrix Rα, z̄ is uniformly drawn from
SD−2 embedded in the subspace RD−1 perpendicular to x̄; so, z̄ = (I − x̄x̄⊤)z̄.
In that subspace, the inner product w̄⊤z̄ is described by

w̄⊤z̄ = w̄⊤(I − x̄x̄⊤)z̄ = sin θ ŵ⊤z̄, (18)

where ŵ = (I−x̄x̄⊤)w̄
∥(I−x̄x̄⊤)w̄∥2

is in the subspace RD−1 and ∥(I − x̄x̄⊤)w̄∥2 = sin θ as

shown in Fig. 3. Then, based on the stochasticity z̄ ∼ Unif(SD−2), Lemma 2
with m = D − 1 statistically rewrites the inner product into

w̄⊤z̄ = sin θ(2η − 1), (19)

where η ∼ Beta(D−2
2 , D−2

2 ). (17) and (19) lead to (15) and the asymptotic
property of Beta distribution shown in Lemma 2 produces (16) with m = D−1.
□

Fig. 3. Projection from w̄ into the subspace perpendicular to x̄.



4 T. Kobayashi

2 Hyper parameters of comparison methods

In DropOut [13], we employ small probability p = 0.2 to mask feature elements
according to the analysis [8] and preliminary experiments. For the margin-based
losses, based on the preliminary experiments, we apply angular margin param-
eter of m = 0.1 in ArcFace [2], m = 0.1 in CosFace [14] and α =

√
0.1 in

NoisySoftmax [1].

3 Datasets

The details of the datasets that we use in Sec. 5 of the main manuscript are shown
below. Except for Caltech101 [3], we use the train/test splits provided in the
respective datasets; for Sun397 [16], we use the first split out of 10 splits given
in the dataset. In Caltech101, following the standard protocol, we randomly
draw 30 training samples per category and use the remaining samples as test.

(a) Long-tailed datasets

ImageNet-LT [9] iNat2018 [5] Places-LT [9]

category 1000 objects 8142 species 365 scenes
training sample 115,846 437,513 62,500
test sample 50,000 24,426 36,500

majority : minority 1,280 : 5 1,000 : 2 4,980 : 5

(b) Downstream datasets

Cub200 [15] Aircraft100 [11] Car196 [6] Sun397 [16] Caltech101 [3]

category 200 birds 100 planes 196 cars 397 scenes 101 objects
trn. sample 5,994 6,667 8,144 19,850 3,030
tst. sample 5,794 3,333 8,041 19,850 5,647

(c) Person re-identification datasets

Market1501 [17] DukeMTMC [12]

trn. category 750 identities 702 identities
trn. sample 12,936 16,522
tst. category 751 identities 702 identities
query sample 3,368 2,228
gallery sample 19,732 17,661
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4 Discriminativity of feature representation

We apply t-SNE [10] to show the feature distributions of ResNet10 backbone
trained on ImageNet-LT dataset by using the baseline softmax loss and ours
with statistical rotation regularization. Fig. 4 demonstrates that our method
improves feature distribution in comparison to the softmax loss.

The discriminativity of features is quantitatively measured by means of dis-
criminant score [4], the ratio of between-class feature variance to within-class
one; tr(ΣB)/tr(ΣW ). Table 1 demonstrates that our method improves the score,
contributing to intra-class compactness as well as inter-class separability.

Major classes

Minor classes

Middle classes

(a) Softmax Loss (b) Ours

Fig. 4. Visualization of ResNet10 feature distributions on ImageNet-LT via t-
SNE [10]. Each point indicates a sample drawn from major, middle and minor classes
on the validation set.

Table 1. Discriminant score tr(ΣB)/tr(ΣW ). Higher is better.

ImageNet-LT iNat2018 Places-LT

ResNet10 ResNet50 ResNet10 ResNet152

Softmax Loss 0.385 1.475 0.270 0.372
Ours 0.692 1.747 0.495 0.672
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