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Abstract. In various visual classification tasks, we enjoy significant per-
formance improvement by deep convolutional neural networks (CNNs).
To further boost performance, it is effective to regularize feature repre-
sentation learning of CNNs such as by considering margin to improve
feature distribution across classes. In this paper, we propose a regular-
ization method based on random rotation of feature vectors. Random
rotation is derived from cone representation to describe angular margin
of a sample. While it induces geometric regularization to randomly ro-
tate vectors by means of rotation matrices, we theoretically formulate
the regularization in a statistical form which excludes costly geomet-
ric rotation as well as effectively imposes rotation-based regularization
on classification in training CNNs. In the experiments on classification
tasks, the method is thoroughly evaluated from various aspects, while
producing favorable performance compared to the other regularization
methods. Codes are available at https://github.com/tk1980/StatRot.
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1 Introduction

The last decade has witnessed great success of deep convolutional neural net-
works (CNNs) in computer vision fields [14,31]. For training deep models equipped
with huge amount of parameters, regularization methods effectively work to rem-
edy such as over fitting on scarce training data. Those models are also regularized
so as to improve feature representation even on biased learning scenarios [4].

Regularization in training CNNs is roughly categorized into two groups. One
is for input signals, i.e., images in computer vision. Injecting perturbation into
images increases robustness against such as image noises, object deformation
and occlusion [9,40]. While regularization on input signals is designed on the
basis of prior knowledge about the input patterns, the other type of regular-
ization is rather generally applicable to feature representation (neuron activa-
tions) and weights in deep models. The most common approach is to impose
L2-norm regularization on weights in the form of weight decay in optimizers [23].
Features composed of neuron activations are subject to normalization such as
BatchNorm [20] and its variants [1,33,35] for stabilizing the training process. It
is also effective to inject perturbation into features as in input regularization
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such as by randomly adding noises [13] and masking some feature components
via DropOut [34] in a stochastic manner. From the geometrical viewpoint in
a feature space, there are regularization approaches to improve feature repre-
sentation by addressing intra-class compactness and between-class separability.
While center loss [38] is simply formulated to reduce within-class variance, the
large-margin approaches [8,36] provide effective feature representation through
introducing margin into a classification loss. The margin-based losses focus on
angular margin between an input feature vector and its target classifier vector
to enhance margin from the classification boundary.

In this work, we integrate the stochastic and margin-based approaches by
means of rotation. Rotating a feature vector in any random directions by an an-
gle α is naturally derived from a cone centered on the feature vector (Fig. 1ab).
From the geometrical viewpoint, the cone exhibits an angular margin of angle
α around the feature vector and thus classification of the cones contributes to
improving classification margin. Though the random rotation applies stochas-
tic perturbation across feature components [17], geometric operation of rotating
vector in higher dimensional feature space demands considerable amount of com-
putation cost. Thus, we theoretically propose an efficient formulation through
reparameterization of geometric rotation. The proposed method imposes rotation
regularization on classification as in geometric random rotation while excluding
costly geometric operation of rotation to significantly reduce the computation
cost. Our contributions are summarized as follows.

– Through analyzing geometric random rotation of feature vectors, we theoret-
ically formulate an efficient rotation-based regularization without geometric
rotation for improving feature representation from the viewpoint of margin.

– The proposed method works with a low computation cost to regularize clas-
sifier logits by using a parameter of rotation angle which is so interpretable as
to be set in advance based on general geometric characteristics of classifiers.

– We thoroughly analyze the proposed method through empirical evaluation
from various aspects as well as performance comparison to the other regu-
larization methods on various visual classification tasks.

2 Related Works

This paper addresses regularization on feature vectors in linear classification;
those features are produced at the penultimate layer of CNN models which is
followed by the (fully-connected) linear classifier. This section briefly reviews
related regularization approaches which cope with the feature vectors.

Stochastic regularization. DropOut [34] is a representative stochastic reg-
ularization to randomly mask (drop) feature components for increasing gener-
alization performance via preventing co-adaptation; it is applicable not only to
neuron activations at intermediate layers but also the final feature representa-
tion at the penultimate layer [25]. The DropOut has some variants to target such
as feature maps [11] and residual paths [18]. In contrast to the component-wise
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classification boundary

rotation
angle

(a) Angular-margin cone Cα (b) Random rotation (c) Reparameterization

Fig. 1. Angular-margin cone of a vector x ∈ R3 (a) induces random rotation by an
angle α (b) and is also reparameterized by using z̄ ∈ S1 (circle) (c).

perturbation, our angular perturbation is applied to a whole feature vector via
rotation and the stochasticity is derived from random directions of the rotation.
Thus, the method is orthogonal to DropOut and their combination could further
regularize networks from two distinctive aspects.

Margin-based regularization. In the process of classifying feature vectors,
margin-based losses are constructed from a geometrical viewpoint by underesti-
mating (degrading) the angle between the feature vector and the target classifier
vector of the assigned class [27,36,8,26]. The regularization further encourages
feature vectors to be close to the target classifier, which is also contributive to
alleviate saturation of softmax loss [5]. While the margin-based methods pay spe-
cial attention to the target class by leaving the others untouched, the proposed
regularization works symmetrically across classes without requiring class labels
assigned to samples. Meanwhile, our statistical formulation of the regularization
includes slight connection to the margin-based loss, especially noisy softmax [5]
which stochastically degrades the target angle in a large-margin framework.

Rotation. In the literature of computer vision, some works have payed atten-
tion to rotation of input images from theoretical viewpoints [6,24]. In contrast
to 2D image rotation, we focus on rotating feature vectors of higher dimension.
Rotating features has been addressed in a learning framework [3,17], though ro-
tation is also utilized to analyze interpretability of CNN features [2]. In ensemble
learning, rotation is effectively applied to construct diverse base learners of deci-
sion trees [3]. RotationOut [17] randomly injects rotation variation into feature
representation via sparse rotation matrices in a manner similar to DropOut [34].
Though it is based on the regularization of random rotation similarly to ours,
we analyze dense random rotation to theoretically formulate the proposed regu-
larization in a clearly different form than [17].

3 Method

We first define a rotation regularization from a geometrical viewpoint by showing
its connection to angular margin of feature representation. Then, the geometric
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formulation of the rotation regularization is theoretically relaxed via statistical
analysis into the efficient one without geometrically rotating vectors.

3.1 Geometrical rotation regularization

Suppose an input feature vector x ∈ Rd is classified into C classes by linear clas-
sifiers, each of which is equipped with a weight vector wc ∈ Rd, c ∈ {1, · · · , C}.
The feature vector is produced by a backbone CNN ϕ from an input image I
as x = ϕ(I;Θ) and thereby the CNN parameters Θ are optimized to provide
favorable feature representation. Effective feature x should be compactly dis-
tributed within a class while being separable across classes, which is encouraged
by introducing classification margin [8,36]. We introduce a cone Cα(x) pointing
toward x which geometrically describes angular margin around x:

Cα(x) =

{
z

∣∣∣∣ z⊤x

∥z∥2∥x∥2
= cosα, ∥z∥2 = ∥x∥2, z ∈ Rd

}
, (1)

where 0 ≤ α < π
2 is a half cone angle, equivalent to angular margin, as shown in

Fig. 1a. Instead of a feature vector x, we consider to classify a cone Cα(x) as

w⊤
y x > w⊤

c x,∀c ̸= y ⇒ w⊤
y z > w⊤

c z, ∀c ̸= y,∀z ∈ Cα(x), (2)

where y is the class label of x. To correctly classify the cone Cα(α), the vector
x is forced to exhibit angular margin larger than α from classification bound-
aries (Fig. 1a). The cone representation (1) is only dependent on a vector x in
disregard of a class label y, being contrastive with margin-based losses [8,36,5]
which focuses on the angle to the target class y.

We relax the cone classification (1) by means of sampling to facilitate train-
ing. A cone Cα(x) is approximated by randomly rotating a vector x with an
angle α during training since random rotation is equivalent to random sampling
from the cone. Therefore, by using a random rotation matrix Rα ∈ Rd×d of a
rotation angle α, a backbone CNN Θ and a classifier W = [w1, · · · ,wC ] are
optimized through minimizing the following loss:

E
(x=ϕ(I),y)

E
Rα∈Rα

[ℓ(W⊤Rαx, y)], (3)

where ℓ is a classification loss of softmax cross-entropy based on rotated logits
W⊤Rαx and Rα is a set of rotation matrices with rotation angle α.

Random rotation matrix Rα can be computed based on Givens rota-
tion [12]. Let random rotation orientation be described by orthonormal matrix
V ∈ Rd×d. A rotation matrix toward the orientation V by an angle α is repre-
sented as

Rα = V blkdiag

[{(
cosα − sinα
sinα cosα

)}d/2

i=1

]
V ⊤, (4)

where blkdiag concatenates d/2 small rotation matrices of 2 × 2 in a block-
diagonal manner3. To embed stochasticity into the rotation matrix Rα, the or-
thonormal matrix V is randomly drawn in a rather dense manner. In contrast, to

3 For odd d, we apply (d− 1)/2 with V ∈ Rd×d−1.
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reduce the computation cost of projection via V , in [17] sparse orthonormal ma-
trix is sampled so that card(V ) = d, identical to swapping feature components,
though lacking the following analysis about subspace of the classifier W .

The matrix (4) rotates vectors in a (full) d-dimensional feature space, ef-
fectively working in the case that the classifier W spans the full space, i.e.,
rank(W ) = d requiring d ≤ C. It, however, degrades efficacy if W occupies
only a subspace of d-dimensional feature space by rank(W ) < d such as due to
d > C. In that case, a rotation by Rα would project vectors onto orthogonal
space of W and the orthogonal space gives no interferences in the classification
(3) by W . Thus, we consider an essential rotation in the space spanned by W ,
reformulating the rotation matrix into

Rα = UR̃αU
⊤ +U⊥U

⊤
⊥ where R̃α= Ṽ blkdiag

[{(
cosα − sinα
sinα cosα

)}D/2

i=1

]
Ṽ ⊤,

(5)
where U ∈ Rd×D is an orthonormal basis matrix of the subspace spanned by
W and D = rank(W ) is the essential dimension for rotation; W = UU⊤W
and U⊤

⊥U = 0 for U⊥ ∈ Rd×d−D. The essential rotation matrix R̃ ∈ RD×D

is produced by the random orthonormal matrix Ṽ in the D-dimensional space.
The rotation matrix (5) is reduced into (4) in case of D = d; considering D =
min(d,C) in most cases, it is the case of d ≤ C.

3.2 Statistical rotation regularization

The geometric rotation (5) requires considerable amount of computation for
matrix-vector multiplication Rαx. Apart from such a geometrical point of view,
we shed light on statistical aspect of the random rotation, leading to a novel
rotation regularization formulation which excludes the geometrical rotation of
vectors and thus is computationally efficient.

We consider normalized representation x̄= x
∥x∥2

∈SD−1 and w̄= w
∥w∥2

∈SD−1

of a feature vector x ∈ RD and a classifier weight vector w ∈ RD in the essential
D-dimensional space since the rotation essentially affects them;

w⊤Rαx = ∥w∥2∥x∥2w̄⊤Rαx̄. (6)

We begin with reparameterization of rotating vectors as follows.

Lemma 1. A vector x̄ is rotated by an angle α through a rotation matrix Rα.
As shown in Fig. 1c, so rotated vector is described by using a differential vector
∃z̄ ∈ SD−2 which is in the orthogonal complement space to the input vector x̄ as

Rαx̄ = cosα x̄+ sinα z̄, where ∥z̄∥2 = 1, x̄⊤z̄ = 0. (7)

We then focus on the rotated logits w̄⊤Rαx̄ through projection by a classifier
vector w. The following statistical representation is useful for characterizing the
projection.
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Fig. 4. Angles between
classifiers in Sec. 5.1.

Lemma 2. Projection of random vectors ā uniformly distributed on a unit hyper
sphere Sm−1 into a unit-length vector b̄ ∈ Sm−1 follows Beta distribution.

ā ∈ Sm−1, b̄ ∼ Unif (Sm−1), u =
1 + ā⊤b̄

2
⇒ u ∼ Beta(

m− 1

2
,
m− 1

2
). (8)

For the higher dimensional case m ≫ 1, it approaches Gaussian distribution as

ā⊤b̄ ∼ N (0,
1√
m
). (9)

We apply Lemma 1&2 to the rotated logit w̄Rαx̄ to construct the following
statistical representation.

Theorem 1. Random rotation matrix Rα of an angle α is applied to an inner
product between two unit-length vectors w̄ and x̄ where w̄⊤x̄ = cos θ. Then, the
inner product is endowed with stochasticity by the random Rα and is statistically
described by

w̄⊤Rαx̄ = cosα cos θ+(2η−1) sinα sin θ where η ∼ Beta
(D−2

2
,
D−2

2

)
. (10)

For the higher dimensional case D ≫ 1, it approaches Gaussian distribution as

w̄⊤Rαx̄ = cosα cos θ +
ϵ√

D−1
sinα sin θ where ϵ ∼ N (0, 1). (11)

It is noteworthy that the statistical representation (11) is simply computed by
using a Gaussian random number ϵ without geometrically rotating vectors; the
correspondence between Guassian and Beta distributions are depicted in Fig. 2.
The inner product (logit) degraded by random rotation is shown in Fig. 3. By
using this efficient formulation of random rotation, an objective loss (3) can be
rewritten into

E
(x=ϕ(I),y)

E
ϵ∼N (0,1)

[ℓ({rotdot(wc,x; ϵc, α)}Cc=1, y)], (12)

rotdot(w,x; ϵ, α) = cosαw⊤x+
ϵ√

D−1
sinα

√
∥w∥22∥x∥22 − (w⊤x)2, (13)
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FC-classifier

Softmax Loss
CNN

Eq.(13)

Input feature vector

Output logit vector
Random numbers

Parameter

1. Sample C normal random numbers {ϵc}Cc=1.
2. Compute logits {lc}Cc=1 by (13) based on w⊤

c x and ϵc with α = π
4
.

3. Feed the logits into a softmax cross-entropy loss.

Fig. 5. Computational procedure of the proposed method.

where D = min(d,C) indicates an essential dimensionality in the linear clas-
sification as described in Sec. 3.1. In (13), we assume less correlation among
classifier vectors {wc}Cc=1 to simply draw a random number ϵc in an i.i.d. man-
ner. It practically holds since the learned classifier vectors are close to orthogonal
as shown in Fig. 4. This orthogonality of classifiers also inspires us to set the
rotation angle as half of the orthogonality, α = π

4 , so as to maximize the angular
margin α within a gap (π2 ) between classifiers. Fig. 5 shows a computational
procedure of the proposed method, which first computes the logit by (13) and
then feeds it into a loss function such as softmax cross-entropy loss.

4 Discussion

We analyze the proposed regularization (13) through comparing it with its vari-
ants and related margin losses [8,5]. The methods mentioned in this section are
also empirically evaluated in Sec. 5.

4.1 Comparison to geometric regularization

The geometrical formulation (3) is different from the statistical one (13) due
to reparameterization, though both of them are derived from the regularization
of randomly rotating input vector x. We delve deeper into the difference by
contrasting gradients of the c-th logit lc with respect to input vector x as

(3) ⇒ ∂lc
∂x

= R⊤
αwc = ∥wc∥2 [cosα w̄c + sinα z̄w] , (14)

(13) ⇒ ∂lc
∂x

= cosαwc + sinα
ϵ√

D − 1

∥wc∥22x−wcw
⊤
c x√

∥wc∥22∥x∥22 − (w⊤
c x)

2
(15)

= ∥wc∥2
[
cosα w̄c + sinα

ϵ√
D − 1

x̂c

∥x̂c∥2

]
, (16)

where we apply Lemma 1 to (14) with a rotation matrix R⊤
α = R−α and x̂c =

(I − w̄cw̄
⊤
c )x as shown in Fig. 6a. A critical difference between (14) and (16)

is found in z̄w and ϵ√
D−1

x̂
∥x̂∥2

which involve randomness of z̄w on SD−2 and ϵ
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complementary space 

projection

(a) Differential vector (b) Projection

Fig. 6. Gradient of rotated logits w.r.t. x is essentially
on the plane of wc and a differential vector x̂c (a)
through projecting random unit vector z̄w onto it (b).

classification boundary

Fig. 7. Margin ball Bα in ac-
cordance with cone Cα.

from N , respectively. Updating feature representation x based on the logit lc
connected to the classifier wc is supposed to be essentially performed on the
plane spanned by wc and x, or equivalently x̂c. It inspires us to consider the
projection of z̄w onto x̂c (Fig. 6b) as

x̂cx̂
⊤
c z̄w

∥x̂c∥22
≈ ϵ√

D − 1

x̂c

∥x̂c∥2
, (17)

where we apply Lemma 2 to z̄w uniformly drawn from SD−2. From this view-
point, the statistical formulation (13) provides an effective updating on the plane
of wc and x̂c and it corresponds to the geometric one (14) when random differ-
ential vector z̄w is projected onto the direction of x̂c.

It is noteworthy that the statistical form (13) does not require explicit pro-
jection onto the classifier subspace via U in (5) but implicitly controls it by the
dimensionality D. In other words, it might be possible to regard D as a tunable
parameter for virtually exploiting the more essential feature dimensionality in
the classification; such an approach is empirically evaluated in Sec. 5.1.

4.2 Correlated stochasticity

In (13), we apply i.i.d. random number ϵ ∼ N (0, 1) on the assumption of less
correlation among classifiers which is practically plausible (Fig. 4). Meanwhile,
to take into account the correlation among W , we can explicitly draw random
unit vector z̄ in (7) to modify the regularization into

rotdotcorr(w,x; z̄, α) = cosαw⊤x+
ŵ⊤z̄

∥ŵ∥2
sinα

√
∥w∥22∥x∥22 − (w⊤x)2, (18)

where ŵ = (I − x̄x̄⊤)w and a random vector z̄ satisfies ∥z̄∥2 = 1 and x̄⊤z̄ = 0.

4.3 Margin ball

Sec. 3.1 introduces a cone Cα(x) to assign an angular margin with each sample x.
Sample-wise margin can be embedded by a ball Bα(x) = {z|∥z−x∥2=sinα∥x∥2}
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as shown in Fig. 7. Similarly to Sec. 3, classifying the ball leads to the following
regularization on logits through reparameterization of the ball.

z = x+ sinα ∥x∥2 z̄ ∈ Bα where z̄ ∈ SD−1, (19)

w⊤z = w⊤x+ sinα ∥x∥2 (w⊤z̄) = w⊤x+
ϵ√
D

sinα ∥x∥2∥w∥2, (20)

where we apply Lemma 2 to w⊤z̄ and ϵ ∼ N (0, 1). From geometrical viewpoint,
a ball Bα contains perturbation that exhibits ∠(z,x) < α while a cone Cα strictly
imposes ∠(z,x) = α, which implies that balls provide modest regularization than
cones in terms of angular margin. From the arithmetic viewpoint, the stochastic
term in (20) is simply composed of norms ∥w∥2 and ∥x∥2 in contrast to (13)
containing correlation w⊤x similarly to margin-based losses as discussed next.

4.4 Comparison to margin-based losses

The statistical form (13) is rewritten in

rotdot(wc,x; ϵc, α) = ∥wc∥2∥x∥2
(
cosα cos θc +

ϵc√
D − 1

sinα sin θc

)
, (21)

where w⊤
c x = ∥wc∥2∥x∥2 cos θc and c ∈ {1, · · · , C}. Thus, rotdot(wy,x; ϵy, α)

is reduced to cos(θy + α) when ϵy = −
√
D − 1 which is the degraded logit in

the margin-based loss [8] underestimating the angle to the target class y. The
margin-based loss computes the degraded logits in a deterministic way with a
margin parameter, while our regularization works in a stochastic fashion.

Noisy softmax loss [5] introduces stochasticity into the margin-based loss by

noisydot(wy,x; ϵ, γ) = ∥wy∥2∥x∥2{cos θy − γ|ϵ|(1− cos θy)}, (22)

where γ is a scale parameter and ϵ ∼ N (0, 1). It is similar to our logit (21) as

1

cosα
rotdot(wy,x; ϵy, α) = ∥wy∥2∥x∥2

{
cos θy +

tanα√
D − 1

ϵy(1− cos2 θy)
1
2

}
.

(23)
Their differences are as follows. (i) Our formulation gives theoretically clear
interpretation to the scaling factor regarding α = π

4 and D = min(d,C) while
the hyper parameter γ in (22) is heuristically determined. (ii) Noisy softmax
assigns positive random number |ϵ| in an ad-hoc way while a random number ϵ
in our regularization is derived from random rotation in a theoretical manner.

It should be noted that our regularization works on any classes symmetrically
while the margin-based losses [8,36,5] touch only the target logit of class y in an
asymmetric way. Such a difference might also motivate us to modify the target
random number ϵy into −|ϵy| as in (22) to follow the asymmetric approach
toward larger margin.
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Table 1. Ablation study of the proposed statistical rotation regularization (13) on
ImageNet-LT dataset of long-tailed recognition using ResNet10.

Geometric Rotation Statistical Rotation(i) (ii)

(iii) (iv)

(v)

Method Err. (%)

Baseline (softmax loss) 58.91
Statistical Rot (13) 56.40
i) Geometric Rot (3) 56.68
ii) Correlated ϵ (18) 56.41

iii) Scaled logit cosαw⊤x 58.25

Method Err. (%)

vi) Variants
Margin ball 56.94
Asymmetric ϵy = −|ϵ| 56.45
Combination with DropOut 56.12

(iv)

Parameter

Er
ro

r r
at

e 
(%

)

(v)

5   /12/6 /4 /3

Er
ro

r r
at

e 
(%

)

[cosine-scale]

5 Experimental Results

The proposed method is applied to regularize training CNN models on classifica-
tion tasks of long-tailed recognition, transfer learning and person reidentification,
which follows ablation study to analyze the method in detail.

5.1 Ablation study

The proposed rotation regularization is analyzed on long-tailed recognition [21]
by applying ResNet-10 [14] to ImageNet-LT [28]; the detail of training protocol
is shown in Sec. 5.2. We can analyze the method (13) with α = π

4 from various
aspects outlined in Table 1 following the discussion in Sec. 4.

i) Rotation formulation. Sec. 3 presents two formulations from geometrical
(3) and statistical (13) viewpoints, performances of which are compared in Ta-
ble 1i. Both approaches improve performance of baseline using softmax loss and
particularly, the statistical formulation outperforms the geometric one, implying
that the effective updating discussed in Sec. 4.1 works in training. It is notewor-
thy that the statistical approach is computationally efficient without applying
rotation matrix; rotating logits (13) requires O(Cd) while the geometrical rota-
tion (3) performs in O(Cd+ d3). Actually, our statistical rotation requires 0.72
ms while the geometrical one takes 160 ms for batch size of 256 on TitanV GPU.
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ii) Correlation among classifiers. Stochasticity ϵ in the statistical formula-
tion (13) is built upon a simple assumption that classifiers W are less correlated.
It is contrasted with the correlated form (18) which directly considers random
unit vector. Those two approaches are different only in terms of stochasticity and
are compared in Table 1ii without showing performance difference. This result
validates our assumption about the correlation from the performance viewpoint,
which is also plausible according to the observation of ∠(wi,wj) in Fig. 4.

iii) Scaled logits. The formulation (13) is composed of two parts. One is a
deterministic scaling of logit via cosαw⊤

c x and the other gives stochasticity
derived from random rotation via a random number ϵ. The former scaling term
can be regarded as changing temperature of softmax loss by cosα. To disentangle
its effect, Table 1iii shows performance of the scaled logits cosαw⊤

c x which is
significantly inferior to that of the proposed method, being close to the baseline
performance. Therefore, the performance improvement of our method is actually
brought by the random rotation regularization beyond a trivial logit scaling.

iv) Stochasticity scale 1√
D−1

. Given an angle α = π
4 , scale of the stochas-

tic term is theoretically determined by 1√
D−1

based on random rotation; D =

min(d,C) = 512 in this experiment4. To validate this theoretical scale, we re-
gard D as a tunable hyper-parameter and evaluate performances across various
D as shown in Table 1iv. Increasing D means that random rotation is per-
formed in a higher dimensional feature space by padding redundant features.
Decreasing D indicates that the classifiers are shrunk into a lower dimensional
subspace, reducing rank(W ). In Table 1iv, one can see effectiveness of the theo-
retical D = min(d,C) = 512 improving performance. On the other hand, smaller
D = 128 imposes an impractical assumption that the classifiers can be packed
into a fewer dimensional subspace, thereby degrading performance.

v) Rotation angle α. While the angle α = π
4 is determined based on the

geometrical analysis of classifier orthogonality, we evaluate performances over
various 0 < α < π

2 . The smaller α works as weak regularization while the larger
α highly regularize training. The favorable performance is found at α = π

4 which
is half of orthogonality of classifiers, while the larger α significantly degrades
performance. The setting of α = π

4 is applied to the other experiments as well.

vi) Variants. Some variants of the method are conceivable as discussed in
Sec. 4. In contrast to the angular margin cone Cα (Fig. 1a), the margin ball
(Fig. 7) could endow regularization regarding Euclidean margin as described in
Sec. 4.3. Table 1vi shows that the ball approach is inferior to our cone-based
method. A margin ball contains not only perturbation affecting angles but also
variations of norm ∥x∥2 irrelevant to angular margin.

Our symmetric formulation can also be transformed into an asymmetric one
in a manner similar to margin-based losses [8,36,5] by touching only the target
logit via ϵy → −|ϵy| as in (22). The performance result in Table 1vi shows that
the asymmetric approach is competitive with the simple symmetric one (13).

4 ResNet10 produces d = 512-dimensional features for C = 1000 ImageNet classes.
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Thus, the symmetric regularization form derived from random rotation even
works well without requiring label information.

Our simple regularization is compatible with the others such as DropOut [34]
to impose regularization from various aspects, further improving performance as
shown in Table 1vi. For fair comparison in the following experiments, however,
we apply only the proposed method (13) without such a combination technique.

5.2 Performance comparison

We evaluate the proposed method in comparison with the other regularization
methods. On the basis of the baseline softmax cross-entropy loss, we apply
DropOut [34] as stochastic regularization and CosFace [36], ArcFace [8] and
NoisySoftmax [5] for large-margin losses; their parameter settings are shown in
the supplementary material. The proposed statistical rotation (StatRot) (13) is
also compared to the geometrical rotation regularization which is formulated by
means of geometrical rotation (GeoRot) using a random orthonormal matrix (3)
and a sparse matrix [17]; they are equipped with α = π

4 for fair comparison.

Long-tailed recognition. In a real-world scenario, the number of available
samples per category is occasionally biased across class categories to form a long-
tailed distribution, in contrast to the standard benchmark datasets composed
of well balanced number of training samples. The imbalanced training dataset
biases CNNs toward majority classes through disregarding minority ones. To
cope with the imbalance issue, we follow the two-stage training procedure [21]
which first leans feature representation in a standard training protocol and then
finetunes only the linear classifier by balanced batch sampling while freezing the
backbone feature extractor. Regularization methods are compatible with the
first-stage training to improve feature representation.

We evaluate the methods on ImageNet-LT dataset [28] using ResNet10 [14],
iNaturalist2018 (iNat2018) [19] using ResNet50 and Places-LT [28] using
ResNet10 and ResNet152. While ImageNet-LT and Places-LT are artifi-
cially constructed from large-scale ImageNet [7] and Places365 [42], respec-
tively, iNat2018 is a real-world long-tailed dataset. At the first-stage learning,
ResNet10 and ResNet50 are trained from random initial weights by SGD op-
timizer with momentum 0.9, weight decay 10−4 and cosine-scheduled learning
rates starting from 0.2 over 180 epochs; the second-stage training is similarly
performed over 30 epochs. In Places-LT, we apply ResNet152 pre-trained on
ImageNet and then trained it at the first stage over 30 epochs by SGD with
cosine-scheduled learning rate starting from 0.1 on a linear classifier and 0.001
on the backbone ResNet152; the second-stage training takes 10 epochs. The per-
formance results are shown in Table 2 demonstrating the effectiveness of the
proposed statistical rotation regularization compared to the other approaches.
It also works for training the pre-trained ResNet152 on Places-LT.

Transfer learning. The methods are then evaluated on transfer learning.
Deeper CNN models pretrained on a large-scale dataset are transferable to down-
stream tasks which are equipped with limited amount of training samples. The
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Table 2. Performance results (error rates %) on long-tailed recognition in the two-
stage learning framework [21].

ImageNet-LT [28] iNat2018 [19] Places-LT [28]

ResNet10 [14] ResNet50 ResNet10 ResNet152

SoftmaxLoss [21] 58.91 32.82 72.99 61.14

ArcFace [8] 59.68 32.79 75.40 60.21
CosFace [36] 59.40 32.59 75.59 60.23
NoisySoftmax [5] 57.42 34.41 72.92 70.57
DropOut [34] 56.82 31.05 72.30 60.98

GeoRot sparse [17] 56.53 30.98 71.96 60.41
GeoRot dense (3) 56.68 30.92 71.89 60.09
StatRot (13) 56.40 30.39 71.85 59.93

Table 3. Performance results (error rates %) on transfer learning by applying
RegNetY-32gf [31] pre-trained on ImageNet. The last column shows performance gain
compared to the baseline.

Cub [37] Aircraft [30] Car [22] Sun [39] C101 [10] Avg.Gain

SoftmaxLoss 16.05 17.61 11.07 33.31 5.91 –

ArcFace [8] 14.67 19.78 12.00 33.86 4.64 -0.20
CosFace [36] 14.46 19.89 12.32 33.87 4.75 -0.27
NoisySoftmax [5] 14.77 22.89 10.43 34.36 5.65 -0.83
DropOut [34] 15.52 17.16 10.72 33.09 5.76 0.34

GeoRot sparse [17] 15.22 16.20 10.56 32.51 5.56 0.78
GeoRot dense (3) 14.00 17.79 9.87 32.28 5.15 0.97
StatRot (13) 14.22 15.96 9.76 32.23 4.66 1.42

regularization methods contribute to exploit the discriminative power of the
deeper models even on those scarce training data.

We finetune RegNetY-32gf [31] pretrained on ImageNet dataset by means
of SGD with 0.9 momentum and 10−4 weight decay over 60 epochs with 128
batch size by cosine-scheduled learning rate; the initial learning rates are 0.1
for linear classifiers and 0.001 for backbone CNN models. Table 3 shows per-
formance results on various downstream classification tasks, Cub200 [37], Air-
craft100 [30], Car196 [22], Sun397 [39] and Caltech101 [10]. The deeper
models are stably finetuned by the proposed method to improve performance.

Person reidentification. We finally apply the methods to regularize feature
representation learning on person re-identification. The task demands CNN back-
bones to capture effective features from diverse camera images so that identical
person images are matched across multiple cameras. We follow the baseline pro-
cedure [29] integrating three types of losses, triple loss [15], softmax loss and
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Table 4. Performance results (accuracy %) on person re-identification.

Market1501 [41] DukeMTMC [32]

ResNet50 [14] SE-ResNeXt50 [16] ResNet50 SE-ResNeXt50

Method Rank1 mAP Rank1 mAP Rank1 mAP Rank1 mAP

SoftmaxLoss [29] 94.1 85.7 94.9 87.8 86.2 75.9 88.7 78.7
CenterLoss [29] 94.5 85.9 94.7 87.7 86.4 76.4 88.8 78.9

ArcFace [8] 89.2 72.4 82.2 67.6 79.6 60.6 72.9 53.5
CosFace [8] 85.2 72.4 85.0 71.0 79.5 62.0 76.2 56.9
NoisySoftmax [5] 94.7 87.1 94.9 87.7 86.7 75.3 88.0 76.9
DropOut [34] 93.8 85.3 94.8 87.7 86.0 75.9 88.5 78.8

GeoRot sparse [17] 94.1 85.5 95.2 87.6 86.7 76.1 89.1 78.5
GeoRot dense (3) 93.8 85.9 95.1 88.5 87.0 76.7 88.7 79.5
StatRot (13) 94.8 87.2 95.6 89.1 87.9 77.8 89.9 80.2

center loss [38], in which the regularization method is applicable to replace the
center loss while keeping the other modules and training protocols the same.

The CNN backbones of ResNet50 [14] and SE-ResNeXt50 [16] pretrained on
ImageNet dataset [7] are applied to extract features from 128× 256 bounding-
box images. We evaluate performance by rank-1 accuracy (Rank1) and mean av-
erage precision (mAP) [41] onMarket1501 [41] andDukeMTMC [32] datasets
as shown in Table 4. The proposed method effectively improves performance on
both metrics of Rank1 and mAP which comprehensively evaluate matching per-
formance, i.e., feature representation.

As shown in these experimental results, the proposed regularization theo-
retically derived from random rotation of feature vectors is stably contributive
to performance improvement on various tasks outperforming the other types
of regularization. Besides, it is also demonstrated that the statistical formula-
tion effectively connects the geometric formulation with regularizing CNNs at
classification in a superior manner to the naive geometric formulations.

6 Conclusion

We have proposed a regularization method based on random rotation of feature
vectors. The random rotation is derived from sample-wise cone representation to
geometrically embed angular margin into classification. Beyond straightforward
geometric formulation to rotate vectors by random rotation matrices, we es-
tablished a novel regularization formulation through theoretically analyzing the
random rotation from a statistical viewpoint. It excludes laborious operation of
rotating vectors as well as improves backward updating for effective training with
only one hyper-parameter of a rotation angle α which can be geometrically set
as α = π

4 . The experimental results on various visual classification tasks demon-
strate that the method effectively contributes to performance improvement.



Rotation Regularization Without Rotation 15

References

1. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv, 1607.06450 (2016)
2. Bau, D., Zhou, B., Khosla, A., Oliva, A., Torralba, A.: Network dissection: Quan-

tifying interpretability of deep visual representations. In: CVPR (2017)
3. Blaser, R., Fryzlewicz, P.: Random rotation ensembles. Journal of Machine Learn-

ing Research 17(4), 1–26 (2016)
4. Cao, K., Wei, C., Gaidon, A., Arechiga, N., Ma, T.: Learning imbalanced datasets

with label-distribution-aware margin loss. In: NeurIPS (2019)
5. Chen, B., Deng, W., Du, J.: Noisy softmax: Improving the generalization ability

of dcnn via postponing the early softmax saturation. In: CVPR. pp. 4021–4030
(2017)

6. Cohen, T.S., Welling, M.: Group equivariant convolutional networks. In: ICML
(2016)

7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: CVPR. pp. 248–255 (2009)

8. Deng, J., Guo, J., Niannan, X., Zafeiriou, S.: Arcface: Additive angular margin
loss for deep face recognition. In: CVPR (2019)

9. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural net-
works with cutout. arXiv, 1708.04552 (2017)

10. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few
training examples: An incremental bayesian approach tested on 101 object cate-
gories. In: Computer Vision and Pattern Recognition Workshop (2004)

11. Ghiasi, G., Lin, T.Y., Le, Q.V.: Dropblock: A regularization method for convolu-
tional networks. In: NeurIPS. pp. 3917–3924 (2018)

12. Golub, G.H., Loan, C.F.V.: Matrix Computations. Johns Hopkins Univ. Press,
London, 3 edn. (1996)

13. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016), http:
//www.deeplearningbook.org

14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR. pp. 770–778 (2016)

15. Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-
identification. arXiv:1703.07737 (2017)

16. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR. pp. 7132–
7141 (2018)
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