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A Detailed notation

Products: The Hadamard product of A,B ∈ RI×N is defined as A ∗ B and
is equal to a(i,j)b(i,j) for the (i, j) element. The Khatri-Rao product of matrices
A ∈ RI×N andB ∈ RJ×N is denoted byA⊙B and yields a matrix of dimensions
(IJ)×N . The Khatri-Rao product for a set of matrices {A[m] ∈ RIm×N}Mm=1 is

abbreviated by A[1] ⊙A[2] ⊙ · · · ⊙A[M ]
.
=

⊙M
m=1 A[m].

Tensors: Each element of an M th order tensor X is addressed by M in-
dices, i.e., (X )i1,i2,...,iM

.
= xi1,i2,...,iM . An M th-order tensor X is defined over

the tensor space RI1×I2×···×IM , where Im ∈ Z for m = 1, 2, . . . ,M . The mode-m
unfolding of a tensor X ∈ RI1×I2×···×IM maps X to a matrix X(m) ∈ RIm×Īm

with Īm =
∏M

k=1
k ̸=m

Ik such that the tensor element xi1,i2,...,iM is mapped to the

matrix element xim,j where j = 1 +
∑M

k=1
k ̸=m

(ik − 1)Jk with Jk =
∏k−1

n=1
n̸=m

In. The

mode-m vector product of X with a vector c ∈ RIm , denoted by X ×m c ∈
RI1×I2×···×Im−1×Im+1×···×IM , results in a tensor of order M − 1:

(X ×m c)i1,...,im−1,im+1,...,iM =

Im∑
im=1

xi1,i2,...,iMuim . (13)

The CP decomposition [32] factorizes a tensor into a sum of component rank-one
tensors. The rank-R CP decomposition of an M th-order tensor X is written as:

X .
= [[C[1],C[2], . . . ,C[M ]]] =

R∑
r=1

c(1)r ◦ c(2)r ◦ · · · ◦ c(M)
r , (14)

where ◦ is the vector outer product. The factor matrices
{
C[m] = [c

(m)
1 , c

(m)
2 , · · · , c(m)

R ] ∈
RIm×R

}M

m=1
collect the vectors from the rank-one components. By considering

the mode-1 unfolding of X , the CP decomposition can be written in matrix form
as:

X(1)
.
= C[1]

( 2⊙
m=M

C[m]

)T

(15)

The following lemma is useful in our method:

Lemma 1 ( [9]). For a set of N matrices {A[ν] ∈ RIν×K}Nν=1 and {B[ν] ∈
RIν×L}Nν=1, the following equality holds:

(

N⊙
ν=1

A[ν])
T · (

N⊙
ν=1

B[ν]) = (AT
[1] ·B[1]) ∗ . . . ∗ (AT

[N ] ·B[N ]) (16)
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B Polynomials as a single tensor product

As mentioned in the main paper polynomials and tensors are closely related.
To illustrate the differences between the proposed variant of sec. 4.1 and the
proposed taxonomy we can formulate them as a single tensor product. We assume
a second-degree polynomial expansion of (1). The tensors are then up to third-
order, which enables a visualization (as in the Fig.1). The initial equation is:

y = β +
(
W [1]

)T

z +

(
W [2] ×2 z ×3 z

)
(17)

The τ th output of (17) can be written in element-wise form as:

yτ = βτ +

δ∑
k=1

w
[1]
τ,kzk +

δ∑
k,m=1

w
[2]
τ,k,mzkzm (18)

We can collect all the parameters of (17) under a single tensor by padding the
input z ∈ Rδ. Specifically, if we consider the padded version z̃ = [z1, . . . , zδ, 1]

T ,
then (17) can be written in the format y = W̃ ×2 z̃ ×3 z̃ as we demonstrate
below.

The τ th output of W̃ ×2 z̃ ×3 z̃ is:

yτ =

δ+1∑
k,m=1

w̃τ,k,mz̃kz̃m = w̃τ,δ+1,δ+1︸ ︷︷ ︸
constant term

+

δ∑
m=1

w̃τ,δ+1,mzm +

δ∑
k=1

w̃τ,k,δ+1zk︸ ︷︷ ︸
first-degree term

+

δ∑
k,m=1

w̃τ,k,mzkzm︸ ︷︷ ︸
second-degree term

(19)

If we set: 
βτ = w̃τ,δ+1,δ+1

w
[1]
τ,k = w̃τ,δ+1,k + w̃τ,k,δ+1 for k = 1, . . . , δ

w
[2]
τ,k,m = w̃τ,k,m for k,m = 1, . . . , δ

(20)

then (19) becomes the polynomial expansion of (18).

This enables us to express different degree polynomial expansions with a

third-order tensor. The first-degree methods, e.g., ResNet [22], have w
[2]
τ,k,m =

0, while SENet [25] assumes w
[1]
τ,k = 0. The Π-net family assumes low-rank

decomposition with shared factors, i.e., the low-rank decompositions of W [n]N

n=1

share factor matrices. On the contrary, our proposed PDC does not assume a
sharing pattern, thus it can express independently the terms W [1],W [2].
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C Proofs

Claim. The Squeeze-and-excitation block of (3) is a special form of second-
degree polynomial term.

Proof. The global pooling function on a matrix C can be expressed as 1
hw

−→
1 TC.

The r function that replicates the channels acts on a vector c and results in the

expression
−→
1 cT .

The identityX∗abT = diag(a)Xdiag(b) can be used to convert the Hadamard
product of (3) into a matrix multiplication [55]. Then, (3) becomes:

Ys = (ZC1) ∗
−→
1

(( 1

hw

−→
1 TZC1

)
C2

)T

= (ZC1)
1

hw
diag(CT

2 C
T
1 Z

T−→1 ) =

(ZC1)
1

hw
I ×3 (C

T
2 C

T
1 Z

T−→1 )

(21)

where as a reminder I is a third-order super-diagonal unit tensor. The last

equation is a second-degree term with Φ
[2]
1 (Z) = ZC1 and Φ

[2]
2 (Z) = 1

hwI ×3

(CT
2 C

T
1 Z

T−→1 ).

D Auxiliary experiments

Table 9: Image classification on CIFAR100 with variants of ResNet34.
Model # param (×106) Accuracy

ResNet34 21.3 0.769

Π-net-ResNet 14.7 0.769

PDC-channels 36.3 0.774

PDC 10.5 0.770

D.1 Image classification with limited data

A number of experiments is performed by progressively reducing the number of
training samples per class. The number of samples is reduced uniformly from
the original 5, 000 down to 50 per class, i.e., a 100× reduction, in CIFAR10. The
architectures of Table 3 (similar to ResNet18) are used unchanged; only the num-
ber of training samples is progressively reduced. The resulting Fig. 4 visualizes
the performance as we decrease the training samples. The accuracy of ResNet18
decreases fast for limited training samples. SENet deteriorates at a slower pace,
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steadily increasing the difference from ResNet18 (note that both share similar
number of parameters). Π-net-ResNet improves upon SENet and performs bet-
ter even under limited data. However, the proposed PDC-comp outperforms all
the compared methods for 50 training samples per class. The difference in the
accuracy between PDC and Π-net-ResNet increases as we reduce the number of
training samples. Indicatively, with 50 samples per class, ResNet18 attains ac-
curacy of 0.347, SENet scores 0.355, Π-net-ResNet scores 0.397 and PDC-comp
scores 0.426, which is a 22% increase over the ResNet18 baseline.
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Fig. 4: Image classification with limited data. The x-axis declares the number of
training samples per class (log-axis). As the number of samples is reduced (i.e.,
moving from right to the left), the performance gap between Π-net-ResNet and
ResNet18 increases. Similarly, PDC-comp performs better than Π-net-ResNet,
especially in the limited data regimes on the left.

D.2 Classification without activation functions

Typical feed-forward neural networks, such as CNNs, require activation func-
tions to learn complex functions [23]. However, the proposed view of polynomial
expansion enables capturing higher-order correlations even in the absence of ac-
tivation functions. That is, the expressivity of higher-degree polynomials can be
assessed without activation functions. We conduct a series of experiments on
all three datasets with higher-degree polynomials. Our core experiments study
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the higher-degree polynomials of Π-nets [8], versus the proposed model of (10).
We also implement the ResNet without activation functions to assess how first-
degree polynomials perform.

For the first experiment, we utilize ResNet18 as the backbone and test the
baselines on CIFAR100. Three variations of Pi−net are considered as the com-
pared methods: one with second-degree, one with third-degree and one with
fourth-degree residual blocks. The same polynomial expansions are used for the
proposed PDC. The accuracy of each method is reported in Table 10. All the
variants of Π-net-ResNet and PDC exhibit a high accuracy based solely on the
high-degree polynomial expansion. However, Π-net-ResNet saturates when the
residual block is a third or fourth degree polynomial, while the PDC does not
suffer from the same issue. On the contrary, the performance of the PDC vari-
ant with third and forth degree residual block outperforms the second-degree
residual block.

Table 10: Image classification on CIFAR100 without activation functions. Both
Π-net-ResNet and PDC use high-degree polynomial expansion to achieve high
accuracy even in the absence of activation functions. The proposed PDC achieves
both increased performance and improves its performance when each residual
block has third or fourth degree polynomial instead of second.

Model # param (×106) Accuracy

ResNet18 11.2 0.168

Π-net-ResNet 11.9 0.667

Π-net-ResNet[3] 11.2 0.648

Π-net-ResNet[4] 11.2 0.626

PDC 5.46 0.689

PDC[3] 11.2 0.703

PDC[4] 18.8 0.699

The models are also evaluated on CIFAR10 with ResNet18 and three variants
of Π−nets as the backbone. Three variants of PDC with different expansion
degrees are designed. The results are tabulated on Table 11. Each variant of Π-
net-ResNet and PDC surpasses the 0.87 accuracy and outperform the ResNet18
by a wide margin. In contrast to Π-net-ResNet, the performance of PDC does
not decrease when the degree of the residual block increases, i.e., from second
to fourth-degree. Overall, PDC outperforms Π−net.

The last experiment is conducted on the Speech Commands dataset. The
baseline of ResNet18 is selected, while theΠ-net-ResNet is the compared method.
The results in Table 12 depict the same motif: the two polynomial expansions
are very expressive. Impressively, in this dataset the result without activation
functions is only 0.007 decreased when compared to the respective results with
activation functions. This highlights that simple datasets might not always de-
mand activation functions to achieve high-accuracy.
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Table 11: Image classification on CIFAR10 without activation functions. The
results illustrate the expressiveness of the proposed model even in the absence of
activation functions. Notice that PDC[3] improves upon PDC with second-degree
blocks. On the contrary, this does not happen to the compared Π-net-ResNet.

Model # param (×106) Accuracy

ResNet18 11.2 0.391

Π-net-ResNet 11.9 0.907

Π-net-ResNet[3] 11.2 0.891

Π-net-ResNet[4] 11.2 0.877

PDC 5.4 0.909

PDC[3] 11.2 0.918

PDC[4] 18.8 0.918

Table 12: Audio classification without activation functions.
Model # param (×106) Accuracy

ResNet18 11.2 0.464

Π-net-ResNet 11.9 0.971

PDC 5.4 0.972

Table 13: COCO object detection and segmentation results using
Mask-RCNN and Cascade Mask-RCNN. The backbone models are pre-trained
ResNet18 and PDC-ResNet18 models on ImageNet-1K. We employ MMDetec-
tion with 1× schedule.

backbone APbox APbox
50 APbox

75 APmask APmask
50 APmask

75

Mask-RCNN 1× schedule

ResNet18 33.9 53.9 36.2 31.0 50.9 33.0

PDC-ResNet18 34.8 55.2 37.4 31.8 52.2 34.1

Cascade Mask-RCNN 1× schedule

ResNet18 37.3 54.8 40.4 32.6 52.2 34.9

PDC-ResNet18 38.1 55.9 41.7 33.2 53.3 35.7

D.3 Object detection and segmentation

We adopt MS COCO 2017 [39] as the primary benchmark for the experiments
of object detection and segmentation. We use the train split (118k images) for
training and report the performance on the val split (5k images). We employ
standard evaluation metrics for COCO dataset, where multiple IoU thresholds
from 0.5 to 0.95 are applied. The detection results are evaluated with mAP.

We use the final model weights from ImageNet-1K pre-training as network
initializations and fine-tune Mask R-CNN [21] and Cascade Mask R-CNN [4] on
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the COCO dataset. Following default settings in MMDetection, we use the 1×
schedule (i.e.,12 epochs).

Table 13 shows object detection and instance segmentation results comparing
ResNet18 and the proposed PDC-ResNet18. As we can see from the results,
the proposed PDC-ResNet18 achieves an obvious better performance than the
baseline ResNet18 in terms of the box and mask AP, confirming the effectiveness
of the proposed polynomial learning scheme.
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Fig. 5: Top-1 validation error on ImageNet with proposed PDC and NL methods
throughout the training.


