
22 S. Kye et al.

A Theoretical Analysis

In this section, we provide a theoretical analysis of our proposed FasTEN. First,
we formally establish the need for label correction (Appendix A.1). Then, we pro-
vide a formal background for a statistically consistent classifier (Appendix A.2)
and show the detailed calculation on the estimation of transition matrix T
through forward propagation (Appendix A.3). Finally, we prove that T esti-
mation error of our method are upper bounded (Appendix A.4).

A.1 Motivation: Need for Label Correction

Reducing the noise level of a dataset is crucial in learning with noisy labels both
empirically [19, 121, 105, 40] and theoretically [14, 12]. Following [14, 80, 44, 64,
33], the true transition matrix T in symmetric noise with noise level � (< 1) is
defined as follows:

Tij =

(
1 � ((N � 1)/N) �, for i = j.

�/N, otherwise.
(8)

Correspondingly, the true transition matrix T in asymmetric noise with noise
level � (< 1/2) is defined as follows:

Tij =

8
><

>:

1 � �, for i = j.

�, for some i 6= j.

0, otherwise.

(9)

We employ these noise schemes in our CIFAR-10 experiments. Under the as-
sumption that the label class is balanced, [14] prove that the upper bound of
test accuracy for the symmetric and asymmetric noise is as follows:

(
((N � 1)/N) �

2
� 2 ((N � 1)/N) � + 1, for symmetric noise.

2�
2
� 2� + 1, for asymmetric noise.

(10)

Eq. 10 shows quadratic (convex) functions of �. In the case of the symmetric
noise, test accuracy is minimized at the � = 1. Similarly, with asymmetric noise,
test accuracy is minimized at the � = 1/2. Without additional assumptions,
asymmetric noise of � > 1/2 cannot be learned as over half of the training data
have wrong labels [33]. Hence, the test accuracy always decreases as � increases
in the feasible bound of �. Therefore, reducing the noise level of a dataset plays
a vital role in increasing the achievable test accuracy.

How to Reduce the Noise Level of a Dataset Two approaches are commonly used
to reduce the noise level of a dataset: re-weighting samples and label correction.
Sample re-weighting reduces the noise level by eliminating noisy samples during
the model training, whereas label correction directly cleans up the dataset. Re-
cently, label correction methods have shown notable results compared to sample
re-weighting methods. [86, 105, 121, 67, 11, 58, 84] claim that re-weighting might
show sub-optimal performance by filtering out noisy samples, which might aid
in training feature extractors.

Learning with Noisy Labels by E�cient Transition Matrix Estimation 23

Theoretical Inspired Explanation of the Superiority of Label Correction Here,
we provide a more theoretically motivated explanation of the above claim. We
explore the reason behind the superior performance of label correction compared
to sample re-weighting. [14] considers only the upper bound of test accuracy
according to the noise level while ignoring the e↵ect on the number of samples
on a generalization error while [12] does not consider deep networks. We aim to
exhibit the superiority of label correction by presenting the generalization error
considering both the number of samples and the noise level. We argue that both
the noise level and the number of training samples are critical in determining
the generalization error.

For simplicity, our explanation assumes binary classification with asymmetric
noise with a level �. We employ the VC dimension framework [96, 95, 15, 116]
to describe the various methods for learning with noisy labels, although the
framework provides a loose bound. Further investigation on a tighter bound
using the Rademacher complexity or considering the multi-class classification is
suggested for future research. Under clean training data distribution D and clean
true data distribution D

⇤, the VC dimension framework presents the following
bound.

p (|ED(f) � ED⇤(f)| > ✏) 4 (2|D|)dV C exp

✓
�

1

8
✏
2
|D|

◆
, (11)

where dV C is the VC dimension and ED(f) is the expectation of error for func-
tion f regarding the data distribution D. If the VC dimension dV C is bounded
(or finite), convergence is guaranteed because the upper bound decreases expo-
nentially as the size of the dataset increases. Now, we observe a noisy dataset D̄
rather than a clean dataset D. With the triangular inequality and the definition
of �, the following inequalities hold.

p (|ED̄(f) � ED⇤(f)| > ✏) (12)

= p (|ED̄(f) � ED(f) + ED(f) � ED⇤(f)| > ✏) (13)

 p (|ED̄(f) � ED(f)| > ✏) + p (|ED(f) � ED⇤(f)| > ✏) (14)

 � + 4 (2|D|)dV C exp

✓
�

1

8
✏
2
|D|

◆
(15)

Even if this theoretical bound is loose, we argue that label correction shows
better performance than re-weighting samples. As the dataset gets noisier, the
number of filtered out samples by the re-weighting methods will also increase,
resulting in a drastic reduction of the number of training samples. However, as
aforementioned in Section 1, label correction holds an inherent problem of error
propagation. We now explain the theoretical background on how the transition
matrix acts as a safeguard for the label correction on our FasTEN.

A.2 Background: Statistically Consistent Classification

It is well known that the label transition matrix T can be used to train sta-

tistically consistent classifiers in the presence of noisy labels [67, 108, 113]. A

24 S. Kye et al.

statistically consistent classifier is a classifier which guarantees the convergence
to an optimal classifier when the number of data samples increases indefinitely.
Following [31, 108, 113, 67], we describe the consistency of empirical risk to yield
the consistency of the classifier.

Statistically Consistent Empirical Risk Multi-class classification aims to train
the hypothesis H, which estimates a label y given an input x. Given the deep
neural network f�,✓, a hypothesis H is commonly defined as follows:

H(x) = arg max
n2{1,...,N}

f�,✓(x)|n. (16)

With the true sample distribution D
⇤, the expected risk R for H is defined as

follows:
R(H) = min

H

E(x,y)⇠D⇤ [L(H(x), y)] (17)

Under the distribution D
⇤ is unknown, the optimal hypothesis H should min-

imize R. Since the risk of the optimal hypothesis is di�cult to calculate, the
empirical risk is usually used for approximation via training dataset D. The
definition of empirical risk is as follows:

R|D|(H) = E(x,y)⇠D [L(H(x), y)]

=
1

|D|

X

(x,y)2D

L(H(x), y). (18)

Following equation holds for the statistically consistent empirical risk :

R(H) = lim
|D|!1

R|D|(H), (19)

where it is common to assume that D is sampled from D
⇤ as independent and

identically distributed (i.i.d) random variables [108, 14, 15, 31, 17].

Statistically Consistent Classifier Suppose an ideal zero-one loss function L
⇤

(where it cannot be used in reality because its di↵erentiation is impossible) [5]:

L
⇤(H(x) = y) = 1{H(x) 6=y}. (20)

1{·} is an indicator function that outputs 1 if H(x) 6= y and 0 otherwise. If the
class of the hypothesis H is large enough [69], the optimal hypothesis to minimize
the expected risk R(H) corresponds to the Bayes classifier [5] as follows:

H(x) = arg max
n2{1,...,N}

p(y = n|x) (21)

Many classification loss functions in modern machine learning are proven to
be classification-calibrated [5, 83], i.e., the classification-calibrated loss function
leads to a similar prediction to that of L

⇤ when |D| is su�ciently large [69,
95]. For example, the hinge loss is proven to be classification calibrated [110],

Learning with Noisy Labels by E�cient Transition Matrix Estimation 25

and the cross-entropy loss with softmax function is empirically classification-
calibrated [29]. The classifier f�,✓(x) is said to be statistically consistent when
the classifier converges to the probability p(y|x) by minimizing the empirical risk
R|D|(H). Note that being risk consistent makes classifier consistent, but not vice
versa [108].

Statistically Consistent Classifier in Noisy Labels The empirical risk R|D̄|(H) of

a noisy dataset D̄ is as follows.

R ¯|D|
(H) = E(x,y)⇠D̄ [L(H(x), y)]

=
1

|D̄|

X

(x,y)2D̄

L(H(x), y) (22)

Since the statistically consistent classifier f�,✓(x) converges to p(y|x), we can ac-
cept f�,✓(x) to approximate p(y|x). Given the definition of the transition matrix
p(ȳ|x) = T

>
p(y|x), a hypothesis with a noisy dataset H̄ is defined as follows:

H̄(x) = arg max
n2{1,...,N}

T
>

f�,✓(x)|n (23)

Hence, minimizing the following empirical risk R ¯|D|
(H̄) using only the noisy

dataset D̄ leads to a consistent classifier f�,✓(x) [108].

R ¯|D|
(H̄) = E(x,y)⇠D̄

⇥
L(H̄(x), y)

⇤

=
1

|D̄|

X

(x,y)2D̄

L(H̄(x), y) (24)

In other words, f�,✓ converges to the optimal classifier for the clean data when
the sample size of the noisy dataset becomes infinitely large. Although other
lines of research guarantee that maximizing accuracy in noisy data distribution
maximizes accuracy in clean data distribution even without the transition ma-
trix [15], loss correction via the transition matrix is still an e↵ective consistent
classifier training scheme. For this reason, a line of work in learning with noisy la-
bels via the transition matrix attempts to train a statistically consistent classifier
by an additional layer modeling the transition matrix preceded by the softmax
layer [25, 76, 92, 115, 68, 79, 88]. Incidentally, it is known that modifying the loss
function using the transition matrix has a degree of handling instance-dependent
label corruption [66, 40].

Statistically Consistent Classifier in Noisy Labels with Small Clean Dataset We
exploit a small number of clean data as in [20, 97, 50, 44, 80, 54, 40, 85, 3, 118,
121, 105, 101] while disjointing the clean D and noisy dataset D̄. It is trivial
that a statistically consistent classifier in exploiting a clean set can be obtained

26 S. Kye et al.

by minimizing the following empirical risk:

R|D|(H) + R ¯|D|
(H̄)

= E(x,y)⇠D [L(H(x), y)] + E(x,y)⇠D̄

⇥
L(H̄(x), y)

⇤

=
1

|D|

X

(x,y)2D

L(H(x), y) +
1

|D̄|

X

(x,y)2D̄

L(H̄(x), y).
(25)

Since the cross-entropy loss surrogates the ideal zero-one loss function L
⇤ [29],

minimizing the empirical risk R|D|+|D̄|(H, H̄) is equivalent to following optimiza-
tion problem.

arg min
�,✓

X

(x,y)2D

L (f�,✓(x), y) +
X

(x,ȳ)2D̄

L

⇣
bT>

f�,✓(x), ȳ
⌘

. (26)

Without loss of generalization, the optimization problem can be rewritten by
introducing an episodic batch formation in Section 3.1:

arg min
�,✓

X

(x,y)2d

L (f�,✓(x), y) +
X

(x,ȳ)2d̄

L

⇣
bT>

f�,✓(x), ȳ
⌘

. (27)

A.3 Calculation of the Estimated Transition Matrix bT of FasTEN

GLC [40] presents a method to estimate the transition matrix through a small
clean dataset similar to our FasTEN. GLC adopts the slow calculation method
via a FOR or WHILE loop since [40] only requires to obtain the transition matrix
once in the entire training process. However, our FasTEN needs to estimate the
transition matrix for every iteration as we correct the labels on the fly, ending
up altering the ideal transition matrix. We speed up the estimation with a single
forward propagation by using only matrix operations, avoiding the sluggish FOR
or WHILE loop. Here, we show the derivation of Eq. 2. Let di = {(x, y) 2 d|yi = 1}.
Then,

bTij = p(ȳ = j|y = i) (28)

=
1

|di|

X

(x,y)2di

p(ȳ = j|y = i, x) (29)

=
1

|di|

X

(x,y)2di

f�,✓(x)

������
j

(30)

=
1

|di|

0

B@
X

(x,y)2di

yf
�̄,✓̄

(x)>

������
(i,j)

1

CA (31)

=

0

B@
X

(x,y)2di

yf
�̄,✓̄

(x)>

������
(i,j)

1

CA
1

|di|
(32)

Learning with Noisy Labels by E�cient Transition Matrix Estimation 27

=

0

B@
X

(x,y)2di

yf
�̄,✓̄

(x)>

������
(i,j)

1

CA

0

B@diag�1

0

@
X

(x,y)2d

y

1

A

������
(i,j)

1

CA (33)

Without loss of generality, bT can be written as follows:

bT =

0

@
X

(x,y)2d

yf
�̄,✓̄

(x)>

1

A diag�1

0

@
X

(x,y)2d

y

1

A . (34)

A.4 Proof of Theorem 1

In this section, we prove under strong assumptions (Theorem 2) followed by
milder assumptions (Theorem 1). Theorem 2 estimates the upper bound of the
error on transition matrix T , assuming the ideal situation where p(ȳ|x) is per-
fectly parameterized to f

�̄,✓̄
(x).

Theorem 2. Assuming p(ȳ|x) = f
�̄,✓̄

(x), for ✏ � 0,

p

⇣��� bTij � Tij

��� > ✏

⌘
 2 exp

�
�2✏

2
K

�
. (35)

Proof. If p(ȳ|x) = f
�̄,✓̄

(x), then p

⇣���E
h

bT
i
� T

��� > ✏

⌘
= 0. With the triangular

and Hoe↵ding inequality, the following holds:

p

⇣��� bTij � Tij

��� > ✏

⌘
(36)

= p

⇣��� bTij � E
h
bTij

i
+ E

h
bTij

i
� Tij

��� > ✏

⌘
(37)

 p

⇣���E
h
bTij

i
� Tij

��� > ✏

⌘
+ p

⇣��� bTij � E
h
bTij

i��� > ✏

⌘
(38)

= p

⇣���E
h
bTij

i
� Tij

��� > ✏

⌘
+ 2 exp

�
�2✏

2
K

�
(39)

= 2 exp
�
�2✏

2
K

�
. (40)

With Theorem 2 alone, we can see that the estimation error of transition ma-
trix T decreases exponentially as K (the number of samples per class) increases,
as we mentioned in Theorem 1 of Section 3.2.

We assume the hypothetical case that p(ȳ|x) could flawlessly model f
�̄,✓̄

(x),
but the assumption does not hold in practice. Several lemmas are established in
order to prove Theorem 1 under more relaxed assumptions. If p(ȳ|x) 6= f

�̄,✓̄
(x),

then p(|E[bT] � T | > ✏) 6= 0. We focus on examining the upper bound of

p(|E[bT] � T | > ✏) under the relaxed assumption. The upper bound of bT (which

28 S. Kye et al.

is equivalent to f
�̄,✓̄

(x)) is strictly 1 since it is a probability. By applying Mc-
Diarmid’s concentration inequality [9], the following inequality is established:

p

⇣���E
h
bTij

i
� Tij

��� > ✏

⌘

 E�

2

4sup
H

1

|D̄|

X

(x,ȳ)2D̄

�xL(H(x), ȳ)

3

5 +

s
log(1/✏)

2|D̄|

(41)

where � is an i.i.d Rademacher random variable [70] and H is a hypothesis.
We estimate the upper bound of the estimation error of T by assuming H is

constructed using deep neural networks. A deep neural networks hypothesis H
0

is defined as follows.

H
0(x) = ✓̄AH�1(�̄H�1AH�2(... A1(�̄1x))) 2 RN (42)

where H is the depth of deep neural networks and Ai is the i-th activation
function. When the function class is limited with deep neural networks, the
following lemma holds by borrowing the results of [108].

Lemma 1. Suppose � is an i.i.d Rademacher random variable and L is the

cross-entropy loss function which is L-Lipschitz continuous with respect to H
0
,

E�

2

4sup
H

1

|D̄|

X

(x,ȳ)2D̄

�xL(H(x), ȳ)

3

5 NLE�

2

4sup
H0

1

|D̄|

X

(x,ȳ)2D̄

�xH
0(x)

3

5 (43)

where H
0
is a hypothesis belonging to the function class of deep neural networks.

As opposed to using the VC dimension framework in Section 1, this section
uses the Rademacher complexity framework [6] to assess the upper bounds of
our method. Hypothesis complexity of deep neural networks via Rademacher
complexity is broadly studied in [108, 4, 26, 72]. In particular, [26] proves the
following lemma:

Lemma 2. Assume the Frobenius norm of the weight matrices �̄1, ..., �̄H�1, ✓̄

are at most �̄1, ..., �̄H�1, ⇥̄ for H-layer neural networks f
�̄,✓̄

. Let the activation

functions be 1-Lipschitz, positive-homogeneous, and applied element-wise (such

as the ReLU). Let � is an i.i.d Rademacher random variable. Let x is upper

bounded by B, i.e., for any x 2 X , kxk B. Then, for ✏ � 0

E�

2

4sup
H0

1

|D̄|

X

(x,ȳ)2D̄

�xH
0(x)

3

5
B(

p
2H log 2 + 1)⇥̄⇧

H�1

h=1
�̄ip

|D̄|

. (44)

Now, we can complete the proof of Theorem 1.

Learning with Noisy Labels by E�cient Transition Matrix Estimation 29

Proof. With the triangular inequality, Hoe↵ding inequality, Theorem 2, Lemma 1,
and 2, the following holds.

p

⇣��� bTij � Tij

��� > ✏

⌘
(45)

= p

⇣��� bTij � E
h
bTij

i
+ E

h
bTij

i
� Tij

��� > ✏

⌘
(46)

 p

⇣���E
h
bTij

i
� Tij

��� > ✏

⌘
+ p

⇣��� bTij � E
h
bTij

i��� > ✏

⌘
(47)

= p

⇣���E
h
bTij

i
� Tij

��� > ✏

⌘
+ 2 exp

�
�2✏

2
K

�
(48)

 E�

2

4sup
H

1

|D̄|

X

(x,ȳ)2D̄

�xL(H(x), ȳ)

3

5 +

s
log(1/✏)

2|D̄|
+ 2 exp

�
�2✏

2
K

�
(49)

 NLE�

2

4sup
H0

1

|D̄|

X

(x,ȳ)2D̄

�xH
0(x)

3

5 +

s
log(1/✏)

2|D̄|
+ 2 exp

�
�2✏

2
K

�
(50)

NLB(

p
2H log 2 + 1)⇥̄⇧

H�1

h=1
�̄ip

|D̄|

+

s
log(1/✏)

2|D̄|
+ 2 exp

�
�2✏

2
K

�
(51)

Theorem 1 and 2 state that the estimation error of transition matrix T is
reduced with a larger K. However, we experimentally verify that K = 1 is enough
for achieving comparable performance (See Appendix C.7).

Table 5: Data split composition of dataset used in our experiments.

Dataset Noisy-train Clean-train Valid Test Image size # of classes

CIFAR-10
44K 1K 5K 10K 32 ⇥ 32

10
CIFAR-100 100

Clothing1M 1M 47K 14K 10K 224 ⇥ 224 14

We end this section by enumerating the limitations of our theoretical analysis.
(i) Although our method is based on a multi-head architecture, a clean and a
noisy classifier are trained simultaneously, where only the training of the noisy
classifier is considered in the theoretical analysis. (ii) We failed to make the upper
bound tight for Theorem 1 and 2. Additional assumptions like [12] may yield
tighter bound. We conjecture that our method works empirically well for K = 1
since the upper bound is loose. (iii) The data distribution on a noisy classifier
changes in every iteration due to simultaneously corrected labels. However, we
assume that the data distribution is stationary in the proof. In order to make our
theoretical assumption more adequate for our method, it is necessary to examine
the situation under changing data distribution.

30 S. Kye et al.

B Experimental Details

B.1 Datasets

As shown in Table 5, we use bigger noisy dataset (noisy-train) and smaller clean
dataset (clean-train) for training. Validation set is used for obtaining the best
model. Since CIFAR datasets do not have the validation set, we split 10% of the
entire training set as the validation set. Thus, experimental results may di↵er
from the results of their papers. For Clothing1M, we use its original data split.

B.2 Mini-batch Construction

We sample the mini-batches from both clean and noisy datasets. For the clean
dataset, we construct the mini-batch to have the same number of instances per
class for clean samplers, whereas the mini-batch of the noisy set is randomly
sampled. We choose the batch size 100 for both CIFAR-10 and CIFAR-100, a
total of 200 images used per iteration. As the number of classes is 10 and 100,
10 and 1 image(s) are used per class for the clean batch, respectively. We choose
the batch size 42 for each noisy and clean set on Clothing1M dataset with 14
classes so that 84 images are used per iteration, where 3 samples are used per
class for the clean batch.

B.3 Detailed Training Procedure

CIFAR-10/100 dataset Here, we describe the detailed training procedure of
our baselines on CIFAR-10/100 dataset [49]. For all baselines except Deep kNN,
we use SGD optimizer with an initial learning rate of 1e-1. For Deep kNN [3],
we use Adam optimizer [48] and set the initial learning rate to 1e-3. We follow
the experimental settings described in each corresponding papers as much as
possible to obtain performance fairly.

L2RW: When training the model, we decay the learning rate to 1e-2 and
1e-3 at 40 and 60 epochs, with a total of 80 epochs. MW-Net: For the total
of 60 epochs, we decay the learning rate by a factor of 10 at 40 and 50 epochs,
respectively. Deep kNN: Since it has multiple training stages, we first train
two independent models with only the clean dataset D and sum of the clean and
noisy dataset D[D̄, respectively. Then, we filter out the suspicious samples from
the noisy set to generate the filtered noisy set D̄filter using k-nearest neighbors
algorithm (k-NN) of the logit outputs from one of the two trained models, where
we choose the model with the better validation set accuracy. Finally, we train
the model with the sum of the clean and filtered noisy set D [D̄filter. For each
phase, we train the model until 100 epochs without learning rate decay. GLC:
We first train the model with only the noisy set D̄ and obtain the label transition
matrix with the trained model. With the label transition matrix, we train the
initialized model with the clean and noisy set D [D̄ while correcting the loss
obtained from the noisy samples. MLoC: We first train the model with a warm-
up of 75 epochs, i.e., directly training with the noisy label dataset without bells

Learning with Noisy Labels by E�cient Transition Matrix Estimation 31

and whistles. We then meta-train the model with the learning rate of 1e-4 for
additional 75 epochs. MLaC: For a total of 120 epochs, we decay the learning
rate at 80 and 100 epochs by a factor of 10. MSLC: Similar to MLoC, we first
train the model with the warm-up of 80 epochs, then meta-train the model with
the learning rate of 1e-2 and cut it to 1e-3 at 20 epochs, for 40 epochs. FasTEN
(Ours): we train the model until 70 epochs and decay the learning rate at 50
and 60 epochs by a factor of 10.

Clothing1M dataset For the Clothing1M dataset [109], we borrow the base-
line evaluation results from each corresponding paper except for L2RW, where
we train the model ourselves as the original paper does not report the results.
For a fair comparison, we use the same backbone network, ImageNet-pretrained
ResNet-50. L2RW: We train the model for 10 epochs using the SGD optimizer
with the initial learning rate of 1e-2. We decay the learning rate after 5 epochs
by a factor of 10, where we follow the common training procedure borrowed from
[105, 85]. FasTEN (Ours): Similarly, we use the SGD optimizer with the same
initial learning rate, where we decay the learning rate after 1 epochs for total of
2 epochs.

B.4 Evaluation Details for Section 4.3

Considering the situation where we have to purify the existing noisy labels inside
the training set automatically, predicting the correct labels of the train samples
is crucial. We compare the accuracy on the noisy train dataset where we compare
with the clean label, which is unknown to the model at training time. We show
the accuracy on CIFAR-10 with symmetric noise of 80%; hence if the model is
perfectly overfitted to the noisy set, it will yield 28% accuracy.

For each method, we use the model with the best validation accuracy, i.e.,
the best model that each has produced. For the meta-model of MLaC, we use the
output of the label correction network (LCN), where the network is fed with the
feature vector and the noisy label for every noisy dataset to yield a corrected
soft label. The feature vector is extracted from the main model, where it is
obtained using the features before the fully connected layer. For the meta-model
of MSLC, we use the cached soft label from the last epoch. MSLC calculates
the soft label with the linear combination of the previous cached soft label,
the predicted label from the main model, and the given noisy label, where the
weights are continuously learned during training.

C Additional Experiments

C.1 Experiments on CIFAR-N with Real-world Noise

We conducted further experiments on a recently released dataset, CIFAR-N
[103], which contains real-world noise from human annotators. CIFAR-N is con-
structed by relabeling the existing CIFAR dataset using the Amazon Mechanical

32 S. Kye et al.

Table 6: Test accuracy (%) comparison on CIFAR-N dataset with real-world
label noise.

Methods CIFAR-10N CIFAR-100N

L2RW [79] 83.15 57.54
MW-Net [84] 83.82 61.12
Deep kNN [3] 82.87 52.71

GLC [40] 82.71 54.72
MLoC [100] 84.45 61.49

MLaC [119] 83.64 45.95
MSLC [103] 84.35 63.51

FasTEN (Ours) 87.01 63.53

0.25 0.50 0.75 1.00
Noise level

60

70

80

90

A
cc

ur
ac

y
(%

)

CIFAR-10

0.25 0.50 0.75 1.00
Noise level

20

40

60

CIFAR-100

FasTEN w/o Label Correction FasTEN (ours.)

Fig. 5: E↵ect of label correction on
CIFAR-10/100 with various symmetric
noise ratio. Accuracy (%) of FasTEN
(ours.) and FasTEN without label cor-
rection is provided.

0.25 0.50 0.75 1.00
Threshold

70

80

90

Accuracy (%)

FasTEN (ours.)

MLaC

MSLC

0.25 0.50 0.75 1.00
Threshold

0

25

50

75

100

Corrected Amount (%)

Fig. 6: Robustness to Miscorrection of
FasTEN. The corrected label amount
(%) and model accuracy (%) according
to the label correction threshold (⇢) are
provided.

Turk, a crowdsourcing platform, to show the instance-dependent noise from the
human annotators. From the original dataset, we extracted 1K clean samples
from the original training samples to construct noisy and clean training sub-
sets. We use the same training settings of CIFAR-10/100 experiments in Section
4.1 that does not use semi-supervised methods or sophisticated augmentation
techniques to evaluate the methods fairly. Table 6 shows that our proposed Fas-
TEN achieves better performance than the baselines, similar to the results on
Clothing1M. These additional results demonstrate that FasTEN is more robust
against real-world noise.

C.2 E↵ect of Label Correction

Figure 5 shows the e↵ect of label correction on our method. When FasTEN
does not correct samples at the end of each epoch, it degrades the predictive
performance. Furthermore, as the noise gets severe, performance further de-
grades where we expect the e↵ect of label correction to be larger [14]. From

Learning with Noisy Labels by E�cient Transition Matrix Estimation 33

these observations, we verify that label correction also contributes for improving
performance.

C.3 Robustness to Miscorrected Labels

Figure 6 demonstrates the robustness of our method when unreliable samples
are also corrected by lowering the threshold of label correction to investigate
how safe our method is. We observe the robustness of our method compared to
other label correction methods, MLaC [121] and MSLC [105]. We observe how
the performance of our model changes when labels are corrected more unreliably
as we lower the threshold ⇢. The experiments are conducted on CIFAR-10 with
the most severe noise level (symmetric 80%). As shown in Figure 6, we verify
that our method is robust for miscorrected samples even if all samples in the
noisy dataset are corrected when the threshold is under 0.5. Our method uses
the transition matrix to avoid the error propagation problem even if unreliable
samples are corrected.

C.4 Is the Performance Improvement Due to Over-sampling on the
Clean Dataset?

Unlike many MAML-based methods using the clean dataset as gradient guid-
ance in the meta training step, our proposed method utilizes the dataset directly
during the model training. One may suspect that the performance improvement
of our method may come from over-sampling the clean dataset. Therefore, we
compare our proposed model with an over-sampling method [13, 41]. To see the
e↵ectiveness of our batch formation, we experiment with the standard cross-
entropy loss (Eq. 52) instead of our final objective (Eq. 6), using the same batch
formation (Näıve Oversampling). For a fair comparison, label correction is ex-
cluded.

arg min
�,✓

X

(x,y)2d

L (f�,✓(x), y) +
X

(x,ȳ)2d̄

L (f�,✓(x), ȳ) (52)

Table 7 shows that our proposed method outperforms the over-sampling
method. This observation indicates that our meta-learning method appropri-
ately leverages the clean dataset to estimate the label corruption matrix.

C.5 Comparison to Other Methods with the Transition Matrix

Although the transition matrix is initially introduced as a safeguard to miti-
gate the risk of label correction in the FasTEN, our FasTEN even shows better
performance than other methods employing the transition matrix. This section
illustrates that FasTEN, even without label correction, shows better performance
than other methods using transition matrix with the clean dataset: GLC (Sec-
tion C.5) and MLoC (Section C.5).

34 S. Kye et al.

Table 7: The e↵ect of clean set oversampling on the performance of CIFAR-
10/100 experiments. The accuracy (%) of näıve oversampling and FasTEN
(ours.) w/o label correction is provided.

Dataset Method
Symmetric Asymmetric

20 % 40 % 60 % 80 % 20 % 40 %

CIFAR-10
Näıve Oversampling 89.39 85.90 83.90 56.83 90.58 84.41

FasTEN (ours.) w/o Label Correction 90.67 88.29 84.12 74.19 92.50 91.05

CIFAR-100
Näıve Oversampling 65.42 57.08 42.18 25.88 67.71 61.73

FasTEN (ours.) w/o Label Correction 68.02 61.75 52.79 28.46 69.59 66.07

Table 8: The e↵ect of two-head architecture via oracle label transition matrix on
CIFAR-10/100 dataset. Test accuracy (%) of GLC [40] and FasTEN (ours.) with
and without oracle label transition matrix is provided. For a fair comparison,
label corruption is excluded in FasTEN.

Dataset Method
Symmetric Asymmetric

20 % 40 % 60 % 80 % 20 % 40 %

CIFAR-10

GLC [40] w/ Oracle 89.06 85.45 81.56 67.54 91.74 90.35
FasTEN (ours.) w/ Oracle w/o Label Correction 91.37 88.71 83.97 74.91 91.80 91.10

GLC [40] 89.66 85.30 80.34 67.44 91.56 89.76
FasTEN (ours.) w/o Label Correction 90.67 88.29 84.12 74.19 92.50 91.05

CIFAR-100
GLC [40] 60.99 49.00 33.38 20.38 64.43 54.20

FasTEN (ours.) w/o Label Correction 68.02 61.75 52.79 28.46 69.59 66.07

Comparison to Gold Loss Correction (GLC) [40] Our proposed method
is similar to GLC in estimating the label transition matrix, but it shows better
performance than GLC even without label correction (See Table 8). Additionally,
instead of estimating the transition matrix, we directly use the oracle matrix to
examine the e↵ectiveness of the multi-head architecture more clearly. Even using
the same oracle matrix for both methods, our FasTEN outperforms GLC. We
conjecture that our multi-head architecture trains the model to extract features
better than the two-stage training of GLC, which learns noisy classifier and clean
classifier consecutively.

Comparison to Meta Loss Correction (MLoC) [101] Since our method
does not directly parameterize the label transition matrix T , stable estimation of
T and its theoretical analysis are possible (See Theorem 1). Table 9 shows that
MLoC and our FasTEN without Label Correction (LC) shows comparable per-
formance. MLoC uses several engineering techniques for stable training: a strong
prior and gradient clipping, where it is not mentioned in the paper. However, our
method shows good performance even without label correction, being robust to
di↵erent hyperparameters, reducing the need for excessive engineering. We also
emphasize that there is a significant gap in performance at a severe noise level.

Learning with Noisy Labels by E�cient Transition Matrix Estimation 35

Table 9: Test accuracy (%) comparison between FasTEN without Label Correc-
tion and MLoC [101] on CIFAR-10/100 dataset.

Dataset Method
Symmetric Asymmetric

20 % 40 % 60 % 80 % 20 % 40 %

CIFAR-10
MLoC [101] 90.50 87.20 81.95 54.64 91.15 89.35

FasTEN (ours.) w/o Label Correction 91.37 88.71 83.97 74.91 91.80 91.10

CIFAR-100
MLoC [101] 68.16 62.09 54.49 20.23 69.20 66.48

FasTEN (ours.) w/o Label Correction 68.02 61.75 52.79 28.46 69.59 66.07

Table 10: Incorrect label detection performance comparison on CIFAR-10 with
symmetric 80% noise. The Area Under the Receiver Operating Characteristic
(AUROC) and The Area Under the Precision-Recall Curve (AUPRC) are pro-
vided. Note that pure random model will yield 0.5 AUROC and 0.72 AUPRC. †
denotes the performance of the sample weights obtained with the meta model.

L2RW L2RW† MW-NET Deep kNN Deep kNN† GLC MLoC MLaC MLaC† MSLC FasTEN

AUROC 0.8653 0.4898 0.9205 0.9019 0.8070 0.9324 0.9318 0.9640 0.9564 0.9303 0.9651
AUPRC 0.9412 0.7994 0.9631 0.9396 0.9326 0.9674 0.9695 0.9835 0.9791 0.9624 0.9835

C.6 Incorrect Label Detection Performance Comparison

We consider the case where we have to continuously purify the already-collected
dataset with the existence of a human oracle, where the process can be accel-
erated by correctly detecting the candidates for the wrongly labeled samples.
Hence, we regard the incorrect label detection problem as a binary classification
problem where the model output probability of the noisy samples is used as the
barometer for the correctness of the label.

Settings. We extract the probability values of the noisy labels per sample in-
side the noisy training set to be the negative score for the binary classification
problem where we label 1 for the wrongly labeled sample and 0 otherwise. We
additionally measure the performance of the meta-models. We use the meta-
learned sample weights for MSLC, MW-Net, and L2RW. For MLaC, we use the
probability of the soft label obtained by the meta-model, which is described in
detail in Appendix B.4. Finally, as Deep kNN filters out the doubtful samples
while training the final model, we regard the process as weighting each sample
by 0 or 1 depending on its doubtfulness. Note that we evaluate each method
using all the training samples, including the correctly labeled, as each method
may mistake those samples to be wrongly labeled.

Results. [80, 85, 3] claim that using meta-learning or pre-training is able to tell
whether a sample is mislabeled. Although our model is not directly aimed at
finding noisy samples in the noisy set, Table 10 shows that our model achieves
comparable or better performance in detecting noisy labels than the baselines.

36 S. Kye et al.

Table 11: The e↵ect of the number of clean set on CIFAR-10 with symmetric
80% noise. Comparison with other label correction methods with meta-learning
is provided.

of
MLaC MSLC

FasTEN
clean examples (ours.)

100 32.92 69.00 76.48
250 42.15 63.52 79.36
500 50.70 63.35 77.82
1000 71.94 64.90 77.88

Table 12: The e↵ect of the number of samples per class (K) in the mini-batch
on the predictive performance (Accuracy (%)) of CIFAR-10 experiments.

K
Symmetric Asymmetric

20 % 40 % 60 % 80 % 20 % 40 %

2 91.85 89.96 87.00 81.68 92.43 91.11
4 91.79 89.85 86.92 82.18 92.14 91.18
6 92.16 90.07 86.77 79.57 92.14 90.98
8 92.10 89.82 84.81 79.55 92.41 90.74
10 91.72 89.30 84.63 77.88 91.95 90.25

Although [80, 3] claim that the performance has improved because the meta-
model detects noisy samples through re-weighting, the actual performance of
meta-models is generally lower than that of the final classifier. It implies that
[80, 3] may operate with di↵erent dynamics than the original author intended.

C.7 Analysis on Our Method

How Many Clean Samples are Required? To verify the e↵ect of the clean
dataset size, we observe the performance di↵erences while varying the size. As
shown in Table 11, our method consistently shows better performance on dif-
ferent sizes. Especially, even when our method only uses 100 clean samples, it
outperforms all the baselines which utilize all the clean samples (1,000 samples).
This observation demonstrates that our method could accurately estimate the
label transition matrix with a small number of clean samples, which can be ap-
plicable to real-world scenarios where it is di�cult to obtain a su�cient number
of clean samples.

How Sensitive is to the Batch Size? In Section 3.2, we show that the accu-
racy of estimating the label transition matrix is upper-bounded by the number
of samples in the mini-batch. As previous studies [40] mentioned, the quality of
the estimated transition matrix a↵ects the performance in learning with noisy

Learning with Noisy Labels by E�cient Transition Matrix Estimation 37

Table 13: Evaluation results varying the hyperparameter �. Test accuracy (%)
with 95% confidence interval of 5-runs is provided.

�
Symmetric Noise Level Asymmetric Noise Level

20% 40% 60% 80% 20% 40%

C
IF

A
R

-1
0

0.01 90.87 ± 0.35 89.03 ± 0.24 85.20 ± 1.00 75.95 ± 1.13 91.06 ± 0.36 89.40 ± 0.44
0.05 91.69 ± 0.17 89.20 ± 0.64 84.48 ± 0.89 76.39 ± 1.79 91.92 ± 0.31 89.58 ± 0.31
0.1 91.72 ± 0.20 89.30 ± 0.32 84.63 ± 0.70 77.88 ± 1.09 91.95 ± 0.22 90.25 ± 0.39
0.2 91.72 ± 0.11 89.61 ± 0.29 85.71 ± 0.24 77.55 ± 2.78 92.20 ± 0.19 90.51 ± 0.27
0.5 91.94 ± 0.28 90.07 ± 0.17 86.78 ± 0.31 79.52 ± 0.78 92.29 ± 0.10 90.43 ± 0.31
1.0 91.80 ± 0.20 89.70 ± 0.19 86.66 ± 0.48 80.95 ± 0.44 92.04 ± 0.40 90.54 ± 0.23

C
IF

A
R

-1
00

0.01 65.36 ± 0.77 57.79 ± 1.12 43.65 ± 1.06 26.95 ± 0.76 66.58 ± 0.71 62.19 ± 0.66
0.05 68.49 ± 0.27 62.47 ± 0.32 53.55 ± 0.86 35.53 ± 1.28 69.73 ± 0.18 65.63 ± 0.79
0.1 68.38 ± 0.29 62.53 ± 0.33 54.82 ± 0.46 35.35 ± 1.13 69.35 ± 0.13 66.34 ± 0.27
0.2 68.65 ± 0.09 63.07 ± 0.22 54.84 ± 0.30 35.65 ± 0.66 70.37 ± 0.15 66.93 ± 0.20
0.5 68.75 ± 0.60 63.82 ± 0.33 55.22 ± 0.64 37.36 ± 1.15 70.35 ± 0.51 67.93 ± 0.53
1.0 67.91 ± 0.59 62.78 ± 0.28 52.76 ± 1.15 31.45 ± 0.75 70.02 ± 0.60 67.11 ± 0.55

labels. To verify the e↵ect of the number of samples in the mini-batch, we ob-
serve the performance changes by varying the number of samples per class in the
mini-batch from 1 to 10. As shown in Table 12, there is little change in perfor-
mance depending on the number of samples per class, although the performance
degradation is predicted by Theorem 1 when the number of samples is small.
From this observation, we believe that our proposed method shows practicality
even in situations where the batch size cannot be increased due to the limited
computing resources.

Searching the Optimal Hyperparameter � We observe performance vari-
ance on the CIFAR-10/-100 datasets when we change the hyperparameter �

which is a loss balancing factor. The results are summarized in Table 13. The
hyperparameter is searched in {0.01, 0.05, 0.1, 0.2, 0.5, 1.0}.

D Additional Related Work

D.1 Comparison with Other Methods with Label Transition Matrix

Under the assumption that label corruption occurs class-dependently and instance-
independently, learning with noisy label methods exploiting the label transi-
tion matrix has shown admirable performance [68, 79, 88, 7, 76, 25]. It is well
known that training a statistically consistent classifier is possible if the transi-
tion matrix is estimated accurately, but precise estimation is usually challeng-
ing [67, 108, 113]. Various methods have been proposed to alleviate the issue:
imposing strong prior [76, 32], designing a loss function using the ratio of the
label transition matrix T [108], or factorization of the transition matrix [113].

38 S. Kye et al.

However, it is still challenging to estimate the transition matrix with only the
noisy dataset. Recently, approaches that improve the estimation accuracy of the
transition matrix using a small clean dataset have shown remarkable results:
Gold Loss Correction (GLC) [40] and Meta Loss Correction (MLoC) [101]. The
clean dataset makes it possible to directly estimate the noisy label posterior, re-
sulting in stable prediction of the transition matrix. Our FasTEN di↵ers from the
existing methods which try to find the fixed label transition matrix, as the oracle
transition matrix continuously changes during label correction in our method.
Our method shows novelty compared to the previous two methods even without
the label correction.

Di↵erences from Gold Loss Correction (GLC) [40] Similar to FasTEN, GLC
models p(ȳ|x) as f

�̄,✓̄
(x) for estimating the transition matrix T . However, GLC

is more ine�cient than our FasTEN because it requires multiple training phases
(See § 4.2). We introduce a multi-head architecture with to speed up the training.
Furthermore, there is an additional performance advantage compared to GLC.
The multi-head architecture is presumed to help obtain a better feature extractor
by inducing corruption-independent feature extraction. Detailed experimental
results can be found in Appendix C.5.

Di↵erences from Meta Loss Correction (MLoC) [101] MLoC gradually finds the
oracle transition matrix T via the MAML framework [20]. As mentioned ear-
lier, MLoC is very slow because it requires three back-propagations for a single
iteration due to its nature of MAML (See § 4.2). MLoC directly parameter-
izes the transition matrix T and learns it using various engineering techniques:
strong prior and gradient clipping, which were not mentioned in original paper.
In contrast, our method estimates T more accurately by sampling the posterior
through a single forward propagation. We empirically validate that our method
performs better or comparable to MLoC even without label correction (See Ap-
pendix C.5).

D.2 Methods using Multi-head Architecture for Noisy Labels

We propose a multi-head architecture to estimate the transition matrix e�-
ciently: one is for the clean label distribution, and the other is for the noisy
label distribution. A similar multi-head architecture has been used in situations
dealing with crowdsourcing. Many crowdsourcing studies assume that multiple
people label a single image [81, 28, 91], where training a reliable classifier is
the goal of the crowdsourcing problem. They maintain separate heads for each
annotator, and each head performs multi-task learning to learn each annota-
tor’s decisions directly. Then, the final decision is made by voting each head’s
decision. There is no component for estimating the label transition matrix in
these methods and no primary head classifier to learn from the estimated label
transition matrix.

	Learning with Noisy Labels by Efficient Transition Matrix Estimation to Combat Label Miscorrection

