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Abstract. Recent studies on learning with noisy labels have shown re-
markable performance by exploiting a small clean dataset. In particular,
model agnostic meta-learning-based label correction methods further im-
prove performance by correcting noisy labels on the fly. However, there
is no safeguard on the label miscorrection, resulting in unavoidable per-
formance degradation. Moreover, every training step requires at least
three back-propagations, significantly slowing down the training speed.
To mitigate these issues, we propose a robust and e�cient method, Fas-
TEN, which learns a label transition matrix on the fly. Employing the
transition matrix makes the classifier skeptical about all the corrected
samples, which alleviates the miscorrection issue. We also introduce a
two-head architecture to e�ciently estimate the label transition matrix
every iteration within a single back-propagation, so that the estimated
matrix closely follows the shifting noise distribution induced by label cor-
rection. Extensive experiments demonstrate that our FasTEN shows the
best performance in training e�ciency while having comparable or bet-
ter accuracy than existing methods, especially achieving state-of-the-art
performance in a real-world noisy dataset, Clothing1M.

Keywords: Learning with noisy labels; Label correction; Transition ma-
trix estimation

1 Introduction

In the last decade, supervised learning has achieved great success by leverag-
ing an abundant amount of annotated data to solve various classification tasks
such as image classification [37], object detection [24], and face recognition [89].
It has been proven both theoretically and empirically that the performance of
supervised learning-based classification models steadily improves as the size of
annotated data increases [27, 12, 21]. However, we cannot avoid noisy labels

due to its coarse-grained annotation sources [40, 121], resulting in performance
degradation [14].
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Fig. 1: Plotting accuracy (%) (y-axis) according to total training time (hours)
(x-axis). Our proposed method (FasTEN) shows the best performance in train-
ing e�ciency while having comparable or better accuracy on both CIFAR-10/100
with various noise levels.

Many methods have been proposed to build a classifier that is robust to noisy
labels. Unlike traditional methods [68, 94, 2, 75] which assume that all the given
labels are potentially corrupted, recently proposed methods utilize an inexpen-
sively obtained small clean dataset to improve performance further. Based on
the clean data set, loss correction methods [40, 101] reduce the influence of noisy
labels by modifying loss functions and re-weighting methods [80, 85, 3, 23] penal-
ize samples that are likely to be noisy labels. Especially, recent label correction
methods [105, 121] achieve remarkable performance based on model-agnostic
meta-learning (MAML) [20]. These methods relabel noisy labels to directly re-
duce the noise level, raising the theoretical upper bound of the predictive per-
formance (See Appendix A.1).

However, there are two challenges for these MAML-based label correction
methods: (1) The label correction methods blindly trust the already miscorrected

labels. Erroneously corrected labels are often kept throughout the training, which
causes the model to learn the miscorrected labels as ground-truth labels. Sev-
eral studies [67, 105] attempt to tackle this through training techniques such as
soft labels, whereas it does not fundamentally solve the problem. (2) MAML-

based methods are inherently slow in training, resulting in excessive computa-

tional overhead. The ine�ciency comes from multiple training steps per single
iteration of MAML-based methods, including virtual updates with inner opti-
mization loops.

To alleviate these issues, we propose a robust and e�cient method called
FasTEN (Fast Transition Matrix Estimation for Learning with Noisy La-
bels). FasTEN e�ciently estimates a transition matrix to learn with noisy labels
while continuously correcting them on-the-fly. It is theoretically proven that the
correctly estimated label transition matrix is useful to obtain a statistically con-
sistent classifier from noisy labels [108, 113] (See Appendix A.2), i.e., more robust
to noisy labels. To e�ciently estimate the transition matrix, we adopt a two-
head architecture that consists of two classifiers, a noisy and a clean classifier,
with a shared feature extractor. For every iteration, the noisy classifier esti-
mates the label transition matrix shifted by the label correction. On the other
hand, the clean classifier is trained to be statistically consistent by leveraging
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the estimated transition matrix. Using the output of the clean classifier, Fas-
TEN relabels noisy labels to reduce the noise level. Our proposed FasTEN has
a safeguard for the miscorrected labels since it adaptively estimates the transi-
tion matrix on every iteration, so that the clean classifier stays equally skeptical
towards all the corrected labels. Furthermore, our e�cient method jointly op-
timizes the two-head architecture with only a single back-propagation for each
iteration, boosting training speed. In this paper, we focus on solving the problem
of class-dependent noisy labels [25, 76, 119] (i.e., p(ȳ|y, x) = p(ȳ|y)), although the
problem of instance-dependent noisy labels [107, 16, 123] remains an important
problem to be addressed.

Experimental results show that our method achieves state-of-the-art per-
formance by a large margin on both the synthetic and real-world noisy label
datasets, various noise levels of CIFAR [49] and Clothing1M [109], respectively.
We demonstrate the exceptional training speed of our proposed FasTEN while
achieving better performance compared to baselines, as shown in Figure 1. Es-
pecially, although our FasTEN assumes only class-dependent noisy labels, it also
achieves state-of-the-art performance in the Clothing 1M dataset which contains
instance-dependent noisy labels. This experimental result supports recent obser-
vations that leveraging the accurately estimated transition matrix with small
clean data is helpful for alleviating instance-dependent noise [66, 40, 123, 45]
(See Appendix A.2). Finally, we conduct a thorough analysis to understand the
inner mechanisms of our proposed method.

Our contribution in this paper is threefold: (1) We propose a robust and
e�cient method that learns a transition matrix to learn with noisy labels while
continuously correcting them on the fly. To the best of our knowledge, this is
the first attempt to improve the label correction with the transition matrix
estimation. (2) Our proposed method boosts training speed by employing a
two-head architecture so that the label transition matrix can be learned with a
single back-propagation. (3) Extensive experiments validate the e�cacy of our
proposed method in terms of both training speed and predictive performance.

2 Related Work

Learning with noisy labels assumes that labels in all the training samples are
potentially corrupted. They can be further categorized as follows: various loss

functions [71, 94, 75, 22, 120, 99, 94, 62, 63, 61, 57, 112, 45], regularizations [2,
46, 38, 42, 65, 62, 35, 87, 59, 57, 10, 39, 73, 74, 53, 117, 36, 55, 64], re-weighting
training samples [80, 44, 67, 60, 100, 93, 14, 43, 102, 104, 104, 77], and correcting

noisy labels [90, 114, 34, 86, 122, 30, 47, 106, 119]. However, di↵erent losses or
regularizations yield inferior performance to state-of-the-art methods [117, 67,
42, 55], and re-weighting methods often filter out noisy but helpful samples for
extracting features to show sub-optimal performance [86, 105, 121, 67, 11, 58, 84].
Label correction methods circumvent their shortcomings by relabeling so that
the feature extractor leverage the corrected labels. However, label correction
methods also have a limitation in that they are prone to propagate the error
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when miscorrected labels are continuously accumulated [67, 105, 121]. Others
correct the training loss by estimating a label transition matrix [68, 79, 88,
7, 76, 25, 111, 108, 113] to build a statistically consistent classifier, where the
methods need multiple training stages; e.g., include a separate pretraining stage.
In this paper, we join a simple label correction method with estimating the label
transition matrix to alleviate the miscorrection issue caused by miscorrected
noisy labels, which only requires a single training stage.
Learning with Noisy Label via Small Clean Dataset. Unlike traditional
methods that use noisy datasets only [76, 113, 56], several recent studies argue
that a small clean dataset is easily obtained by techniques such as image re-
trieval [78]; hence one can further devise a method that e↵ectively leverages it.
Many studies have successfully adapted the idea and shown massive performance
improvement compared to the traditional methods. Early methods [40, 3, 118]
require multiple training stages where it hinders the training e�ciency. Recent
studies widely adopt MAML [20] to various strategies discussed above: sam-
ple re-weighting [97, 50, 44, 80, 54, 85], label correction [105, 121], and label
transition matrix estimation [101]. These approaches first perform a virtual up-
date with the noisy dataset, find optimal parameters using the clean dataset,
and update the actual parameters by the found parameters. This virtual up-
date process requires three back-propagations per iteration, leading to at least
three times the computational cost. Our proposed label correction method es-
timates the label transition matrix using a batch drawn from the clean small
dataset in a single back-propagation, greatly enhancing the training speed while
showing comparable or better performance to existing state-of-the-art methods.
Additional related works are described in Appendix D.

3 Methodology

Existing label correction methods try to find and fix noisy labels to utilize them
as clean samples in model training, where they can improve the classification
performance by reducing the noise level of the whole training samples. However,
erroneously corrected samples, i.e., clean samples deemed noisy, or vice versa, are
often kept throughout the model training. Since current label correction methods
blindly trust these miscorrected labels, this behavior degrades the classification
performance under the noisy label situation (§ 4.4).

In this section, we show that the accurately estimated label transition matrix
with the clean dataset alleviates the miscorrection problem of existing label
correction methods. Further, we describe our e�cient method estimating the
label transition matrix for every training iteration while correcting noise labels.
Our proposed method is illustrated in Figure 2 and summarized in Algorithm 1.

3.1 Batch Formation

We estimate the transition matrix to track the shifted noisy label distribution
caused by label correction using a clean batch. To ensure the e↵ective estimation
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Fig. 2: Summarization of our proposed method (FasTEN).

of the label transition matrix, we formulate the batch to have the same number
of samples per class. We first compose the clean batch d with randomly chosen K

samples for the entire N classes in the clean dataset D to get benefits from having
a certain amount of clean samples for each class, as follows d = {(xn, yn)}KN

n=1

where x is an input and y 2 RN is the clean label of x. A noisy batch d̄ is
randomly sampled from the noisy dataset D̄, as follows d̄ = {(x̄n, ȳn)}M

n=1
where

ȳ 2 RN is the noisy label of x̄ and M is the size of the noisy batch which we set
as M = KN for simplicity. It is di↵erent from other methods [121, 105, 85, 80]
based on meta-learning which randomly compose the clean batch.

3.2 Transition Matrix Estimation

Each element Tij of the label transition matrix T 2 RN⇥N is defined as the
probability of a clean label i to be corrupted as a noisy label j, i.e. Tij = p(ȳ =
j|y = i). It is well-known that a robust classifier can be obtained with the ac-
curately estimated label transition matrix [88, 76, 40, 108, 113]. We choose a
simple but accurate method that directly estimates the posterior with a clean
dataset [40, 108, 113], whereas there are other more sophisticated methods that
estimate the label transition matrix [68, 79, 88, 7, 25, 76]. Following the assump-
tion of the previous work [40, 15, 8, 107], we also assume conditional indepen-
dence of ȳ and y given x:

p(ȳ|y) = p(ȳ|y)

Z
p(x|ȳ, y)dx =

Z
p(ȳ|y, x)p(x|y)dx =

Z
p(ȳ|x)p(x|y)dx. (1)

We design the transition matrix to be class-dependent, i.e., p(ȳ|y, x) = p(ȳ|y),
following recent state-of-the-art methods [60, 82, 108, 113]. By parameterizing a
feature extractor �̄ and a linear classifier ✓̄, we obtain p(ȳ|x) = f

�̄,✓̄
(x) where f

�̄,✓̄
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Algorithm 1 Fast Transition Matrix Estimation for Learning with Noisy Labels
(FasTEN)

Input: Clean dataset D, noisy dataset D̄.

Hyper-parameters: Label correction threshold ⇢, Controllable loss ratio for noisy classifier �.

Output: Clean classifier f�,✓ where linear classifier ✓ and feature extractor �.

Randomly initialize common feature extractor �, linear classifiers ✓, and ✓̄ for clean labels and

noisy labels.

for each epoch i = 0, · · · do
for each iteration in epoch i do

Sample mini-batch d ⇠ D, d̄ ⇠ D̄.

T̂  

 
P

(x,y)2d

yf�,✓̄(x)
>

!
diag

�1

 
P

(x,y)2d

y

!

Lclean  
P

(x,y)2d

LCE (f�,✓(x), y) +
P

(x̄,ȳ)2d̄

LCE

⇣
T̂

>
f�,✓(x̄), ȳ

⌘

Lnoisy  
P

(x̄,ȳ)2d̄ LCE
�
f�,✓̄(x̄), ȳ

�
)

D̄  
�
D̄ � d̄

�
[

( 
x̄,

(
ȳ
⇤
, if max(f�,✓(x̄))<⇢

bf�,✓(x̄)/max(f�,✓(x̄))c, otherwise

!����(x̄, ȳ) 2 d̄

)

Update �, ✓, ✓̄ using r�,✓,✓̄ (Lclean + �Lnoisy) with a single back-propagation.

end for
end for

is the noisy classifier that consists of the linear classifier and the feature extractor
trained only with the noisy labels. If the noisy classifier f

�̄,✓̄
gives a perfect

prediction for the noisy data, we can estimate the transition probability p(ȳ|y)
using the clean samples (x, y) 2 d as follows (See Appendix A.3 for details):

bT  (
X

(x,y)2d

yf
�̄,✓̄

(x)>)diag�1(
X

(x,y)2d

y). (2)

We emphasize the importance of the transition matrix estimation, as its accuracy
determines the bounds of the generalization error of the classifier [108]. However,
the limited number of clean samples inside a single batch may yield an inaccurate
transition matrix, even with the ideal f

�̄,✓̄
. We analyze the upper bound of the

estimation error as follows:

Theorem 1. Assume the Frobenius norm of the weight matrices �̄1, ..., �̄H�1, ✓̄

are at most �̄1, ..., �̄H�1, ⇥̄ for H-layer neural networks f
�̄,✓̄

. Let the loss func-

tion be L-Lipschitz continuous w.r.t. f
�̄,✓̄

. Let the activation functions be 1-

Lipschitz, positive-homogeneous, and applied element-wise (such as ReLU). Let

x be upper bounded by B, i.e., for any x 2 X , kxk  B. Then, for ✏ � 0

p

⇣��� bTij � Tij

��� > ✏

⌘


NLB(
p

2H log 2 + 1)⇥̄⇧
H�1

h=1
�̄ip

|D̄|

+

p
� log(✏)p

2|D̄|

+ 2 exp
�
�2✏

2
K

�
.

(3)

Proof. See Appendix A.4.

Although the upper bound of the estimation error of the transition matrix
is a↵ected by the batch size K, we empirically verify that small K does not
necessarily harm the classification performance (See Appendix C.7).
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3.3 Learning with Estimated Transition Matrix

A clean classifier f�,✓ is trained with the estimated transition matrix bT :

Lclean =
X

(x,y)2d

LCE (f�,✓(x), y) +
X

(x̄,ȳ)2d̄

LCE

⇣
bT>f�,✓(x̄), ȳ

⌘
, (4)

given the cross-entropy loss function LCE, where the feature extractor � and the
linear classifier ✓ form the clean classifier f�,✓ which estimates clean labels. If bT is
correctly estimated, the clean classifier f�,✓ becomes statistically consistent [88,
76, 40, 108, 113]. This approach makes the clean classifier skeptical towards
corrected labels, hence avoiding the miscorrection issue.

On the other hand, the noisy classifier f
�̄,✓̄

is trained to model the noisy label
distribution.

Lnoisy =
X

(x̄,ȳ)2d̄

LCE

�
f
�̄,✓̄

(x̄), ȳ
�

(5)

We emphasize that updating the noisy classifier f
�̄,✓̄

every iteration is critical
as it can adaptively model the ever-changing noisy label distribution on the fly,
where the distribution constantly shifts as the noisy labels are actively corrected
to reduce the noise level (See § 3.5).

3.4 E�cient Training

Similar to [98, 44], we propose an e�cient training scheme through weight sharing
via two-head architecture, as shown in Figure 2. Where the architecture closely
resembles the ones of [98, 44], our two-head architecture only shares the feature
extractor � = �̄. Unlike the shared feature extractor, our architecture does not
share the linear classifier since modeling both noisy and clean data distribution
with a single linear classifier is impractical. Based on the two-head architecture,
the given samples require only a single inference on the feature extractor for
(1) training classifiers, (2) estimating the transition matrix, and (3) correcting
labels, which makes model training highly e�cient. Thus, we define the clean
and noisy classifier as f�,✓ and f

�,✓̄
, respectively, to produce our final objective

function L:

L = Lclean + �Lnoisy (6)

where � is a loss balancing factor. In order to prevent over-fitting on d̄, we intro-
duce � to the final objective function. We search for the optimal hyperparameter
� for all of our experiments (See Appendix C.7).
E�ciency Analysis. Compared to the vanilla training scheme, which assumes
that all labels are clean, we only add a single linear classifier ✓̄ with only N

additional parameters. Also, our loss only requires a single back-propagation,
where the added linear classifier has a negligible computational burden. Our
training scheme stands out even more compared to the existing MAML-based
methods [105, 121] or multi-stage training [40, 3] (See § 4.2 and Figure 1).
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3.5 Label Correction

In this paper, we focus on the e�cient, on-the-fly estimation of the label transi-
tion matrix to combat label miscorrection. To further demonstrate the e↵ective-
ness of our method, we employ a näıve label correction strategy where we feed
each noisy set sample x 2 d̄ to the clean classifier f�,✓ to produce a probability
vector. If the maximum probability max(f�,✓(x)) is bigger than the threshold ⇢,
we correct its label to a more probable label. This strategy relies only on the
most recent prediction of the model mid-training, so the decision is prone to
change. Formally, we can describe the relabeled ŷ,

ŷ =

(
ȳ⇤, if max(f�,✓(x̄)) < ⇢

bf�,✓(x̄)/ max(f�,✓(x̄))c, otherwise
(7)

where b·c denotes floor function and ȳ
⇤ denotes the original label from d̄. ȳ

⇤

di↵ers from ȳ; the former denotes the original label from the noisy dataset,
whereas the latter is continuously corrected by the above strategy. Even with
this simple strategy, our model shows better performance compared to the state-
of-the-art methods. The experimental results suggest that replacing this strategy
may further improve the model performance.

4 Experiments

In this section, we evaluate our proposed learning method, FasTEN, in terms of
predictive performance (§ 4.1) and e�ciency (§ 4.2). We also validate the label
correction performance to demonstrate that our method is better in correcting
noisy labels (§ 4.3 and Appendix C.6) and experimentally show the robustness
of our proposed method towards miscorrected labels. (§ 4.4). We further analyze
whether our method successfully estimates the label transition matrix in the case
where the label correction shifts the true label transition matrix (§ 4.5) or not
(§ 4.6). Additional experimental results and further analyses are described in Ap-
pendix C. We provide the source codes1 for the reproduction of the experiments
conducted in this paper.
Baselines using the small clean dataset. We deliberately choose the base-
lines that utilize the small clean dataset in learning with noisy labels. These
baselines are categorized in the following three types. Re-weighting : L2RW [80]
learns to assign weights to training samples based on their gradients. MW-
Net [85] trains an explicit weighting function with the training samples. Deep
kNN [3] applies the k-nearest neighbor algorithm to the logit layer of classifiers
to find noisy samples. Label transition matrix estimation: GLC [40] estimates
the label transition matrix using the small clean dataset. MLoC [101] consid-
ers the label transition matrix as trainable parameters to be obtained through
meta-learning. Label correction: MLaC [121] trains a label correction network
as a meta-process to provide corrected labels. MSLC [105] uses soft labels with
loss balancing weight through meta-gradient descent step under the guidance of
the clean dataset.
1
https://github.com/hyperconnect/FasTEN

https://github.com/hyperconnect/FasTEN
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Table 1: Performance comparison on CIFAR-10/100 datasets under various noise
level. Test accuracy (%) with 95% confidence interval of 5-runs is provided.

Method
Symmetric Noise Level Asymmetric Noise Level

20% 40% 60% 80% 20% 40%

C
IF

A
R

-1
0

L2RW 88.26 ± 0.79 83.76 ± 0.54 74.54 ± 1.54 42.60 ± 1.71 88.79 ± 0.63 85.86 ± 0.87
MW-Net 89.76 ± 0.31 86.52 ± 0.28 81.68 ± 0.25 56.56 ± 3.07 91.31 ± 0.25 88.69 ± 0.37

Deep kNN 90.02 ± 0.35 87.27 ± 0.39 82.80 ± 0.55 68.30 ± 1.21 89.97 ± 0.48 84.56 ± 0.87

GLC 89.66 ± 0.10 85.30 ± 0.73 80.34 ± 0.73 67.44 ± 1.50 91.56 ± 0.66 89.76 ± 0.89
MLoC 90.50 ± 0.71 87.20 ± 0.35 81.95 ± 0.44 54.64 ± 4.04 91.15 ± 0.16 89.35 ± 0.45

MLaC 89.75 ± 0.62 86.63 ± 0.56 82.20 ± 0.81 71.94 ± 2.22 91.45 ± 0.32 90.26 ± 0.48
MSLC 90.94 ± 0.45 88.36 ± 0.80 83.93 ± 1.21 64.90 ± 4.84 91.45 ± 1.35 89.26 ± 0.52

FasTEN (ours.) 91.94 ± 0.28 90.07 ± 0.17 86.78 ± 0.31 79.52 ± 0.78 92.29 ± 0.10 90.43 ± 0.31

C
IF

A
R

-1
00

L2RW 57.79 ± 1.88 44.82 ± 4.30 30.01 ± 1.74 10.71 ± 1.79 59.11 ± 2.74 55.12 ± 3.40
MW-Net 66.73 ± 0.78 59.44 ± 0.91 49.19 ± 1.57 19.04 ± 1.21 67.90 ± 0.78 64.50 ± 0.34

Deep kNN 59.60 ± 0.97 52.48 ± 1.37 39.90 ± 0.60 23.39 ± 0.75 57.71 ± 0.47 50.23 ± 1.12

GLC 60.99 ± 0.64 49.00 ± 4.33 33.38 ± 4.09 20.38 ± 1.35 64.43 ± 0.43 54.20 ± 0.86
MLoC 68.16 ± 0.41 62.09 ± 0.33 54.49 ± 0.92 20.23 ± 1.86 69.20 ± 0.59 66.48 ± 0.56

MLaC 49.81 ± 5.59 35.15 ± 5.75 20.15 ± 2.81 12.85 ± 0.87 56.46 ± 3.54 49.20 ± 3.23
MSLC 68.62 ± 0.60 63.30 ± 0.49 53.83 ± 0.70 21.07 ± 5.20 70.86 ± 0.30 66.99 ± 0.69

FasTEN (ours.) 68.75 ± 0.60 63.82 ± 0.33 55.22 ± 0.64 37.36 ± 1.15 70.35 ± 0.51 67.93 ± 0.53

4.1 Predictive Performance Comparison

CIFAR-10/100 with Synthetic Noise. CIFAR-10/100 [49] have been widely
adopted to assess the robustness of the methods to noisy labels. Since CIFAR-
10/100 are known as clean datasets, labels are synthetically manipulated to
contain noisy labels, injecting two types of noise: symmetric and asymmetric.
Symmetric: The labels are randomly flipped with uniform distribution. Asym-
metric: the labels are flipped with class-dependent distribution, following the
evaluation protocol of [76, 111]. We claim that most studies report the perfor-
mance highly overfitted to the test set without hyperparameter tuning on the
validation set [105, 53, 73, 74]. Moreover, baseline models employ di↵erent back-
bone networks, making it challenging to dissect the performance improvement
whether it originated from each method or the backbone networks. Therefore,
we first extract 5K samples as the validation set from the training set contain-
ing 50K samples and further extract 1K samples as the clean dataset. Then, we
unify the backbone network as ResNet-34 [37], which is widely adopted in vari-
ous baselines [105, 59]. Note that we do our best to maintain the experimental
settings of each method, including the hyperparameters written in the original
paper. Detailed settings are deferred to Appendix B.

Results. Table 1 summarizes the evaluation results on CIFAR-10/100. For both
CIFAR-10/-100, our proposed FasTEN achieves state-of-the-art performance on
various noise levels within 95% confidence intervals. Especially, under a high
noise level (80%), our FasTEN considerably outperforms the baselines with small
variance on performance, which implies the robustness of our method [52, 51].
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Table 2: Test accuracy (%) comparison on Clothing1M dataset with real-world
label noise. Rows with † denote results directly borrowed from [121] and ? denotes
the result directly borrowed from [56]. All the other results except L2RW [80]
are taken from original papers.

Method Top-1 Accuracy

C
le
a
n

s
e
t
X

Forward
?

69.91

T-Revision
?

70.97

casualNL 72.24

IF 72.29

VolMinNet
?

72.42

DivideMix 74.76

AugDesc 75.11

C
le
a
n

s
e
t
O

MLoC 71.10

L2RW 72.04 ± 0.24

GLC
†

73.69

MW-Net
†

73.72

MSLC 74.02

MLaC
†

75.78

O
u
r
s FasTEN w/o LC 77.07 ± 0.52

FasTEN 77.83 ± 0.17

These results demonstrate that our proposed method performs well in learning
with noisy labels, especially considering its training e�ciency (See § 4.2).

Clothing1M with Real-world Noise. Clothing1M [109] is a noisy real-world
dataset that consists of one million samples with additional 47K human-annotated
clean samples. We use its original splits of clean and noisy data. For a fair
comparison, we employ ResNet-50 architecture pretrained with the ImageNet
dataset [18] for the initial backbone architecture. Evaluation results on Cloth-
ing1M are summarized in Table 2.

Further baselines. We further compare our proposed FasTEN with additional
baselines that have already reported their performance on Clothing1M dataset.
Since the data split of Clothing1M dataset is the same for all the baselines,
we simply obtain the performance of the baselines from their original papers
and report the performance in Table 2. DivideMix [53] and AugDesc [73]
leverages semi-supervised learning with various data augmentation strategies.
Forward [76], T-Revision [108], IF [45], and causalNL [112], and VolMin-
Net [56] are transition matrix estimation methods that use certain data points
without clean data points.

Results. As shown in Table 2, our proposed FasTEN achieves remarkable perfor-
mance on Clothing1M which contains instance-dependent noisy labels, beating
the baselines by a large margin. This evaluation result indicates that our pro-
posed FasTEN is more applicable in real-world problems where label corruption
frequently occurs, although it does not directly target to address the problem
of instance-dependent noisy labels. Similar to previous observations [66, 40], we
suspect that using the transition matrix seems to combat instance-dependent
noise to some extent. Also, not only that our method shows superior perfor-
mance over all the baselines that use the small clean set, but it also surpasses the
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Table 3: Training time comparison on CIFAR-10 dataset with 80% symmetric
noise. Time (hours) per total training on a single RTX 2080Ti GPU are provided
with the relative ratio compared to our method.

Method
L2RW MW-NET Deep kNN GLC MLoC MLaC MSLC FasTEN
[80] [85] [3] [40] [101] [121] [105] (ours.)

Total Training Time 4.78 2.63 2.32 2.29 7.13 10.2 2.51
1.54

(Relative to Ours.) (3.11x) (1.71x) (1.51x) (1.49x) (4.64x) (6.64x) (1.64x)

semi-supervised learning-based methods (DivideMix and AugDesc) without any
complex augmentation techniques. Finally, FasTEN shows better performance
than T-Revision, causalNL, IF, and VolMinNet, which estimate the transition
matrix without the small clean data (this is not a fair comparison). This result
indicates that using the small clean data is e↵ective in estimating the transition
matrix accurately, leading to performance improvement eventually.

4.2 Training Time Comparison

Setup. To verify the e�ciency of our proposed FasTEN, we compare it with
the baselines in terms of accuracy by total training time. Total training time
is measured on CIFAR-10/-100, respectively, with a single RTX 2080Ti GPU.
Test accuracy shows the predictive performance on CIFAR-10/-100 with 20%
and 80% symmetric noise ratios, the mildest and most severe noise conditions,
respectively. Since Deep kNN and GLC require multiple training stages, the
summation of all the hours needed for each training phase is provided.
Results. Figure 1 shows that our FasTEN, which learns the label transition ma-
trix with the single back-propagation in the single-training stage, makes model
training more e�cient than other baselines that need multiple back-propagation
or multiple training stages while showing better performance. Table 3 shows
the total training hours of each baseline, including our FasTEN. Our method
provides the training time speedup of minimum ⇥1.49 to maximum ⇥6.64.

4.3 Label Correction Performance Comparison

We analyze the predictive performance of the baseline methods on all the training
samples (Overall) and the wrongly labeled subset of them (Incorrect), respec-
tively. Table 4 demonstrates that our method can successfully correct the noisy
labels, where using the label correction further improves the correction perfor-
mance. This also implies that our FasTEN may be helpful in further cleansing
the noisy training set.

We also compare the performance between Overall and Incorrect cases. Re-
weighting (L2RW, MW-Net, Deep kNN) and transition matrix estimation-based
methods (GLC, MLoC) show similar performance between two cases: Overall
and Incorrect. However, the performance of the meta-model of MLaC is worse
for the Incorrect case, which indicates that the correction from the meta-model
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Table 4: Label correction performance comparison on CIFAR-10 with symmetric
80% noise. Accuracy (%) and Negative Log Likelihood (NLL) loss are calculated
using the true labels before the synthetic noise is injected. Performance of the
trained model on all training samples (Overall) and incorrectly labeled training
samples (Incorrect) is measured. † denotes performance extracted from the meta
model.

Method
L2RW MW-Net Deep kNN GLC MLoC MLaC MLaC† MSLC MSLC† FasTEN FasTEN
[80] [85] [3] [40] [101] [121] [105] w/o LC (ours.)

Acc.
Overall 0.4450 0.6024 0.6471 0.6900 0.6261 0.7567 0.7672 0.6762 0.2821 0.7559 0.7847

Incorrect 0.4447 0.6024 0.6483 0.6903 0.6257 0.7569 0.7382 0.6755 0.2836 0.7560 0.7861

NLL
Overall 1.6684 1.6961 1.6085 1.3904 1.7492 0.9868 1.7004 1.2694 1.5989 1.0057 0.8889

Incorrect 1.6674 1.6957 1.6084 1.3881 1.7493 0.9851 1.7299 1.2722 1.5990 1.0033 0.8877
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Fig. 3: (a) Robustness to miscorrected labels on CIFAR-10 with various pertur-
bation strength. Test accuracy (%) of baselines and baselines without the label
correction is provided. (b) The plot for the mean of the diagonal term in true

transition matrix T and our estimated transition matrix bT according to the
epoch on CIFAR-10 dataset with symmetric 80% and asymmetric 40% noise.

is less e↵ective where the labels are wrong. Also, notable underperformance of
the meta-model of MSLC may indicate the ine�cacy of the meta-model. We
also analyze the meta-model of the re-weighting methods in the Appendix C.6,
where they do not distinguish the wrongly labeled samples well.

4.4 Robustness to Miscorrection: What Happens if Labels are
Wrongly Corrected?

This subsection illustrates the robustness of our label correction method to mis-
corrected labels by comparing it with other label correction methods (MLaC
and MSLC) which blindly trust the miscorrected labels as the ground-truth,
where we verify the imperfect corrections (See § 4.3). We examine how much
this behavior deteriorates the predictive performance.
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Setup. We experiment on CIFAR-10 with symmetric 80% noise where there are
a maximum number of noisy labels to correct. To simulate the miscorrection, we
perturb the corrected labels by injecting artificial noise. We control the degree of
random perturbation to observe the robustness of each method on various levels
of miscorrection. We further assess the robustness of our FasTEN and MSLC by
comparing it with the performance obtained without label correction.
Results. Figure 3a shows our proposed FasTEN outperforms MLaC and MSLC
on all the degrees of the random perturbation. MLaC shows steep performance
degradation when perturbation worsens, i.e., there are more miscorrected la-
bels. This observation reveals the susceptibility of MLaC. MSLC shows trivial
performance gains when labels are corrected, implying that it is not using the
full benefits of label correction. Furthermore, when highly perturbed, MSLC
performance worsens if it attempts to correct the labels. In contrast, the la-
bel correction of our FasTEN improves performance even in harsh situations.
FasTEN does not degrade performance even if the correction becomes useless
(100% perturbation). These observations show that our FasTEN builds a more
robust classifier to miscorrected labels through its e�cient estimation of the label
transition matrix, acting as a safeguard combating the miscorrected labels.

4.5 On-the-fly Estimation of the Label Transition Matrix

Our proposed FasTEN newly estimates the label transition matrix on every
iteration, where the matrix is constantly shifted by label correction. To assess the
matrix estimation quality, we compare it with the true label transition matrix.
Setup. We train FasTEN on CIFAR-10 with symmetric 80% and asymmetric
40% noise, which are harsh conditions on symmetric and asymmetric noise injec-
tion, respectively. We compare the estimated label transition matrix bT with the
true label transition matrix T by observing the mean of diagonal term values for
each epoch. The mean of the diagonal term in the transition matrix represents
the average of the probability that a sample is mapped to a clean label.
Results. Figure 3b shows the overall tendency of the estimated transition matrix
(red) to follow the true label matrix (blue). In the asymmetric 40% setting,
diagonal term values of the true label transition matrix T gradually increases
(blue), which indicates the dataset is cleansed by the label correction. However,
in the symmetric 80% case, diagonal term values of the true transition matrix
T decreases at the middle of the training. As we maintain the fixed threshold ⇢,
the total number of corrected samples decreases. Nonetheless, we can conclude
that the transition matrix is successfully estimated on shifting noise levels.

Additionally, we observe that the estimated transition matrix bT shows higher
mean values, i.e., being overconfident on the clean dataset samples. Theoretically,
f
�,✓̄

should correctly approximate the noisy label distribution given enough num-
ber of clean samples (See Appendix A.4), but it seems to be overfitting to the
clean dataset in practice. This observation is consistent with the popular belief
that neural networks tend to learn clean samples first and noisy samples later [1].
For better matrix estimation to yield a more robust classifier [31, 108, 67, 113], it
appears that we need to address the overfitting through additional components.
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4.6 Empirical Convergence Analysis on Estimating the Label
Transition Matrix

Setup. This section analyzes the convergence of estimation error between the
true label transition matrix T and the estimated transition matrix bT , comparing
our FasTEN to other methods, MLoC and GLC, which learn the transition
matrix. For fair comparison, we exclude the label correction for our method.
Results. Figure 4 shows the di↵erence between the probability distribution of
the true label transition matrix T and the estimated transition matrix bT for each
iteration, where Pearson �

2-divergence is used to measure the discrepancy be-
tween the two matrices. GLC error remains fixed (dotted line) as it estimates the
transition matrix only once in the entire learning process. The decrease of MLoC
error is extremely slow (blue line), implying the high dependence of the initial-

ization of bT and its ine↵ectiveness on estimation. Although our FasTEN does
not require multiple stages of training and produces the single mini-batch-based
estimate every iteration, it shows fast convergence with a similar estimation error
to GLC, which uses all the available data.

5 Conclusion

In this work, we propose a robust and e�cient method, FasTEN, which e�-
ciently learns a label transition matrix that mitigates the label miscorrection
problem of existing label correction methods. Our proposed FasTEN accurately
estimates the label transition matrix using a small clean dataset even if the
samples are miscorrected. Moreover, our FasTEN is highly e�cient compared
to existing methods since it requires single back-propagation through two-head
architecture and needs only a single training stage. Extensive experiments show
that our method is the fastest and the most robust classifier. Especially, our
method achieves remarkable performance on both the real-world noise dataset
(Clothing1M) and the synthetic dataset on various noise levels (CIFAR). The
detailed analysis shows that our method is robust to miscorrected labels by
e�ciently estimating the transition matrix shifted by the label correction.
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