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Abstract. This work simultaneously considers the discriminability and
transferability properties of deep representations in the typical supervised
learning task, i.e., image classification. By a comprehensive temporal
analysis, we observe a trade-off between these two properties. The dis-
criminability keeps increasing with the training progressing while the
transferability intensely diminishes in the later training period. From the
perspective of information-bottleneck theory, we reveal that the incom-
patibility between discriminability and transferability is attributed to
the over-compression of input information. More importantly, we investi-
gate why and how the InfoNCE loss can alleviate the over-compression,
and further present a learning framework, named contrastive tempo-
ral coding (CTC), to counteract the over-compression and alleviate the
incompatibility. Extensive experiments validate that CTC successfully
mitigates the incompatibility, yielding discriminative and transferable
representations. Noticeable improvements are achieved on the image
classification task and challenging transfer learning tasks. We hope that
this work will raise the significance of the transferability property in the
conventional supervised learning setting.

Keywords: Information-Bottleneck Theory, Representation Learning,
Discriminability, Transferability, Contrastive Learning

1 Introduction

In recent decades, great progress has been achieved on learning discriminative
representations with deep neural networks in a supervised learning manner. Ad-
vanced by such powerful deep representations, performances of many real-world
computer vision applications are remarkably improved, e.g., visual categoriza-
tion[17, 20, 37], object detection [16, 34, 46], and semantic segmentation [28, 54].
However, the mainstream supervised learning works concentrate on pursuing
more discriminative representations, which deserves the most attention for direct
effects on model performances. Except for the discriminability, transferability
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Fig. 1. Considered properties of deep representa-
tions. In a vanilla training, we reveal that the dis-
criminability keeps increasing while the transfer-
ability first climbs to a peak and then gradually
decreases. To address this issue, we propose the
contrastive temporal coding, which successfully
alleviates the incompatibility between transfer-
ability and discriminability.

should also be taken into considerations in the conventional supervised learning
classification task, which is preferred for many downstream tasks [4, 14, 49, 58,
57] yet neglected in the conventional supervised learning setting.

We start this work by investigating the correlation between discriminability
and transferability properties of representations in the entire supervised training
process. Concretely, in the training process of a deep classification model, we
extract representations from each training epoch and respectively assess their
discriminability and transferability. Conclusions are generally illustrated in the
left part of Figure 1. We observe that the discriminability keeps getting better,
while the transferability intensely diminishes in the later training. It reveals that
representations can hardly be discriminative and transferable at the same time in
the conventional supervised learning setting, i.e., these two properties could be
incompatible. Nevertheless, high-quality representations are expected to possess
both properties, and we suppose that the learning mechanism underlying the
conventional supervised learning leads to the trade-off.

Interestingly, we notice a concept Information-Bottleneck (IB) trade-off in
the IB theory [1, 39, 42], i.e., the network learning can be interpreted by finding
the optimal trade-off between input information compression and label-related
information enhancement. This IB trade-off intrigues us to explain our observed
trade-off between discriminability and transferability. Following IB, we visualize
mutual information dynamics [2] in the information plane [39], and reveal the over-
compression phenomenon, i.e., prolonged input information compression leads to
inadequate information on downstream tasks and thus poor transferability.

The above IB-based perspective also provides us an idea to make the dis-
criminability and transferability compatible, i.e., simultaneously training the
model with a loss for the specific task and another loss to counteract the over-
compression. To support this standpoint, we establish the correlation between
counteracting over-compression and improving transferability via a principle
components analysis (PCA) perspective. We further explore and provide a solu-
tion based on the InfoNCE [32, 40, 19] loss to counteract the over-compression.
Concretely, we present a two-stage learning framework, namely Contrastive
Temporal Coding (CTC). The learning process of CTC consists of two stages,
i.e., the information aggregation and revitalization stages. In the first stage,
a classification model is optimized and the last epoch model is stored as the
information bank, which aggregates informative representations. In the second
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stage, we introduce an InfoNCE loss between the current model and the infor-
mation bank, counteracting the over-compression. As shown in the right part
of Figure 1, our proposed method successfully alleviates the incompatibility,
achieving high-quality representations in supervised learning.

2 Related Work

Information-Bottleneck Theory. The information-bottleneck (IB) theory [1,
39, 42] provides an information-theoretic principle for encoding the input data
into a compressed representation. The theory is based on measuring the mutual
information between the input/label variable and the representation variable. It is
demonstrated that the representation learning of deep neural networks undergoes
two phases, i.e., the empirical error minimization and representation compression
phases. In the first phase, the mutual information on the label variable is rapidly
increased. When it comes to the compression phase, most of the optimization
epochs are spent on decreasing the mutual information on the input variable.
From the perspective of IB theory, we analyze the incompatibility between the
transferability and the discriminability of learned representations in the common
supervised learning, which is mostly ignored by the community. We conjecture
and prove that the drop of transferability owes to the prolonged compression
phase, i.e., the information relevant to downstream tasks is overly discarded for
learning discriminative representations.

Discriminability vs. Transferability. The transferability of deep representa-
tions has been studied from various perspectives [23, 36, 11, 43, 52, 24, 3, 7]. And
many previous works also noticed the correlation between discrimiability and
transferability in the domain adaptation area [3, 7]. In this work, we venture to
study the correlation between discriminability and transferability with from an
information-theoretic point of view. It is worth noting that [23] also noticed that
better ImageNet classification results (obtained from better loss functions) could
lead to worse transfer learning performances, strongly supporting our work.

Contrastive Learning. The main idea of contrastive learning is maximizing
the similarity between samples from the same category/view while minimizing
the similarity between samples from different categories/views. In recent years,
contrastive learning has shown great potentials in self-supervised and unsupervised
learning [4, 14, 22, 32, 33, 40, 41, 49, 4, 5, 50, 57] but is not widely studied in the
supervised learning setting [22, 38]. Different from these previous works, our
method contrasts the representations from the current training against those
from the previous training. The contrastive learning objective has been proven
to be the lower bound of the mutual information between the two views [32, 40,
48]. In this work, we utilize this property for optimizing the mutual information
between deep representations from different training stages.
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3 Discriminability vs. Transferability

In this section, we first reveal the incompatibility between discriminability and
transferability properties of deep representations. Then, we give theoretical and
empirical explanations from the information-theoretic perspective.

3.1 Revealing the Incompatibility

We optimize a classification model with the cross-entropy loss on CIFAR-100 [25]
and evaluate these properties2:
Discriminability. Intuitively, the discriminability of representations is reflected
by the classification accuracy. However, the high accuracy only indicates separable
representations since a sample can be correctly classified but near located to the
decision boundary. Previous work [37, 47] pointed out that the discriminability can
be better revealed by nearest neighbor search (NNS) algorithms. Besides, a subtle
but essential component in a classification model should be considered, i.e., the
classifier. Recent works [56, 21] revealed that the performance of a classification
model is closely related to the quality of its classifier. To precisely quantify the
discriminability, we propose to evaluate retrieval and clustering performances of
representations, which are built upon classifier-irrelevant NNS algorithms.

To measure discriminability, we evaluate representations with a typical net-
work architecture ResNet18 [17]. Representations from each training epoch are
extracted and assessed by retrieval and clustering tasks. Recall@1 (R@1) is the
evaluation metric for retrieval tasks. Normalized Mutual Information (NMI) is
reported to assess clustering performances. Metrics are calculated only by the
test set to avoid problems that can be caused by over-fitting the training set.
Transferability. For measuring the transferability, it is reasonable to transfer
learned knowledge to out-of-sample datasets. Given a deep classification model
learned on a source dataset, we freeze its backbone network and re-train a
classifier on top of the last feature layer on unseen target datasets. Corresponding
classification accuracies reveal the transferability.

To measure the transferability, CIFAR-100 is the source dataset, and target
datasets are CINIC10 [10] and STL-10 [8], respectively. Following the above
experimental settings, ResNet-18 model is utilized.
Trade-off between discriminability and transferability. As illustrated
in Figure 2, it can be observed that both R@1 and NMI have been improved
with the training process. However, the continual training in later epochs can
significantly hurt the transferability. In all the above experiments, models with
the best transferability are mostly located in the middle training stage, rather
than the later stage, where the best discriminability is scored. Conclusively, with
the training progressing, representations become increasingly discriminative while
the transferability remains uncertain, and, more importantly, these two properties
could be incompatible in the later training stage.

2 Representations refer to the outputs of the backbone, which are processed with a
global average pooling in popular models [17].
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Fig. 2. Temporal analyses of representations in the vanilla training process. In each
subfigure, the X-axis is the training epoch, and Y-axis is the evaluated metric (e.g.,
R@1, NMI, and Top-1 accuracy). “↑” denotes “the higher the better”. In the entire
training, it can be observed that the discriminability keeps becoming better while the
transferability first goes to a peak and then intensely drops in the later training. In a
typical supervised training process, discriminability and transferability are incompatible.

3.2 Connection to Information-Bottleneck Trade-Off

The trade-off between discriminability and transferability in Sec. 3.1 motivates
us to explain it with the well-known Information-Bottleneck (IB) trade-off [42,
39, 1].

Recap of the IB theory. The IB theory explains the learning of deep neural
networks (DNNs) by the Information-Bottleneck trade-off, i.e., the network
learning is interpreted by finding the optimal trade-off between input information
compression and label-related information enhancement.

An essential viewpoint of IB theory is that, except for the input variable X
and label variable Y , the hidden representation layer T is regarded as a variable.
Under these assumptions, the mutual information (MI) between X (or Y ) and
T is used to describe the trade-off between input information compression and
label-related information enhancement. I(X;T ) denotes the MI between inputs
X and representations T , and I(T ;Y ) represents the MI between representations
T and labels Y . Based on MI, the empirical error minimization (ERM) and
representation compression phases are defined. The fast ERM phase rapidly
increases I(T ;Y ), and subsequently, the much longer representation compression
phase results in the decrease of I(X;T ). These two phases indicate that network
first rapidly memorizes label-related information, and then compresses input
information for finding an optimal trade-off.

IB trade-off meets discriminability-transferability trade-off. In the IB
trade-off, we suppose that input information could be overly compressed on the
source dataset. Due to the network focuses on enhancing label-related information,
the task-irrelevant information could be discarded. Thus, insufficient information
on target datasets brings about the unsatisfactory transferability. In other words,
the over-compression results in the aforementioned empirical observation of
discriminability-transferability trade-off. To prove this standpoint, we follow IB
to calculate MI dynamics on both source and target datasets, capturing the
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correlation between the information-bottleneck trade-off and discriminability-
transferability trade-off 3.
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Fig. 3. Mutual information on both source
and target datasets.

(1) MIs on the source dataset. As
shown in Figure 3, expectedly, I(T ;Y )
on the source dataset (CIFAR-100)
rapidly increases in initial training, cor-
responding to the fast ERM phase.
Then, I(X;T ) slowly decreases with
the training progressing, matching the
representation compression phase. As-
sociated with results in Figure 2, the
discriminability greatly benefits from
the representation compression phase.

(2) MIs on the target dataset. Both
I(X;T ) and I(T ;Y ) on target datasets
are illustrated in Figure 3. With representation compression on the source dataset,
I(T ;Y ) on both STL-10 and CINIC-10 climbs to a peak and then gradually
decreases, consistently acting like the transferring performances in Figure 2.
Meanwhile, I(X;T ) on target datasets also gradually decrease with the training
progressing, indicating that the information relevant to target datasets is also
discarded due to the long representation compression phase.
Over-compression leads to the incompatibility. The above results reveal
the over-compression issue, which degrades both I(X;T ) and I(T ;Y ) on target
datasets in the later training. Driven by the IB trade-off, the transferability
can be sacrificed by the supervised leaning to overly compress input-related
information for efficient representations. Over-compression results in insufficient
information related to target datasets, unsatisfactory transferring performances,
and the incompatibility. However, we suppose that high-quality representations
are expected to possess both properties, arising our next explorations.

4 Method

4.1 Alleviating the Incompatibility

Understanding the transferability. Following [29], we hypothesize that
the transferability between a source dataset and a target dataset relies on the
model learns important representation patterns shared by source and target
datasets. Thus, the decrease of transferability is attributed to the information of
representations which related to the target dataset is overly compressed.
Counteracting over-compression improves transferability. To achieve
this goal, an intuitive solution is to counteract the decrease of I(X;T ) on the
source dataset. To support our motivation, we give an explanation from the
Principal Components Analysis (PCA) perspective.

3 We use the Mutual Information Neural Estimation (MINE) [2] method to calculate
the mutual information between continuous variables.
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Given an example where the model is linear, maximizing I(X;T ) is equivalent
to solving a PCA on the source dataset4. Solving PCA helps the model capture
the most representative representations on the source dataset. If the target
dataset shares important patterns with the source dataset, maximizing I(X;T )
on the source dataset ensures the most important representation patterns are
captured, further improving transferring performances. Since calculating the
mutual information for continuous variables is challenging, we introduce an
approximation in the next. The definition of I(X;T ) is as followed:

I(X;T ) = H(T )−H(T |X),

where H(T ) is the entropy of the latent representation T and H(T |X) is the
conditional entropy. Since the support set of X contains tremendous natural
images from the P (X,Y ) and the neural network is deterministic, the conditional
entropy equals 0 [31]. Thus, the above equation can be re-written as:

I(X;T ) = H(T ),

which demonstrates that counteracting the decreasing of H(T ) on the source
dataset could be a potential way to alleviate over-compression. In the following,
we demonstrate how to counteract the decrease of H(T ). It is proven in [19,
32, 40] that minimizing the InfoNCE loss maximizes a lower bound on mutual
information. Given two representation variables T1 and T2, the relation between
InfoNCE loss and the mutual information I(T1;T2) can be derived as:

I(T1;T2) ≥ log(N)− LInfoNCE, (1)

where N is normally the number of samples in a training set. As demonstrated,
minimizing the InfoNCE loss would increase the lower bound of I(T1;T2). Com-
bining Eqn.(1) with the definition of the mutual information:

I(T1;T2) = H(T1) +H(T2)−H(T1, T2)

≤ H(T1) +H(T2)−max(H(T1), H(T2)),

= min(H(T1), H(T2)),

the Eqn.(1) could be re-written as:

log(N)− LInfoNCE ≤ min(H(T1), H(T2)). (2)

Eqn.(2) suggests that minimizing InfoNCE loss improves the lower bound of
min(H(T1), H(T2)), which simultaneously improves lower bounds of H(T1) and
H(T2). Therefore, we could select the representation T1 from early training and
fix it as constant, regard the representation in later training as T2, and develop an
InfoNCE loss between the constant representation T1 and the later representation
T2, for counteracting the decrease of H(T2). Inspired by the well-known “memory
bank” concept, we name the constant representation T1 as the information bank.

Concretely, in Eqn.(2), if H(T2) ≤ H(T1), the InfoNCE loss would improve
the lower bound of H(T2). If H(T2) > H(T1), the objective of counteracting has
been reached. In this manner, the loss LInfoNCE ensures the representation of
later training has a relatively large H(T ).

4 Proofs are attached in the appendix A.1.
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4.2 Contrastive Temporal Coding

Inspired by the above explorations, we propose a two-stage learning framework
to alleviate the incompatibility between discriminability and transferability. In
the first training stage, named information aggregation stage, the main objective
is to obtain the information bank to provide the H(T1) in Eqn.(2). In the second
training stage, named information revitalization stage, the main objective is to
further counteract the decrease of H(T2) via Eqn.(2).
Information aggregation stage (IAS). In this stage, a classification model
is trained with a vanilla cross-entropy (CE) loss LCE as the main loss function
for learning T1. Eqn.(2) indicates that, if H(T2) ≤ H(T1), the InfoNCE loss will
improve the lower bound of H(T2). Thus, it is reasonable to choose the T1 with a
relatively large H(T1) in this stage. However, experiments in Sec. 3 demonstrate
that, only with the CE loss, the information compression is not controllable
and predictable, and the last epoch model could still be overly compressed. For
practical usage, it is tricky to select a good T1 among all epochs, and we hope
the last model is a satisfactory choice. To this end, we introduce an auxiliary
InfoNCE loss LIAS for desensitizing the model selection.

Let T1 denote the representation variable. Similar to IB theory, we regard a
memory bank V as a variable, which keeps representations for each training sample
and provide contrastive samples. For t1 ∈ T1 and v ∈ V (which are normalized
representations), contrastive representation pairs are composed as {ti1, vj}Ni,j=1,
and N is the number of training samples. Positive pairs are constructed by
representations of the identical samples, while negative pairs are composed of
different samples. Therefore, the loss function of ti1 can be re-written as:

LIAS = −log
exp(ti1 · vi)∑N
j=1 exp(t

i
1 · vj)

, (3)

where vi is the positive “key”. When the learning process ends, the model of the
latest epoch is saved as the information bank T̂1. Information revitalization
stage (IRS). Let T2 denote representation variable of the second stage. In this
stage, we continue training the model from the end of the former stage, and
develop an InfoNCE loss LIRS to counteract the decrease of H(T2). For t̂1 ∈ T̂1

and t2 ∈ T2, contrastive representation pairs are composed as {t̂i1, t
j
2}Ni,j=1, where

t2 is from the current epoch and t̂1 is from the previously saved information bank.
The optimization objective function of tj2 can be written as:

LIRS = −log
exp(tj2 · t̂

j
1)∑N

k=1 exp(t
j
2 · t̂k1)

, (4)

where t̂j1 is the positive “key”. Consequently, the optimization objective can
implicitly counteract the decrease of H(T2) and over-compression, promoting the
transferability of learned representations.
Learning framework. The learning of the information aggregation stage is
driven by a cross-entropy loss function LCE and a contrastive loss LIAS as:

Lstage 1 = αLIAS + LCE. (5)
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At the end of this stage, the information bank model is saved. In the information
revitalization stage, the learning of the current model is simultaneously motivated
by a contrastive learning loss LIRS and a cross-entropy loss LCE. The LIRS is
calculated with representations from both the current model and the information
bank. The loss can be written as:

Lstage 2 = βLIRS + LCE. (6)

α and β are weighting hyper-parameters, which respectively emphasize the
importance of two properties. The general framework could be similar to the
well-known knowledge distillation process [18, 13, 53]; however, learning the first
stage without the LIAS loss function (which corresponds to the teacher model
training) still leads to poor transferability in T1. Consequently, developing the
LIPS loss with such T1 will limit the increasing of T2.

4.3 Discussions on Self-Supervised Learning (SSL)

We notice that SSL has shown great potential in transfer learning tasks [49, 14, 6],
while linear probing results of these methods still cannot catch up with supervised
learning results. It is similar to supervised learning that the transferability and
discriminability also cannot be compatible. However, the superiority of SSL in
improving transferability drives us to explore the underlying working mechanism.
On transferability. Mainstream SSL methods depend on InfoNCE loss, and
we attempt to formulate its learning target from the information view. In repre-
sentative works, a dictionary (memory bank [49] or momentum encoder [14, 6]) is
typically used for providing negative samples for a trainable encoder. We denote
the dictionary representation as T1, and the trainable encoder representation as
T2. Given that T1 comes from the dictionary, the H(T1) could be regarded as a
constant before being updated. Minimizing the contrastive loss also counteracts
the decrease of H(T2). Thus, the good transferability of SSL methods could also
result from the learning target for informative representations.
On discriminability. Mainstream SSL methods can be interpreted by a
(K+1)-way softmax-based classification task, where K is the number of negative
samples [14]. Intuitively, due to K is a large number, the (K+1)-way classification
task is more challenging than the conventional supervised image classification.
Thus, we conjecture that SSL compresses input information slowly and is inferior
to enhance label-related information. We also notice in [6] that longer training
will bring in significant discriminability improvement but minor transferability
improvement, which suggest that SSL methods could require longer time for
compressing input information and enhancing label-related information.

Later experiments will demonstrate that our CTC outperforms SSL methods
on the transferability property.

5 Experiments

Experiments and discussions focus on the following two parts: (1) Validating our
motivation and (2) Transferring representations learned by our method.
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Fig. 4. Temporal analysis of representations in the vanilla and CTC training processes.
Results of the vanilla and CTC are colored in blue and red, respectively. Two stages are
divided by grey dotted lines. Compared with the vanilla training, it can be observed
that the transferability is greatly preserved by CTC in later epochs. Furthermore,
discriminability is improved by preserving the transferability.

5.1 Motivation Validation and Main Results

Motivation: counteracting over-compression. In this part, we prove our
motivation that the proposed method is able to counteract the over-compression.
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Fig. 5. Mutual information of CTC on
both source and target datasets. For bet-
ter illustration, two stages are split with
grey dotted lines. The left and right parts
correspond to information aggregation and
revitalization stages, respectively.

Following the experimental settings in
Sec. 3, we report a temporal analy-
sis of our proposed method. Generally,
ResNet18 [17] is trained with CTC on the
CIFAR-100 [25] dataset, and representa-
tions of each epoch are evaluated and
reported afterward. For discriminabil-
ity, representations of models from each
epoch are extracted to perform retrieval
and clustering tasks. As to the transfer-
ability, we transfer learned representa-
tions to STL-10 [8] and CINIC-10 [10].

Evaluations of discriminability and
transferability are illustrated in Figure 4.
We divide two stages with a grey dotted
line. In the first stage, benefitting from
LIAS, our method (red lines) achieves bet-
ter transferring results in the last epoch than the baseline (blue lines). The second
stage further improves transferring results on target datasets (STL-10 and CINIC-
10) by large margins. Mutual information dynamics are provided in Figure 5.
Similar to transferring results, the I(T ;Y ) on target datasets also keeps increasing
in the second stage, showing the information relevant to target datasets is revital-
ized by our CTC. Meanwhile, the I(X;T ) on source and target datasets is also
non-decreasing in the second stage. The above results jointly demonstrate that
the over-compression has been successfully alleviated by our method. Besides, the
discriminability is not damaged, proving the incompatibility is also mitigated.
Benchmarking on CIFAR-100 and ImageNet. To show the direct benefits
of counteracting the over-compression, we benchmark our proposed CTC on
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CIFAR-100 [25] and ImageNet [35]. For CIFAR-100, results are reported in
Table 1. Our proposed method consistently outperforms the baseline method.
For ImageNet, results are reported in Table 2 and better results are also achieved
compared with the vanilla training results. Counteracting the over-compression
does not damage the discriminability and conversely benefits the classification
performances. Moreover, our CTC brings in no increase on the number of model
parameters and FLOPs.

method top-1 acc. (%)

Res18+CosLr 79.3±0.2
Res18+CTC(Ours) 80.1±0.3

Table 1. Top-1 accuracies (%) on CIFAR-
100 of baseline and CTC (5 runs).

method top-1 acc. (%)

Res50+CosLr 76.1±0.1
Res50+CTC(Ours) 76.4±0.1

Table 2. Top-1 accuracies (%) on Ima-
geNet of baseline and CTC (3 runs).

Boosting transferability with CTC. To further validate that (1) the correct-
ness of the discriminability-transferability trade-off and (2) our method is able
to adjust the trade-off, we conduct experiment on sacrificing the discriminability
for boosting the transferability. Since the information aggregation stage of CTC
decides the lower bound of H(T ), we could adjust the hyper-parameter α for
helping the model learn informative representations. Unavoidably, large weight
for LIAS influences the learning of LCE. As shown in Table 6 and Figure 7,
increasing α to 0.5 leads to a normal classification accuracy on CIFAR-100, but
significantly better transferring results. It also suggests that ending the baseline
at an appropriate time is a bad option for enhancing transferability. Moreover,
early ending baseline would unavoidably lead to poor discriminability.

method top-1 acc. (%)

Res18+CosLr 79.3±0.2
Res18+CTC(α = 0.1) 80.1±0.3
Res18+CTC(α = 0.5) 79.4±0.3

Fig. 6. Top-1 accuracies (%) on CIFAR-
100. We adjust the α from 0.1 to 0.5,
and the top-1 accuracy is decreased but
still better than vanilla training. Trans-
ferring results are in the right figure.
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Fig. 7. Setting CTC’s α to 0.5 (red) leads
to greatly better transferring results than
vanilla training (blue), showing the over-
compression is sufficiently alleviated.

5.2 Towards Better Transferability

In this part, we study (1) how to get better transferability of representations and
(2) how to plug in CTC to further boost the transferability, proving its scalability.
AutoAugment (AA) contributes to good transferability. We suppose
that strong augmentations could contribute to good transferability, since strong
augmentation can increase the difficulty of information compression, and thus lead
to higher H(T ). Except for normal crop and resize operations, color normalization
and translation operations might be more difficult to learn. Thus, on the CIFAR-
100 dataset, we first conduct temporal analysis on representations learned with
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Fig. 8. Temporal analyses of representations in the vanilla and CTC training with the
AutoAugment. Results of the vanilla and CTC are colored in blue and red, respectively.
Two stages of CTC (red lines) are separated by the grey dotted line. Compared with
the vanilla training (blue lines), it can be observed that the transferability of CTC
keeps climbing in the entire learning process. Different to Figure 4, we train the baseline
and CTC with the same number of epochs for fair comparisons.

method top-1 acc. (%)

Res18+AA+CosLr 80.4±0.3
Res18+AA+CTC(Ours) 81.2±0.2

Table 3. Top-1 accuracies (%) on CIFAR-
100 of baseline and CTC with AA.

method top-1 acc. (%)

Res50+AA+CosLr 76.8±0.1
Res50+AA+CTC(Ours) 77.2±0.1

Table 4. Top-1 accuracies (%) on Ima-
geNet of baseline and CTC with AA.

the AA [9], and results are blue lines in Figure 8. Similar to results from Sec. 3, the
discriminability of representations becomes better with the training progressing.
However, it is surprised to notice that the transferability of representations
learned with the AA does not diminish as intensely as representations learned
without AA, especially in later training epochs. It conveys an intuition that
strong augmentations could contribute to good transferability, which possibly
result from our hypothesis that strong augmentation can increase the difficulty
of information compression.

“AA+CTC” contributes to better transferability. Subsequently, we prove
our CTC is scalable and orthogonal to other methods. We first optimize the
model with CTC and AA, and then report the temporal analysis by red lines
in Figure 8. With the assistance of CTC, discriminability scores higher within
expectations. Moreover, the transferability keeps climbing in the entire learning
process, eventually achieving the best transferring classification accuracies which
can not be achieved only with AA. It further validates our motivation that the
transferability could be promoted by counteracting the decrease of representation
entropy. For comprehensiveness, we benchmark our CTC with AutoAugment on
CIFAR-100 and ImageNet. All experimental settings in this part are the same as
those in Sec. 5.1. As reported in Table 3 and 4, superior classification accuracies
than the baseline also meet our expectations.
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pre-training method
Performance

APbbox APbbox
50 APbbox

75 APmask APmask
50 APmask

75

Res50 random init. 30.2 48.9 32.7 28.6 46.6 30.7
Res50+MoCo v2 [6] 38.5 58.3 41.6 33.6 54.8 35.6
Res50+InfoMin [41] 39.0 58.5 42.0 34.1 55.2 36.3

Res50+CosLr 38.2 58.2 41.2 33.3 54.7 35.2
Res50+CTC(Ours) 39.5 58.7 42.0 34.2 55.4 36.2

Table 5. COCO object detection and instance segmentation based on Mask-RCNN-
FPN with 1× schedule.

5.3 Transferring Representations

In this part, we present extensive tasks and datasets to which representations
learned by our method can be transferred. Since self-supervised learning methods
exceed supervised learning in transferring tasks, we also compare with represen-
tative self-supervised learning works [14, 6, 41].
Object detection and instance segmentation. In this part, we transfer the
learned representations of CTC to the object detection and instance segmentation
tasks [15, 14, 46]. Models pre-trained on ImageNet are further fine-tuned with
the Mask-RCNN-FPN [16, 26] on the MS-COCO dataset [27] in the commonly
applied training protocol.

Transferring results are summarized in Table 5. Compared to the vanilla
pre-training with cosine learning rate (CosLr), our CTC yields consistently better
transfer performances on the COCO dataset. Compared with self-supervised
learning methods, i.e., MoCo v2 [6] and InfoMin [41], CTC also achieves compa-
rable or better results on COCO. For one thing, it indicates that our method also
preserves information concerning the detection task. For another, the superiority
of SSL in transferring tasks is challenged, i.e., our method proves that supervised
pre-training has the potential to achieve better results than SSL methods.

pre-training method
CUB200 Aircraft

top-1 acc. (%) top-1 acc. (%)

Res50+CosLr† 62.5 27.8
Res50+CTC(Ours)† 63.7 28.2

Res50+AA+CosLr† 64.8 31.2
Res50+AA+CTC(Ours)† 66.1 32.1

Res50+CosLr‡ 80.1 82.5
Res50+CTC(Ours)‡ 81.7 84.1

Res50+AA+CosLr‡ 81.3 83.4
Res50+AA+CTC(Ours)‡ 83.5 85.6

Table 6. Top-1 classification accuracies (%) on transferring representations to FGVC
datasets. “†” and “‡” denote the backbone network is frozen and unfrozen, respectively.

Fine-grained visual categorization. In this part, representations are trans-
ferred to popular fine-grained visual categorization (FGVC) [55, 12] datasets. With
the backbone network pre-trained on ImageNet frozen and unfrozen, two kinds
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of transferring experiments are conducted on the CUB-200-2011 (CUB200) [45]
and the FGVC-Aircraft (Aircraft) [30] datasets. To compare with SSL methods,
we extend the experiment on the large-scale iNaturalist-18 (iNat-18) [44] dataset.
Training details are attached in appendix.

Transferring results of CUB200 and Aircraft are reported in Table 6 and 7.
By freezing the backbone parameters and training a linear classifier on top of
the learned representations, we observe that the representations learned by CTC
achieve better performance over the vanilla baseline. Results of training the model
with unfrozen backbone are also provided in Table 6. CTC again outperforms
the vanilla training, further validating its effectiveness and practicality. Notably,
on iNat-18, our method also outperforms the MoCo v1 [14], even the model is
pre-trained on the billion-level data Instagram-1B [51]. It further demonsrates
that learning transferable representations in the supervised learning is a promising
research direction.

pre-training method
iNat-18

top-1 acc. (%)

Res50+CosLr 66.1
Res50+MoCo v1 (IN-1M) [14] 65.6
Res50+MoCo v1 (IG-1B) [14] 65.8
Res50+CTC (ours) 66.4

Res50+AA+CosLr 66.3
Res50+AA+CTC (ours) 66.7

Table 7. Top-1 accuracies (%) on iNaturalist and the backbone is frozen. “IN-1M” and
“IG-1B” denote pre-training with ImageNet-1M [35] and web Instagram-1B [51] datasets,
respectively. All methods (except MoCo v1 IG-1B) are pre-trained on IN-1M.

6 Discussion and Conclusion

This study focuses on learning representations with good discriminability and
transferability at the same time. The trade-off between these properties is firstly
observed by us via a temporal analysis. To explain this incompatibility, we ex-
plore the correlation between information-bottleneck trade-off and our observed
trade-off, and reveal the over-compression phenomenon. Moreover, we investigate
how and why the InfoNCE loss can alleviate the over-compression, and further
present the contrastive temporal coding method. Our method successfully make
discriminability and transferability compatible. Remarkable transfer learning
performances are also achieved. We hope that this work can arouse attentions to
the transferability of representations in the conventional supervised learning tasks.
In the future, we will explore the existence of over-compression on other popular
tasks, e.g., self-supervised learning, object detection and large-scale pre-training.
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