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1 Analysis of End-to-End Object Detector

We choose Sparse-RCNN [10] as our baseline for FSOD and there are six heads.
We first pre-train a model on MS COCO 14 train dataset where only the anno-
tation of base classes are provided, and then conduct the analysis on MS COCO
14 val dataset with 60 classes.

For each proposal, the detector degrades at one head when the matching cost
between the prediction and groundtruth annotation is larger than the cost at the
previous head. In practice, when the prediction is degraded at the current pro-
posal, we observed that the ground truth annotation will be assigned to the pre-
diction of another proposal after bipartite matching. As such, for the convenience
of implementation, for each ground truth annotation, we count one prediction
degradation when the assigned proposal after bipartite matching changes. For
each annotation, the maximum total number that a detector degrades is then 5
when there are in total 6 heads.

Meanwhile, for each annotation, purely counting the total times of degrading
is not enough. For example, for the cases where a detector degrade once, e.g.,
[a,b,b,b,b,b] and [a,a,a,b,b,b] where a,b denote the index of assigned proposal,
the former means the detector performs better in concentrating on the detected
objects. As such, we specifically assign the fine grained value for the following
cases:

– For [a,b,b,b,b,b] and [b,b,b,b,b,a], we set the degrading times as 0.2.
– For [a,a,b,b,b,b] and [b,b,b,b,a,a], we set the degrading times as 0.6.
– For [a,a,a,b,b,b], we set the degrading times as 1.
– For [a,b,c,c,c,c] and all of its permutation variants (e.g., [a,c,c,c,c,b], [c,c,c,c,a,b]),

the degrading times is 1.2.
– For [a,a,b,b,b,c] and all of its permutation variants, we set it as 1.6.
– For [a,a,b,b,c,c], we set the degrading times as 2.
– For [a,b,c,d,d,d] and all of its permutation variants, we set it as 2.5.
– For [a,a,b,b,c,d] and all of its permutation variants, we set it as 3.
– For [a,a,b,c,d,e] and all of its permutation variants, we set it as 4.
– For [a,b,c,d,e,f] and all of its permutation variants, we set it as 5.

For Fig. 1(b), we first calculate the total times that the detector degrades for
each groundtruth annotation and then average them among all annotations for
each class. From Fig. 1(b), for the class which achieve high AP, the total times
that the detector degrade is generally low.

Besides the analysis on MS COCO 14, we observed similar trend on the
model trained on MS COCO 17 (provided by Sparse-RCNN github repo).
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2 Approach Summary and Future Direction

2.1 Approach summary

CoCo regularization aims to facilitate the adaptation of end-to-end object de-
tectors for new classes in few-shot finetuning. It first A) applies supervised con-
trastive learning among object encodings to make the detector can concentrate
on the detected objects. By comparing CoCo-RCNN and alternative methods
(Table 3 Row4−7) with baseline (Table 4 Row1), the performance is improved as
the encodings are more discriminative. Secondly, since the proposals in end-to-
end object detectors do not have spatial priors (i.e., anchor box), to calculate
the contrastive loss, CoCo regularization B) includes a specific strategy to prop-
erly select positive and negative encodings for each class, which serves two pur-
poses: B1) To avoid interfering the training of end-to-end detector, we use the
groundtruth assigned to predictions {fh

d (o
h
n)}

NP
n=1 at each head as reference. The

assignments at each head are calculated dynamically (Line242−246) and are essen-
tial for training while manually setting consistent assignment hurts the training
clearly (line488−492, Table 3 Row1,2). B2) To avoid confusion cases where the
assigned labels for one proposal at different heads are inconsistent, at h-th head,
we use assigned labels at (h, h − 1)-th heads and Eq.(2-3) as a selection crite-
rion, whose benefits is discussed in Table 3 Row4−7. As illustrated in Fig.2(b),
oh
n is included in CoCo regularization while oh+1

n is not since the assigned la-
bels have confusion. Lastly, since the proposal vectors are class-irrelevant and
the model is difficult to concentrate on objects at lower heads, we also embed
class-relevant information by adding each of the class encodings on a sub-group
of proposal vectors. Eq.(3) includes false-negative cases when only Eq.(2) is used
(Line564−575) and improves training efficiency. However, Eq. (3) is only necessary
for large-scale training.

2.2 Adaptation to tiny objects

Applying CoCo regularization can achieve better detection precision for both
small and large objects. However, detecting small objects is commonly challeng-
ing since small objects have lower resolution resulting in less distinctive regions.
In addition, they can be deformable or overlapped by other objects. Then, it is
hard for the correlation module fh

a to generate discriminative object encodings.
As such, less encodings of the small objects can be selected, and the performance
gain by CoCo-RCNN in detecting large objects nAPl is more clear than the gain
for nAPs.

Regarding small object detection (e.g., LVIS), an object can be better de-
tected when more background/contextual information is included [5]. DCNet [4]
sets a distillation framework to make the model more aware of the context while
TIP [7] designs a transformation invariant module to make the network robust
to deformable instances, leading to higher nAPs. As such, we can adopt ideas
in [2, 4, 7] to set regularization to improve the performance. We can also expand
the bbox of the predicted proposal or use ViT [3] backbone to have a more
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context-aware representation. Furthermore, we can set less constraint in select-
ing object encodings for small objects (e.g., Eq.(3) with lh(n, t) ≤ lh−1(n, t)−∆
where ∆ > 0) and include more object encodings for small objects in CoCo
regularization.

3 Experimental Study Details

3.1 Datasets

We follow the protocol defined in the TFA [11]. For an K-shot object detection
task, k annotations for each class are provided. From TFA, a random set of
annotations for novel classes are pre-selected by specifying the random seed.
Then, k annotations for each base classes are also selected. As such, the model
is finetuned on KNC annotations where NC = |Cnovel ∪ Cbase|.

The annotations for each class is selected by specifying the random seed. To
avoid bias in data selection, under the same base-novel partition of one dataset,
we repeat the experiments (runs) multiple times. The annotations used for fine-
tuning provided in different runs vary from each other while the adapted models
are then evaluated the on the same test set. Under each partition, we do 10 runs
and report the averaged value.

3.2 Baseline model selection

As mentioned in the related work, there are three popular choices of the end-
to-end object detector frameworks, Detr [1], Deformable Detr [12], and Sparse-
RCNN [10]. For both Detr and Deformable Detr, they use cross-attention mech-
anism to obtain object encodings for each of the proposal encodings. Instead, the
Sparse-RCNN uses dynamic instance interaction module, which first extracts a
pooled feature from feature maps through RoI pooling and then applies dynamic
convolution to calculate object encodings. Within the dynamic convolution, the
value of convolution kernels depends on the proposal encodings. In contrast,
within Faster-RCNN, the pooled feature is then processed by a fixed convolu-
tion blocks to obtain the object encodings where the FSCE [9] then minimizes
the SupCT loss on the object encodings.

For an end-to-end object detector, the objective is to model the relationship
between the proposal encoding and the features extracted from image feature
maps. For our CoCo-RCNN, we specifically study how to make the detector con-
centrate on the previously detected objects. Then, we choose to use supervised
contrastive learning and keep the object encodings concentrated by increasing
the discriminability. Then, one future work is to provide more effective regu-
larization by including other perspective. We also notice the FSCE [9] makes
modification on SupCT [6] while they only aim to extract discriminative fea-
tures. In this way, we do not utilize the pooling characters in Sparse RCNN
but we hope our constantly concentrated encoding regularization can provide a
general solution to the representation learning of end-to-end object detectors.
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3.3 Regarding Class Encoding

As mentioned in Section 3.1, the finetuning set within each run is sampled from
the union of base and novel classes. As such, in CoCo-RCNN, given the post-
processed class encodings {sc}c∈Cnovel∪Cbase

, to detect objects for each image,
we first randomly split all proposal vectors into |Cnovel ∪ Cbase| groups without
overlapping. Then, for each group, a class encoding is added to each of the
grouped proposal vectors.

As indicated in Table 5, though the split of proposal vectors are random,
the variance induced in the final detection performance is quite small. As such,
during evaluation, for each run, we randomly split the proposal vectors before
detecting one image and we only perform detection for each image once.

3.4 Ablation study on Constantly Concentrated Encoding

In Table 3, we summarize the performance between different regularization meth-
ods. The hard-deepest and hard-lowest force label-prediction assignment across
all heads to be consistent, they in effect directly change the way that the end-
to-end object detector used to calculate detection losses at each heads. However,
the detection losses are kept in the other alternatives.

1) Compared with the baseline (Row1 in Table 4), by encouraging the model
to focus on the previously detected regions, the performance can be generally
improved. However, the performance gain from distillation is the smallest.
2) Meanwhile, for the fair comparison between the alternative contrastive and
our full method, we still use the same sampling strategy of object encodings at
the first head as our full method.

3.5 Ablation study on the full method

In Table 4, we summarize the ablation study of our full method and use “2nd-6th
heads”, “Class Encoding” and “Negative’ as three components.

“2nd-6th heads” specifically indicates the supervised contrastive learning
across heads. When the “Class Encoding” is not added, we can only sample
object encodings from the 2nd-6th heads to calculate SupCT loss. When the
“Class Encoding” is checked, we sample the object encodings from all heads.

“Class Encoding” indicates adding class encodings to the proposal vectors.
When the class encoding is checked while “2nd-6th heads” is not, it means we
only add the “Class Encoding” to the proposal vectors and we still finetune the
detector using the vanilla detection losses.

“Negative” means sampling object encodings for the SupCT loss calculation.
From the table, we can see that including the negative object encodings can
improve the detection precision and mitigate the inefficient training due to the
limitation of pairs during SupCT loss calculation.
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4 Comparison with other methods

In this paper, we mainly study the regularization needed in end-to-end object
detector training (large-scale training and few-shot finetuning). With the con-
stantly concentrated encoding regularization, we can achieve clear performance
gain w.r.t. the finetuning baseline. We also compare our method with a few
popular finetuning-based adaptation method and perform fair comparison.

Besides, we notice the recent work DefRCN [8] has achieved significant per-
formance improvement on few-shot object detection. DefRCN differs from our
method as it uses a different feature backbone as well as a different detection
framework.

DefRCN employs the two-stage object detection framework, e.g., Faster-
RCNN, and uses ResNet-101 (without FPN) as backbone. When the FPN is
not added, the detector generate a pooled feature from ‘C4’ (the feature maps
after the penultimate convolution blocks) and then feeds the pooled feature into
the last convolution block to generate an object encoding (denoted as ‘C4’).
When the FPN is added, the detector obtains the pooled features from the fea-
tures after FPN (denoted as ‘FPN’). The pooled feature, serving as an object
encoding, will then be fed into the detection module. Then, before pre-training
the object detector, we first initialize the ResNet-101 using imagenet-pretrained
model. However, the FPN is still trained from scratch.

As an FPN is trained from scratch, the FPN can easily overfit to the detection
of base objects. The pooled feature can be used to detect base objects perfectly
but may fail in detect novel instances, which will hurt the adaptation perfor-
mance. In contrast, when FPN is excluded, all of the parameters used to extract
object encodings are updated from the values in the imagenet-pretrained mod-
els. As the model has been pretrained to classify the instances of novel classes,
the pooled feature is discriminative for novel classes in nature and the pooled
feature can be less overfit to the base object instances.

Table S1. K-shot classification accuracy on MS COCO.

Method
1-shot 5-shot 10-shot

base novel base novel base novel

ImageNet-pretrained 32.8 44.7 47.5 63.1 52.3 65.4
FPN 72.5 35.0 80.5 52.3 82.8 54.8
C4 50.8 32.8 63.9 50.0 66.2 53.4

To demonstrate it, we study the extracted object encodings to analyze the
backbones. For each backbone, we first use the groundtruth annotations to ex-
tract the object encodings for each instance. To note, the instances are from
the union of finetuning set and evaluation set. For the objects in finetuning set,
we average their encodings for each class as the class prototype. For the object
encodings from evaluation set, we then calculate the classification accuracy.
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We follow the protocol of few-shot classification and perform prototype clas-
sification directly, i.e., for each encoding of the evaluation set, we calculate its
cosine similarity with each of the class prototypes where the class with highest
similarity is assigned to the sample. As the test set show imbalanced distribution,
e.g., too many samples for class ‘people‘ and only a few instances for ‘sandwich’,
we first calculate the classification accuracy for each class and then obtain the
averaged accuracy among classes.

We use MSCOCO as evaluation dataset to better show the effect of overfit.
As shown in Table S1, we classify each encoding in the evaluation set among 80
classes and then average the classification accuracy for base class set and novel
class set separately. The backbone model we used are the Resnet-101 pretrained
on imagenet (denoted as ImageNet), the Resnet-101 with FPN after pre-training
on base classes (denoted as FPN), the Resnet-101 after pre-training on base
classes (denoted as C4). For “ImageNet-pretrained”, we only use the ResNet-
101 w/o FPN and use the same way to extract object encodings as C4.

As shown in Table S1, after training, the classification accuracy on novel
classes drop. However, the FPN clearly overfits to the base classes: the base
classification accuracy by FPN is much higher than that of C4 while the novel
classification accuracy for C4 and FPN are similar. Since the FPN has been
overfitted to the base classes, the efficiency of few-shot adaptation on novel
classes is hurt. As such, we fail to see clear performance gain when the Gradient
Decoupled Layer (GDL) is applied to FPN during adaptation.

Thus, even though we value the idea behind GDL, we still think the perfor-
mance gain of GDL is closely related to the case when the FPN layer is excluded.
Then, all parameters involved in extracting object encodings are tuned from a
pre-trained model and is not severely overfit to the base objects. In contrast,
even though our method underperforms DefRCN, we value our method as it
specifically targets on the adaptation of end-to-end object detectors and study
the regularization needed in finetuning. In this way, CoCo-RCNN help learn a
better representation of object encodings and it is even useful under large-scale
training.
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