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Abstract. Few-shot object detection (FSOD) aims to detect objects
of new classes and learn effective models without exhaustive annota-
tion. The end-to-end detection framework has been proposed to gener-
ate sparse proposals and set a stack of detection heads to improve the
performance. For each proposal, the predictions at lower heads are fed
into deeper heads. However, the deeper head may not concentrate on the
detected objects and then degrades, resulting in inefficient training and
further limiting the performance gain in few-shot scenario. In this pa-
per, we propose a few-shot adaptation strategy, Constantly Concentrated
Encoding across heads (CoCo-RCNN), for the end-to-end detectors. For
each class, we gather the encodings which detect on its object instances
and then train them to be discriminative to avoid degraded prediction. In
addition, we embed the class-relevant encodings to the learnable propos-
als to facilitate the adaptation at lower heads. Extensive experimental
results show that our model brought clear gain on benchmarks. Detailed
ablation studies are provided to justify the selection of each component.

Keywords: End-to-end detector, constantly concentrated encoding.

1 Introduction

Deep convolution neural networks have achieved impressive successes in general
object detection. Learning a deep detector typically requires sufficient annotated
training instances, and the detection performance is far from satisfactory when
the annotated samples are extremely limited. As such, few-shot object detection
has been studied to mimic human vision system which has remarkable ability to
learn the object visual appearance for new (novel) classes with a few instances.

Recently, the end-to-end framework [1,42,32] has been proposed for object
detection. Different from the conventional methods [28,29,12,14,13] which gen-
erate dense proposals from the anchor boxes, the end-to-end framework sets a
few learnable proposal vectors to generate sparse proposals for each image dy-
namically. Each vector is learned as part of the model parameters and serves as
a proposal encoding to predict an object encoding in one detection head. Then,
similar to the Faster-RCNN [29], a detection module is set for classification and
bounding box regression while the prediction from different proposals are sup-
posed to be diverse. To improve the performance, a small number of heads are
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Fig. 1. (a) Within an end-to-end object detector, the prediction from a lower head can
be fed into a deeper head. For each proposal, the prediction can be improved (green)
when the detector concentrates on the object that has been detected or degraded
(red) when it is distracted by other patterns . (b) Comparison between the detection
precision and the total number of times that an object detector degrades at each head.
For each class, the precision can be high when the detector can keep concentrating on
the previously detected object instances and improve the performance (more details
can be found in Supp.). (c) Comparing with conventional finetuning baseline, we add
constantly concentrated encoding regularization to make the detector concentrated.

stacked. As shown in Fig. 1(a, green), the predictions from lower heads are fed
into deeper heads for refinement. In this way, all heads can make predictions and
the detection from deeper heads are closer to the groundtruth on average [1,32],
i.e., more accurate classification and higher intersection over union (IoU).

Though the detection precision of a deeper head is generally higher, for each
proposal, as shown in Fig. 1(a, red), the prediction can still degrade. For example,
given a proposal, the detection at lower heads may be close to one object in
image, the prediction can then be distracted by other patterns in deeper heads.
Meanwhile, by breaking down the detection scores for each class separately, as
shown in Fig. 1(b), when the detector can keep concentrating on the objects
in its input at each head, the detection can be refined constantly and the final
detection precision is high. As such, even if the end-to-end object detector has
achieved superior performance under large-scale training, adapting it for few-shot
novel classes is still challenging, as it is hard to maintain the detector constantly
concentrate on instances of novel classes in the data-hunger scenario.

As an end-to-end object detector makes sparse proposals to detect all object
instances over the full image, at each head, the object encodings are supposed
to be different from each other to avoid similar/overlapping predictions. Re-
cent work has observed that an adapted object detector can properly localize
novel instances [2,31], while a discriminative object encoding is important for
strengthening the detection results [32,42]. Then, at each head, to make the
model improve its input, i.e., the detection at the previous head, it is important
to make the detector concentrate on the class-relevant components and avoid
being distracted. Thus, for each proposal, the object encodings from all heads
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are supposed to be discriminative such that the classification is accurate and
consistent and the detection at each head can be refined continuously.

In this paper, as shown in Fig. 1(c), we propose CoCo-RCNN, a simple yet
effective strategy for few-shot adaptation, for the end-to-end object detectors.
We design the Constantly Concentrated Encoding (CoCo) regularization based
on the supervised contrastive learning [20], aiming to make the object encodings
discriminative and have high similarity with the groundtruth encodings of the
same class. Different from the conventional supervised contrastive learning which
performs augmentation through manipulation on the pixels, within the end-to-
end object detector where multiple heads are stacked, the object encodings from
different heads can be treated as the augmentation at feature-level. We use
Sparse-RCNN as our baseline and first pre-train it on the classes with abundant
annotated samples (base). Then, we adapt the base detector to novel classes
by finetuning on only a few examples as well as minimizing the CoCo loss and
detection losses. Meanwhile, as the proposal vectors are class-irrelevant and the
model is difficult to concentrate on objects at lower heads, we also embed class-
relevant information by adding each of the class encodings on a sub-group of
proposal vectors. The contributions of this paper are as follows:

– We propose CoCo-RCNN, a few-shot adaptation strategy for end-to-end
object detectors. At each head, for each proposal, the model is trained to
concentrate on the object detected at previous head when the training data
is limited.

– We design the constantly concentrated encoding loss, incorporating the su-
pervised contrastive loss to make the object encodings discriminative. To
encourage the detector to concentrate on object instances at lower heads, we
additionally embed class-relevant information to the learnable proposals.

– We use Sparse-RCNN as a baseline model, and show that our CoCo-RCNN
consistently achieves performance gain on PASCAL VOC and MSCOCO.
We also provide comprehensive ablation studies to justify the design of each
component and demonstrate its effect in large-scale training.

2 Related Work

Object detection methods with dense proposals, have been widely used
in many related tasks and the most representative method is Faster-RCNN [29].
Given the feature maps of a full image, a detector first uses the region proposal
network (RPN) [29] to generate dense proposals (∼ 105). Each proposal is paired
with an objectness score to indicate the possibility for the existence of objects.
Then, the proposals (∼ 1, 000) with high objectness scores are kept and used
to extract object encodings from the original feature maps through RoI pool-
ing [29]. Finally, the object encodings are used for detection, i.e., classification
and bounding box regression. As such, these methods are all termed two-stage
detectors. In practice, each proposal is predicted w.r.t. an anchor box while
each anchor box is determined by the spatial position, size, and aspect ratio.
Thus, a large number of anchor boxes are manually defined to densely cover the
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full image, resulting in heavy computation. To improve the detection speed and
training efficiency, methods such as YoLo [28] and SSD [26] have been proposed
to directly predict the class and location of objects from the image feature maps
in a single stage. However, all of the methods mentioned above need to generate
dense candidates (≥ 1, 000). Thus, the non-maximum suppression (NMS) [7] is
required to fuse the detection results and obtain clean & sparse predictions.

End-to-end object detection methods, in contrast, set a few learnable pro-
posals. Each proposal is represented as a vector and learned as part of the model
parameters. The representative methods include Detr [1], Deformable Detr [42],
and Sparse-RCNN [32]. Within a detection head, each proposal vector, serving
as a proposal encoding, is used to make one prediction. Typically, a correlation
module is set to connect each proposal encoding with the image feature maps and
extract an object encoding. The correlation modules include cross-attention [34]
and dynamic instance interaction [32]. The cross-attention module flattens the
feature maps into a set of vision encodings and measures the affinity scores
with the proposal encodings pair-wisely. For each proposal encoding, the visual
encodings with high attention scores are kept in the corresponding object encod-
ing. For Sparse-RCNN, instead, each proposal vector is paired with a learnable
bounding box (part of model parameters). Then, the dynamic instance interac-
tion will perform RoI pooling on the feature maps using the paired bounding
box and connect the pooled feature with the proposal encoding to predict an
object encoding. In this way, each proposal encoding is only compared with the
feature maps of a sub-region. As a result, Sparse-RCNN is more efficient than
other methods, e.g., variants of Detr [1]. For the sake of training efficiency and
low computational workload, we choose Sparse-RCNN [32] as our baseline.

The end-to-end object detectors are trained to generate sparse predictions
such that manual intervention including NMS is no longer needed. The predic-
tions by various proposals are supposed to be different such that all objects
appearing in the image can still be detected. To improve the detection precision,
multiple detection heads are stacked & cascaded where the predictions at lower
heads are used as inputs at deeper heads. To balance the computational workload
and performance, the number of heads is usually set as six for a fair compari-
son. For Sparse-RCNN, the object encodings and bounding boxes predicted by
the current head are used as inputs for the next head. For the convenience of
description, we omit description for bounding boxes but just mention that the
object encodings are reused as proposal encodings in the stacked heads.

Few-shot object detection (FSOD) learns to detect objects of novel classes
by only training on a few annotated instances (support). Different from the few-
shot classification which can directly compare the global image features [30,33,27,41,18],
FSOD is additionally supposed to localize the objects in images and distinguish
the objects from the background. The methods for FSOD are mostly developed
on the framework with dense proposals and can be roughly categorized into
meta-learning-based and finetuning-based.

The meta-learning-based methods aim to learn a class-agnostic meta-learner
and improve the detection performance by learning to align the support samples
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with the objects in testing images [9]. As the few support instances may be
of various viewpoints or shapes, how to effectively extract the discriminative
components and align the support with objects in test images is important. First,
given the support samples, re-weighting the image feature maps is an effective
strategy [19]. Then, FewX [6] obtains an attention-based meta-learner for RPN
such that the class-relevant proposals are generated for further detection. The
following works dig into this problem and propose attentive feature alignment
module [9], query-adaptive heterogeneous graph convolution [8] and fully cross-
transformer [10] to improve the performance. Meanwhile, Han et al. [11] propose
to exploit class semantic information to assist in FSDO. The meta-learning-based
method is a promising solution for transferring meta-knowledge from base classes
to novel classes, and has shown its strength in extremely few-shot cases (e.g.,
1-shot) on challenging datasets (e.g., MS COCO [25]).

The finetuning-based methods first obtain an initialization by pre-training
the object detector with sufficient base samples and then finetune the the model
a few support samples for novel classes. In this way, the finetuning-based meth-
ods aim to adapt a pre-trained model to novel classes efficiently, which has drawn
increasing attention thanks to its simplicity. Recently, TFA [35] has shown that
finetuning on a few data is a strong baseline. Then, by learning to detect ob-
jects from multiple scales, MPSR [39] has improved the performance further. In
addition, FSCE [31] builds upon TFA and improves the detection performance
by learning to obtain discriminative object encodings for FSOD. Different from
the previous methods, the end-to-end object detector applies multiple heads to
refine the detection progressively where our focus is to keep the detector con-
centrating on the detected objects during the refinement process to learn the
adapted model efficiently.

3 Preliminary

3.1 Learning-Task Formulation

In FSOD, we are first given a base dataset Dbase, including abundant amount
of annotated object instances from base classes Cbase. For each instance, the
annotation consists of a class label c, and a bounding box (bbox) u = (x, y, w, h)
in the image. An image may contain multiple (NT ) instances from different
classes, i.e., T = {(ct, ut)}NT

t=1. Then, we are given a novel set Dnovel and the
instances are from the novel classes Cnovel.

For an NC-way K-shot FSOD task, there are NC novel classes |Cnovel| = NC

and each class has K annotated instances. The class sets for base and novel are
disjoint, i.e., Cbase∩Cnovel = ∅. Following most finetuning-based methods [35,31],
we first pre-train our object detector on Dbase to obtain a base model and then
finetune the model on Dnovel for adaptation. Finally, we evaluate the adapted
model on a test set.
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3.2 End-to-End Object Detection

Conventional object detectors predict dense proposals w.r.t. each anchor box
and filter out the proposals with low objectness scores. In contrast, the end-to-
end framework sets a few learnable proposals to generate sparse predictions. As
illustrated in Fig. 2, a proposal is represented as a proposal vector and learned
as part of model parameters. Given the image feature maps, a proposal vector
serves as a proposal encoding and is used to generate one object encoding for
the image within one head, which is further used for detection. To improve the
performance, multiple (NH) heads are stacked and learned jointly.

In detail, at the h-th head where h ∈ {1...NH}, a d-dim proposal encoding
ph
n ∈ Rd is fed into a correlation module fh

a (·, ·) to generate an object encoding
oh
n = fh

a (p
h
n, ff (I)) ∈ Rd. The feature maps for image I is extracted by ff (·)

and the n ∈ {1...NP } indexes the encodings. The object encoding is then used
for classification and bbox regression through a detection module fh

d (·). When
multiple heads are stacked, the object encoding oh

n at the h-th head is directly
used as the proposal encoding for the (h+1)-th head, i.e., ph+1

n = oh
n. Then, only

{p1
n}

NP
n=1 in the first head are model parameters (learnable proposal vectors).

During training, at h-th head, we calculate the matching costs between the
predictions {fh

d (o
h
n)}

NP
n=1 and annotated instances T pair-wisely. The matching

cost between t-th instance and n-th prediction lh(n, t) is a weighted sum of costs
for classification and localization. Then, we find the bipartite matching such that
the average matching cost is minimum and assign the labels to each prediction.
We usually setNT < NP , and onlyNT predictions at each head are assigned with
the object instances (positive) while the rest (NP -NT ) predictions are supposed
to be background. For example, t = mh(n|I) means the t-th instance in image I
is assigned to the prediction originating from the n-th proposal vector p1

n while
t > NT means the assigned label is background.

4 CoCo-RCNN for few-shot object detection

In this section, we present the proposed CoCo-RCNN to adapt the pre-trained
base detector to novel classes efficiently and effectively. We first review the super-
vised contrastive learning in Section 4.1 and then explain the detailed strategy
for constantly concentrated encoding regularization in Section 4.2. During adap-
tation, the CoCo loss is jointly minimized with the detection losses.

4.1 Supervised Contrastive Learning

Supervised contrastive learning (SupCT) is proposed to extract discriminative
encodings for image classification. Given a batch B with NB images, i.e., |B| =
NB , each image B(i) where i ∈ I ≡ {1...NB} is used as an anchor. Then, a
positive index set I ′

i ⊂ I \ {i} is selected, such that all images B(j) for j ∈ I ′
i

are of the same class as B(i). Then, the SupCT loss is defined as

LSupCT (B) =
∑
i∈I

−1

|I ′
i|

∑
j∈I′

i

log
exp(zi · zj/τ)∑

a∈I\{i} exp(zi · za/τ)
(1)
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Fig. 2. (a): A correlation module is set to connect the proposal encoding with image
feature maps and obtain an object encoding for detection. (b) When multiple heads are
stacked/cascaded, the object encodings at each head are used as proposal encodings
in the next head, our method will sample the object encodings whose prediction are
similar as the prediction of input and then perform supervised contrastive learning. We
use the assigned labels after bipartite matching as references and specifically highlight
oh
n and oh+1

n for better illustration.

where zi ∈ Rd is the encoding for image B(i) after l2-normalization and τ is
a temperature hyperparameter used to rescale the affinity score. Minimizing
LSupCT (B) trains the feature extractor to maximize the similarity between fea-
tures of the same class (positive pairs) while pushing away the features from
different classes (negative pairs). Usually, to ensure at least one positive pair
can be built for each anchor image in the batch, we set B as large as possible or
perform data augmentation to each sample in the batch. As noted in [20], then,
the SupCT is in effect performing pair-wise comparison where the disagreement
between the two encodings in a positive pair is induced by the variation between
image instances and difference resulting from augmentation.

4.2 Constantly Concentrated Encoding

At the h-th head, the fh
a models the correlation between a proposal encoding ph

n

and the image feature maps ff (I). The features with high co-attention is kept
in the object encoding oh

n. When the prediction fh−1
d (oh−1

n ) has been close to
an object T (t) in the image, i.e., t = mh−1(n|I) and t < NT , as ph

n = oh−1
n ,

under the Constantly Concentrated encoding (CoCo) regularization, the detector
is trained to still concentrate on the discriminative component of object T (t),
such that the prediction fh

d (o
h
n) can be improved w.r.t. fh−1

d (oh−1
n ). Different

from the classification task, being close to an object means both the confidence
score for classification and the IoU with annotated boxes for localization are
high. As a discriminative object encoding is important to improve detection
result [32,42] while no spatial prior is available for learnable proposals, CoCo
regularization applies supervised contrastive learning and designs an encoding
selection strategy correspondingly to build positive and negative pairs.
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Given an image I, we first use the annotated bboxes T to extract groundtruth
encodings {gt}NT

t=1 from the feature maps ff (I) through RoI pooling [7,15]. Then,
for each gt, we gather the positive object encodings that detect the object T (t)
for calculating LSupCT . As the costs in bipartite matching considers both clas-
sification and localization, we use the matching results as a reference to sample
object encodings. In addition, we need to avoid confusing cases when two objects
are of high overlapping or the detector is distracted by other patterns (detailed
discussion is provided in Section 5.3). Thus, we jointly consider the matching
results from two neighboring heads.

For gt where t ≤ NT , at the h-th head where h > 1, we first check the
prediction from the proposal encodings, i.e., the labels assigned at the (h−1)-th
head, and find the ph

n where t = mh−1(n|I). Then, the object encoding oh
n will

be treated as positive if T (t) is also assigned to its prediction fh
d (o

h
n), i.e.,

mh(n|I) = mh−1(n|I) (2)

or matching cost between T (t) and fh
d (o

h
n) is smaller, i.e.,

lh(n, t) < lh−1(n, t) (3)

After checking all heads, we have the object encodings Pt for gt and each encod-
ing in Pt is of class ct. In practice, the condition in Eq. (2) has been enough for
FSOD. However, as the bipartite matching is obtained when the global matching
cost is minimum, it is still possible that lh(n, t) < lh−1(n, t) though mh(n|I) ̸= t.
As such, we avoid false negative cases by considering Eq. (3) and it is useful in
large-scale training. As mentioned above, we ignore the object encoding oh

n that
mh−1(n|I) ̸= mh(n|I) and (mh−1(n|I) − t)(mh(n|I) − t) = 0 as it is confusing.
Thus, it is possible that none of Eqs. (2) and (3) is met at some heads, and we
have |Pt| ≤ NT (including Pt = ∅, i.e., no object encodings selected for gt).

Though the matching results can help the selection at h-th heads where
h > 1, the proposal vectors {p1

n}
NP
n=1 are not trained to be class-specific. Then,

the {o1
n}

NP
n=1 cannot be directly determined and the model may not be capable

to concentrate on relevant objects at lower heads. Thus, we add class encodings
to the learnable proposal vectors to embed class-specific information.

For the convenience of implementation, we directly crop the annotated in-
stances out of the few images used in finetuning and use a frozen ResNet-101 [16]
(pretrained on ImageNet [3]) to extract a visual feature for each instance. Then,
we average the visual features for each class c as class encodings. During adap-
tation, we also learn an MLP to post-process the class encodings such that the
dimension is the same as the proposal vectors, i.e., sc ∈ Rd. Then, for each class
c, we randomly select a subset of {p1

n}
NP
n=1 and add the encoding sc to each of

the selected proposal vectors. Thus, the object encoding o1
n will be selected in

Pt with gt when both m1(n|I) = t and the encoding added to p1
n is of class ct.

After gathering Pt for each gt from all heads, we calculate SupCT loss on
all selected encodings ∪NT

t=1{{gt}∪Pt}. In this way, comparing with the conven-
tional SupCT learning which directly performs augmentation on the low-level
image pixels, we perform augmentation at the feature-level for each gt. As the
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Table 1. Performance comparison on the PASCAL VOC dataset (nAP50).

Method Venue
Split 1 Split 2 Split 3

1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

YOLOv2-ft [36] ICCV’19 6.6 10.7 12.5 24.8 38.6 12.5 4.2 11.6 16.1 33.9 13.0 15.9 15.0 32.2 38.4

MetaYOLO [19] ICCV’19 14.8 15.5 26.7 33.9 47.2 15.7 15.3 22.7 30.1 40.5 21.3 25.6 28.4 42.8 45.9

Meta R-CNN [40] ICCV’19 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4 14.3 18.2 27.5 41.2 48.1

TFA-w/ fc [35] ICML’20 36.8 29.1 43.6 55.7 57.0 18.2 29.0 33.4 35.5 39.0 27.7 33.6 42.5 48.7 50.2

TFA-w/ cos [35] ICML’20 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8

MPSR [39] ECCV’20 41.7 - 51.4 55.2 61.8 24.4 - 39.2 39.9 47.8 35.6 - 42.3 48.0 49.7

CGDP+FSCN [23] CVPR’21 40.7 45.1 46.5 57.4 62.4 27.3 31.4 40.8 42.7 46.3 31.2 36.4 43.7 50.1 55.6

CME (MPSR) [22] CVPR’21 41.5 47.5 50.4 58.2 60.9 27.2 30.2 41.4 42.5 46.8 34.3 39.6 45.1 48.3 51.5

FSCE [31] CVPR’21 44.2 43.8 51.4 61.9 63.4 27.3 29.5 43.5 44.2 50.2 37.2 41.9 47.5 54.6 58.5

SVD (FSCE) [38] NeurIPS’21 46.1 43.5 48.9 60.0 61.7 25.6 29.9 44.8 47.5 48.2 39.5 45.4 48.9 53.9 56.9

FSOD-Up [37] ICCV’21 43.8 47.8 50.3 55.4 61.7 31.2 30.5 41.2 42.2 48.3 35.5 39.7 43.9 50.6 53.5

CoCo-RCNN 43.9 44.5 53.1 64.6 65.5 29.4 31.3 43.8 44.3 51.8 39.1 43.9 47.2 54.7 60.3

TFA w/ cos † [35] ICML’20 25.3 36.4 42.1 47.9 52.8 18.3 27.5 30.9 34.1 39.5 17.9 27.2 34.3 40.8 45.6

FSCE † [31] CVPR’21 32.9 44.0 46.8 52.9 59.7 23.7 30.6 38.4 43.0 48.5 22.6 33.4 39.5 47.3 54.0

Sparse-RCNN † 28.2 39.5 45.1 51.1 56.3 21.1 30.5 34.1 37.6 43.2 21.4 30.8 37.5 43.7 49.6

CoCo-RCNN † 33.5 44.2 50.2 57.5 63.3 25.3 31.0 39.6 43.8 50.1 24.8 36.9 42.8 50.8 57.7

More comparison can be found in Supp.. †: The performance averaged from multiple runs.

groundtruth encodings {gt}NT
t=1 are obtained through RoI pooling instead of cor-

relation module, we set a linear layer to process {gt}NT
t=1. Also, as the object

encodings are obtained from different heads, we also set a linear layer (projec-
tor) to process the object encodings for each head.

5 Experiment

5.1 Benchmark Datasets and Implementation Detail

PASCAL VOC consists of 20 classes where the class split for Cbase and Cnovel
are 15 and 5 separately. The base training data Dbase are from PASCAL VOC
07+12 trainval sets [4,5]. The novel set Dnovel are randomly sampled where
K = {1, 2, 3, 5, 10}. Following [35], we conduct experiments on three standard
base-novel class partitions which are marked as {1, 2, 3}. In each partition, for
fair comparison, we use the same sampled novel instances and report the AP50

for novel detections (nAP50) on PASCAL VOC 2007 test set [4].
MS COCO is derived from COCO14 [25] consisting of 80 classes where the
split for Cbase and Cnovel are 60 and 20. The 20 classes is in common with
PASCAL VOC. The train set Dbase and Dnovel are from COCO14 train set. We
set K = {1, 10, 30} and report scores of novel detection on COCO 14 val dataset.
Implementation Details. We build CoCo-RCNN based on Sparse-RCNN and
use ResNet-101 with FPN [24] as backbone to extract feature maps. For fair
comparison, we set NH = 6 and all heads are stacked/cascaded. (Class encod-
ings) Following the standard few-shot finetuning pipeline, we also include a few
instances of base classes during finetuning. Thus, we gather class encodings for
each class from Cbase ∪ Cnovel. (Background encodings) The GPU memory usage
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Table 2. Performance comparison of novel detection on the MS COCO dataset.

Method Venue
1-shot 10-shot 30-shot

nAP nAP nAP50 nAP75 nAPs nAPm nAPl nAP nAP50 nAP75 nAPs nAPm nAPl

MetaYOLO [19] ICCV’19 5.6 12.3 4.6 0.9 3.5 10.5 9.1 19.0 7.6 0.8 4.9 16.8

MetaDet [36]† ICCV’19 7.1 14.6 6.1 1.0 4.1 12.2 11.3 21.7 8.1 1.1 6.2 17.3

Meta R-CNN [40] ICCV’19 8.7 19.1 6.6 2.3 7.7 14 12.4 25.3 10.8 2.8 11.6 19.0

TFA w/ fc [35]† ICML’20 2.9 9.1 17.3 8.5 - - - 12.2 22.2 11.8 - - -

TFA w/ cos [35]† ICML’20 3.4 9.1 17.1 8.8 - - - 12.1 22.0 12.0 - - -

MPSR [39] ECCV’20 2.3 9.8 17.9 9.7 3.3 9.2 16.1 14.1 25.4 14.2 4.0 12.9 23.0

FSCE [31]† CVPR’21 11.1 - 9.8 - - - 15.3 - 14.2 - - -

CME [22] CVPR’21 15.1 24.6 16.4 4.6 16.6 26.0 16.9 28.0 17.8 4.6 18.0 29.2

TIP [21]† CVPR’21 16.3 33.2 14.1 5.4 17.5 25.8 18.3 35.9 16.9 6.0 19.3 29.2

DCNet [17]† CVPR’21 12.8 23.4 11.2 4.3 13.8 21 18.6 32.6 17.5 6.9 16.5 27.4

FSOD-UP [37] ICCV’21 11.0 - 10.7 4.5 11.2 17.3 15.6 - 15.7 4.7 15.1 25.1

SVD (FSCE) [38] NeurIPS’21 12.0 - 10.4 4.2 12.1 18.9 16.0 - 15.3 6.0 16.8 24.9

SVD (MPSR) [38] NeurIPS’21 11.0 - 10.6 4.4 11.5 17.1 16.2 - 15.9 4.6 14.6 26.6

CoCo-RCNN† 5.2 16.4 26.5 16.5 5.4 13.4 27.8 19.2 32.9 21.0 5.8 18.1 32.8

The full table can be found in Supp. †: The performance averaged from multiple runs.

for object detection is huge, i.e., each GPU can hold at most four images, and
the end-to-end object detector is characterized by generating sparse proposals.
Thus, the encoding pairs built in each batch is limited, which is different from the
related literature [31,20] (e.g., 10242 pairs per batch) and results in less efficient
training. To mitigate this issue, we include the object encodings of background,
i.e., low classification score for all classes and low IoU with all objects in the im-
age, into the CoCo regularization. These object encodings are only used to build
negative pairs in SupCT loss and none of them is used as an anchor. (Multiple
runs) Finally, for each base-novel class split, we average the performance over 10
runs and report the average detection score. More details can be found in Supp.

5.2 Comparison with State-of-the-Arts

As shown in Table 1, we compare CoCo-RCNN with the finetuning-based adap-
tation methods. For fair comparison, we first show the baseline performance
by directly finetuning Sparse-RCNN on the novel instances without any regu-
larization. Benefiting from the multi-head structure, the Sparse-RCNN baseline
outperforms the Faster-RCNN baseline TFA [35].

FSCE [31] improves detection precision by learning discriminative encodings
(obtained through RoI pooling) and also use the IoU between proposals and
annotated bbox to modify the SupCT loss. Instead, we perform comparison on
object encodings and each encoding is output by the correlation module without
explicit spatial prior. With our CoCo regularization, for each proposal, the object
encoding in deeper head is trained to still concentrate on the object detected at
lower heads. In this way, we can improve the adaptation performance clearly and
keep achieving clear gain upon a stronger baseline. Meanwhile, as the end-to-end
object detector can predict high-quality bboxes and the correlation module can
generalize to new classes, in Table 2, CoCo-RCNN achieves high score in nAP75

and the challenging 1-shot scenario.
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Table 3. Ablation study on the constantly concentrated encoding regularization.

Method
VOC 10-shot MS COCO 10-shot MS COCO 30-shot

nAP nAP50 nAP75 nAP nAP50 nAP75 nAP nAP50 nAP75

hard-deepest 13.0 16.8 14.1 2.7 7.5 1.4 3.1 5.2 3.0

hard-lowest 18.5 25.0 20.3 3.4 9.2 1.9 6.7 10.0 6.5

distillation 43.1 59.4 46.5 15.9 28.1 15.9 16.8 28.0 17.4

contrastive 44.5 62.1 48.2 17.0 29.2 16.8 18.7 30.4 19.4

iou-supct 46.0 61.8 51.0 17.7 29.6 17.8 20.0 31.0 19.8

input-supct 43.3 60.2 47.7 17.3 30.0 17.2 19.1 30.7 19.9

CoCo-RCNN 47.2 65.5 51.5 18.1 30.4 18.2 20.6 33.8 21.4

5.3 Ablation on Constantly Concentrated Encoding

Different from the conventional object detectors which directly predict the class
and location for each object, the end-to-end object detectors in effect improve the
detection for each proposal across heads. Thus, we set constantly concentrated
encoding regularization to prevent the object encodings from being distracted.

At each head, an object encoding will be selected as positive when the as-
signed labels before and after the head is consistent. In this way, for each pro-
posal, our loss serves as a soft regularization where we do not force the model to
make consistent prediction at all heads. Then, we discuss relevant alternatives
for the regularization and summarize the results on Table 3.

– (hard-deepest) We assign the same label for predictions originating from the
same proposal and use the matching results at the last head to assign labels.

– (hard-lowest) Similar to hard-deepest, we use the bipartite matching result
at the first head as reference to assign labels for all heads.

– (distillation) At each head, the predictions are used as soft-labels to supervise
the previous head. Thus, we minimize the kl-divergence loss between the
probability distribution of h-th head and (h− 1)-th head (for classification)
and the l1 loss between the predicted bboxes (for localization).

– (contrastive) We perform contrastive learning among the sampled object
encodings where only encodings in Pt∪{gt}, i.e., corresponding to the same
object, will be treated as positive to each other.

– (iou-supct) Use contrastive proposal encoding (CPE) proposed in FSCE [31]
for the constantly concentrated encoding regularization.

– (input-supct) At each head, use the label assigned to the prediction at the
previous head to select the object encoding in Pt for gt.

As the learnable proposals are class-irrelevant, it is hard for the object en-
codings at lower heads to detect discriminative components of objects. Thus, the
predictions by the lowest head and the deepest head vary, resulting in disparate
label assignments. Then, when we naively use the same label-prediction assign-
ment across all heads, the precision drops clearly (hard-deepest, hard-lowest).

Instead of doing the hard-label assignment, distillation adds soft labels to
the original detection losses. At each head, we observe the l1 loss for localization
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is small and the main contribution is thus from the classification. In particular,
the classification logits can indicate the relationships between classes. Then,
combining one-hot labels and soft labels will help with the classifier training.

Thus, the model could be confused and the object encodings is less discrim-
inative. However, since we have limited positive pairs within each batch, it is
rare to have different object instances of the same class within one batch. As
such, the features can still be trained to be discriminative, and the precision
drop w.r.t. the full method is not huge.

For iou-supct, the CPE differs from SupCT by using the IoU to reweight the
loss for each anchor feature. Then, in CPE, the loss from an anchor encoding will
contribute less to the detector update if the IoU is low. In FSCE, as the proposal
encodings are extracted by RoI pooling the image feature maps, the IoU between
the proposal and groundtruth bbox can thus be directly calculated. However,
for the end-to-end object detectors, each object encoding is obtained through a
correlation module and no spatial prior is available, we thus use the predicted
bbox as a reference to calculate the IoU as weights. Then, replacing SupCT with
CPE does not result in significant difference. After all, as the object encodings
are not directly pooled from the feature maps, the referred bbox may not be
precise. Meanwhile, for the selected positive object encodings, we observed that
the IoU of the predicted bbox is high. Thus, CPE is similar to that of SupCT.

Lastly, input-supct adjusts the sampling strategy by only using the label
assignment at the current head for selection. Then, the object encodings at lower
heads will always be selected. However, the encodings at lower heads may not
be discriminative in nature, and enforcing CoCo loss on those object encodings
may confuse the model, e.g., the two objects with high overlapping (a child is
playing with a dog) can only be distinguished at deeper heads. Besides, when
the object encoding is distracted by objects of different classes, applying CoCo
loss will also be risky, e.g., for the same proposal, the ‘chair’ is initially detected
at lower heads but the encodings at deeper heads are distracted by ‘couch’. In
addition, as the object encoding at the h-th head could succeed in detecting
large objects but may fail in finding tiny instances, our sampling strategy in
effect dynamically determines the object encodings used for comparison.

5.4 Discussion

Ablation study of our full method is summarized in Table 4. Compared
with baseline (Row1), adding class encodings to proposal vectors (Row2) or per-
forming SupCT among object encodings from the 2nd to 6th heads (Row3) can
clearly facilitate the final detection, while combining them can further improve
the detection precision (Row4). As the pairs to be sampled from each batch are
limited, we thus include negative object encodings of background in the regu-
larization, which mitigates the training inefficiency. By comparing the anchor
feature and the background encodings during the network training, the object
encodings can be more discriminative and we are thus capable to improve the
performance. To note, even though each proposal vector p1

n is added with an
encoding of class c, p1

n is not trained to predict the objects of class c specifically.
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Table 4. Ablation study of the full method.

2nd-6th Class
Negative

VOC 10-shot MS COCO 10-shot MS COCO 30-shot

heads Encoding nAP nAP50 nAP75 nAP nAP50 nAP75 nAP nAP50 nAP75

45.0 58.1 48.9 13.5 22.7 13.6 16.3 26.3 16.8

✓ 42.3 61.2 45.8 14.9 24.9 15.3 17.3 28.3 17.9

✓ 45.2 63.5 49.2 16.8 28.4 16.8 19.2 31.1 19.7

✓ ✓ 47.0 65.3 51.0 17.4 29.4 17.4 20.1 32.6 20.6

✓ ✓ 46.2 64.5 50.8 17.6 30.2 17.4 19.9 32.7 20.7

✓ ✓ ✓ 47.2 65.5 51.5 18.1 30.4 18.2 20.6 33.8 21.4

Table 5. Multiple runs for class encodings

Run 1 2 3 4 5

VOC 10-shot 65.5 65.3 65.4 65.5 65.5
MS COCO 30-shot 20.6 20.6 20.9 20.4 20.5

Table 6. Ablation study of projector

Project Separate Shared

VOC 10-shot 65.5 64.0
MS COCO 30-shot 20.6 19.8

After all, through self-attention [34,32], the discriminate components shared be-
tween two classes can benefit each other, e.g., cats and dogs have four legs.

During testing, we randomly assign the proposal vectors for each class. As
we have 300 learnable proposal vectors, each class encoding is added to at least
3 (10) proposal vectors for MS COCO (Pascal VOC). However, as compared in
Table 5, the overall performance is stable.

Large-scale object detection. Besides the FSOD task, our constantly concen-
trated encoding can also benefit large-scale object detection. As the parameters
are completely trained from scratch, we do not add class encodings on the pro-
posal vectors and the object encodings are only sampled from the 2nd to 6th
heads. As shown in Fig. 3(a), the detection AP at early checkpoints grows faster
and the final detection performance is also improved from 46.3 AP to 47.5 AP.
Meanwhile, as the bipartite matching is performed for each head separately,
for a proposal whose prediction at h-th head is assigned to t-th instance, i.e.,
mh(n|I) = t and t ≤ NT , its prediction at (h+1)-th head can be assigned to the
background though the prediction is closer to that instance, i.e., mh(n|I) > NT

and lh(n, t) < lh−1(n, t). Thus, including Eq. (3) can contribute 0.8 AP gain.

Deep supervision, i.e., supervising the prediction at each head separately, is
important for end-to-end detectors [1]. As shown in Fig. 3(b), it is also necessary
for few-shot finetuning. With deep supervision, the lower detection heads can also
be tuned to adapt to the novel classes such that the object encodings are lower
heads can learn to concentrate on the novel object instances. However, when
deep supervision is removed, performance by the deepest head drops significantly.
Furthermore, we vary the number of heads in the end-to-end object detector and
retrain the model on VOC and MS COCO. As summarized in Fig. 3(c), when
fewer heads are set in the framework, the adaptation precision is even worse. It
might because the gradient from deeper heads can also benefit the adaptation of
lower heads. As such, when fewer heads are set, the precision is compromised.
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Fig. 3. (a) Testing curve on COCO17 (large-scale). (b) Detection precision at each
head of an adapted six-head model. (c) Detection precision by detectors with different
number of stacked heads.

Projectors are the linear layers set to map the object encodings to a common
feature space such that the SupCT loss can be calculated. As the object encod-
ings are sampled from all heads, we set a separate projector at each head. Then,
as shown in Table 6, we observed that the detection score will drop a bit when we
share the parameters across all projectors. Even though a few more parameters
are introduced, sharing the parameters will assume that the object encodings
will exactly be in the same space. Instead, setting separate sets of parameters
will be more flexible. However, we can still see that the object encodings are
similar to each other as the performance drop is not significant.

6 Conclusion

In this paper, we have proposed CoCo-RCNN, an adaptation strategy of end-
to-end object detectors for FSOD. As a degraded prediction at each head may
result in inefficient adaptation when the training data is limited, we design the
constantly concentrated encoding regularization. We use the label assignments
at neighboring heads as references to gather object encodings, and then per-
form supervised contrastive learning to make them discriminative. In this way,
the detector is trained to keep concentrating on the objects that have been
detected and constantly improve the detection precision. Experiments on two
datasets demonstrate the effectiveness of CoCo-RCNN. Detailed ablation study
is provided to compare the potential variances of CoCo regularization and ours
also benefits the large-scale training. In addition to make the encodings at each
head discriminative, the relationship between encodings of different heads will
be studied in the future to further explore the strength of end-to-end detectors.
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