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7 Supplementary Material

In Section 7.1 we provide a description of the meta-learning algorithm and in Sec-
tion 7.2 we explain in detail how we overfit starting from meta-learned initializa-
tions. We motivate our architecture choice in Section 7.3 and show the influence
of L1 regularization in Section 7.4. Additional ablation studies on the influence
of quantization bitwidth and the generalization potential of meta-learned initial-
izations are shown in Section 7.6 and Section 7.7 respectively. A further runtime
comparison between our method, JPEG and SOTA RDAEs is presented in Sec-
tion 7.8. In Section 7.9 we present a complete overview of the hyperparameters
used in the di↵erent stages of the compression pipeline. Finally, we provide ad-
ditional qualitative examples comparing our method to JPEG and JPEG2000
in Section 7.10 and Draco in Section 7.11.

7.1 Meta-Learning Algorithm

Meta-learned Initializations for Implicit Neural Representations Algorithm 1 is
an adapted version of the algorithm presented in [48]. We modify the notation
to match ours and change the objective to image regression instead of signed
distance function regression. Generally, the algorithm consists of two loops, the
outer loop (lines 7-15) and the inner loop (lines 11-13). The outer loop index i is
denoted as a superscript, whereas the inner loop index j is denoted as a subscript.
The outer loop is executed for a predefined number of iterations n. First of all,
we sample an image xi from the data distribution. We then define a coordinate
vector p with a coordinate grid of the same resolution as the image xi. We
initialize the inner loop parameters �

i

0 to the current outer loop parameters ✓.
For i = 1 this is just random initialization, afterwards these are the meta-learned
parameters. We start the inner loop on line 9. For k iterations we compute the
MSE loss between the image xi and the output of the INR parameterized by
the inner loop parameters �

i

j
. On line 13 we perform a gradient update of the

inner loop parameters. ↵ contains the learning rates for the inner loop gradient
update. A simple choice is using the same static learning rate for all parameters
in �

i

j
. The power of meta-learning is that we can also meta-learn the learning

rate of the inner loop, thus ↵ is an optimization variable just like ✓. We can take
this even a step further by meta-learning a learning rate for every individual
inner loop parameter and every step j. This variant is referred to by the authors
[48] as a per parameter per step learning rate type 5. We are e↵ectively learning
k times as many learning rates as model parameters. We use the Hadamard
product on line 13 to denote that the product between the learning rates in ↵

and the gradient is performed componentwise. The subscript j of ↵ denotes that
we have di↵erent learning rates in each step j.

After k iterations of the inner loop, we recompute the loss for the inner loop
parameters of the last step. On line 15 we perform a gradient update of the
meta-learned model parameters and the learning rates ↵. This is a gradient of

5 https://github.com/vsitzmann/metasdf

https://github.com/vsitzmann/metasdf
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Algorithm 1 MetaSiren (modified version of MetaSDF[48] Algorthim 1)

1: Required Inputs:
2: D: dataset for meta-learning
3: ↵init: initial learning rates for inner loop
4: procedure trainInitialization(D,↵init)
5: Randomly initialize ✓
6: ↵ ↵init

7: for i 2 [1, n] do
8: Sample training image xi ⇠ D
9: Get coordinates p = coord(xi) 2 [�1, 1]W⇥H

10: Initialize �i

0  ✓, L 0
11: for j 2 [0, k � 1] do
12: L MSE(f

�
i
j
(p),xi)

13: �i

j+1  �i

j � ↵j �r�
i
j
L

14: L MSE(f
�
i
k
(p),xi)

15: ✓,↵ (✓,↵)� �r(✓,↵)L
16: return ✓,↵

Algorithm 2 Overfit INR starting from a meta-learned initialization

1: Required Inputs:
2: x: the image to overfit
3: p: coordinate grid at desired resolution
4: ✓0: meta-learned initialization
5: ↵: meta-learned learning rates
6: procedure overfitMeta(x,p, ✓0,↵)
7: for j 2 [0, k � 1] do
8: ✓j+1  ✓j � ↵j �r✓jMSE(f✓j (p),x)

9: ✓  ✓k
10: ✓?  argmin✓ L(x, f✓(p))
11: return ✓?

gradients: backpropagation is applied to the computation graph of the inner
loop that itself contains the inner loop gradient updates. We continue on line 8
by sampling the next image and repeat the process. After all outer loops have
finished, we return the meta-learned weights ✓ and learning rates ↵.

7.2 Overfitting from Meta-Learned Initializations

At the beginning of the overfitting phase, we make use of parameter-wise learning
rates obtained from meta-learning. Basically, we just run the inner loop once
which gets us already close to the final image in just k = 3 steps as shown in
Algorithm 2. We then continue optimizing with Adam. The momentum terms of
the Adam optimizer are uninitialized at this point. We have found that linearly
increasing the learning rate in a warmup phase of 100 epochs prevents an initial
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Fig. 10: Comparing the meta-learned approach evaluated on Kodak with and
without a warmup phase in the beginning of the training. We achieve better
performance at higher bitrates when using a warmup phase.

degradation of reconstruction quality and even improves final performance at
higher bitrates (see Fig. 10).

7.3 Number of Layers and Hidden Dimension

Important architecture choices when using MLP based networks, are the num-
ber of hidden layers and the number of hidden units. Given an MLP, depth or
width both directly influence the number of parameters and indirectly impact
bitrate. In other words, there are two ways of scaling up the network. We ex-
amine the rate-distortion performance for various combinations of hidden units
(M 2 {32, 48, 64, 96, 128}) and hidden layers ({2, . . . , 8}) in Fig. 11 using our
basic approach and � = 10�6. We can see from both plots that increasing the
number of layers eventually leads to diminishing returns: The bitrate keeps in-
creasing while the gain in PSNR is small. The flattening for higher numbers of
hidden layers is even more pronounced at the lower bitwidth b = 7. The quan-
tization noise is stronger here and with increasing depth the noise might get
amplified and limit the performance. We conclude that rate-distortion perfor-
mance scales more gracefully with respect to the width of the model. We do
however notice as well that the lowest setting of 2 hidden layers is typically
outperformed by a network with fewer hidden units and more layers.

7.4 Impact of L1 Regularization.

In this experiment we try to verify whether L1 regularization has a beneficial
e↵ect on performance. We train with the default parameters starting from ran-
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Fig. 11: Comparing compression performance of models with the number of hid-
den layers (hl) varying between 2-8 and quantization bitwidths of b = 7 or b = 8
bits.

dom initializations and vary � within [0, 10�4].
In Fig. 12 we observe that a value of � = 10�5 has better performance at higher
bitrates than lower choices for �. The performance improvement shows as a re-
duction in bitrate which supports the claim that the L1 regularization can lead
to a reduction in entropy. Increasing, the regularization strength to � = 10�4

restricts the weights too much, resulting in worse performance than � = 10�5.
Thus, L1 regularization can help to reduce entropy, but needs to be combined
with a modification in architecture size to achieve a good rate-distortion tradeo↵.

7.5 Post-Quantization Optimization.

We compare our meta-learned approach for di↵erent post-quantization optimiza-
tion settings. Fig. 13 shows the performance di↵erence evaluated on Kodak. We
see that AdaRound and retraining applied on their own lead to a consistent
improvement. The best choice throughout the bitrate range is however to apply
the methods in conjunction.

7.6 Influence of Quantization Bitwidth

We show the influence of bitwidth on the rate-distortion performance in Fig. 14
for the meta-learned approach and in Fig. 15 for the basic approach. For the
meta-learned approach 7-bit is the best choice for both datasets. For the ba-
sic approach however, 8-bit quantization outperforms lower bitwidths. On the
Kodak dataset the di↵erence between 7- and 8-bit quantization is quite small
nevertheless. We also show the unquantized performance of the 4 MLPs with
variying number of hidden units as dashed horizontal lines. We see that for a
bitwidth of 8 we can almost reach unquantized performance for the majority of
configurations.
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Fig. 12: Rate-distortion performance for di↵erent L1 regularization parameters
� evaluated on the Kodak dataset.
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Fig. 13: Comparison of QAT, AdaRound and the combination of both to basic
quantization on the Kodak dataset.

7.7 Generalization of Meta-Learned Initializations

We want to show that the meta-learned initializations are able to generalize
to out-of-distribution images, even if the meta-learning dataset contains only
similar images. To this end, we minimally crop and resize Kodak images to the
same resolution and aspect ratio as CelebA (178⇥218) and then compress them
using meta-learned initializations obtained from CelebA. In Fig. 16 we show that
the meta-learned approach still outperforms the basic approach.
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Fig. 14: Comparision of di↵erent quantization bitwidths for the meta-learned

approach. The PSNR achieved by the unquantized models is shown by the dashed
horizontal lines. Note that these are not rate-distortion curves and are only
supposed to show the distortion introduced by quantization.
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Fig. 15: Comparision of di↵erent quantization bitwidths for the basic approach.
The PSNR achieved by the unquantized models is shown by the dashed horizon-
tal lines. Note that these are not rate-distortion curves and are only supposed
to show the distortion introduced by quantization.

7.8 Further Runtime Comparison

In this paper we typically train the models until full convergence, hence we
optimize for the best rate-distortion performance. To show that our method can
be tuned for fast runtime, we compare the encoding/decoding runtime (in [s])
with JPEG and Xie et al [58] in Tab. 1, under the constraint that the rate-
distortion performance at least matches JPEG. Thus, we trade-o↵ performance
with runtime.
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Fig. 16: Generalization experiment: Using meta-learned initializations trained
on CelebA evaluated on (cropped and resized) Kodak images. The meta-learned
initializations provide enough generalization capability to improve compression
performance also on out-of-distribution images.

7.9 Detailed Training Hyperparameter Overview

In this section we provide a complete overview of all hyperparameters. We also
mention details specific to the training procedure in the respective subsection.

Image Compression Hyperparameters

Architecture. We summarize the default architecture hyperparameters in Ta-
ble 2. We typically evaluate our method for several choices of the hidden di-
mension M . For Kodak and CelebA images at full resolution we use M 2
{32, 48, 64, 128} and M 2 {24, 32, 48, 64} respectively. For Kodak images at half
resolution (2x scale) we use M 2 {8, 16, 32, 48} and also reduce the number of
input frequencies to L = 12. For Kodak images at quarter resolution (4x scale)
we use M 2 {4, 8, 16, 32} and further reduce the number of input frequencies to
L = 10.

Meta-Learning the Initializations. In Table 3 we list the default values of the
hyperparameters for meta-learning the initializations. We use a learning rate
schedule that halves the learning rate when no improvement has been made
in the last (10 = patience) validations. For validation we use a subset of 100
images sampled from the validation set of the respective dataset, in our case
CelebA or DIV2K. We compute the validation loss by running the inner loop
optimization for each image in the validation subset. The fact that computing
the validation loss involves inner loop training is the reason why we limit the
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JPEG Xie [58] Ours Ours*
Encoding 0.0061 2.22 4.49 0.542
Decoding 0.0023 5.69 0.664 0.722

Table 1: Comparison of average encoding and decoding speeds in [s] on Kodak.
For INRs we show the time at 0.175 bpp where JPEG is outperformed in terms
of PSNR in all cases. All methods use the same hardware. INR encoding runs
on GPU. Everything else, including decoding with INRs runs on CPU. Xie [58]
only supports CPU inference for encoding and decoding according to the authors.
Note that half of our decoding time is entropy coding. Ours* (w. meta-learning)
reaches the performance of JPEG approximately 10x faster than Ours (no meta-
learning). JPEG is clearly the fastest method, but we can outperform Xie [58],
given that the encoding device has a GPU. We deliberately show decoding time
for CPU because GPUs are less common on the end-user device and it makes
the timings more comparable to Xie [58] and JPEG.

Architecture Hyperparameters
Description Value
Hidden layers N 3
Activation function sin(30x)
Input encoding Positional with � = 1.4
Input frequencies L 16 (Kodak), 12 (CelebA)

Table 2: Default architecture hyperparameters.

Meta-Learning Hyperparameters
Description Value
Outer loop initial learning rate � 5 · 10�5

Outer loop batch size 1
Outer loop optimizer Adam [32]
Epochs 30 (DIV2K), 1 (CelebA)
Inner loop initial learning rate ↵init 10�5

Learning rate type per parameter per step
Inner loop steps k 3
Steps until validation 500
LR schedule patience 10
LR schedule factor 0.5

Table 3: Default hyperparameters for learning the initializations.

validation set size to 100. When we train the initializations on CelebA we train
for 1 epoch. When using the DIV2K dataset we train for 30 epochs because it
is a significantly smaller dataset. We finally, save the initialization that achieved
the lowest validation loss overall.

Overfitting. The default hyperparameters for the overfitting stage are shown
in Table 4. If not mentioned otherwise we use these hyperparameters for all
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Overfitting Hyperparameters
Description Value
Initial learning rate 5 · 10�4

Optimizer Adam [32]
Epochs 25000
L1 regularization � 10�5

Steps until validation 1
LR schedule patience 500
LR schedule factor 0.5
Early stopping epochs 5000

Table 4: Default hyperparameters for overfitting the INR.

Quantization Hyperparameters
Description Value
Bitwidth 7 (Meta-Learned), 8 (Basic)
Retraining epochs 300
Optimizer Adam [32]
Retraining learning rate 10�6

AdaRound iterations 1000
AdaRound regularizer 10�4

Bitstream coding arithmetic coding

Table 5: Default hyperparameters for quantization, post-quantization optimiza-
tion and bitstream coding.

experiments. In particular, we do not use L1 regularization for experiments at
reduced resolution. Since we are overfitting, we validate on the training image
itself. We reduce the learning rate by a factor of 0.5 if the loss has not improved
during the last 500 epochs. Note that 1 epoch equals 1 optimizer step, in other
words, one training batch contains all pixels of the image we overfit. We train for
25000 epochs to make sure every architecture and configuration we test has the
chance to reach convergence. As to be expected, smaller models typically reach
peak performance faster. We stop training if the loss has not improved in the
last 5000 epochs to prevent unnecessary computation resource use. In the end,
we return the parameters of the model that has achieved the lowest loss during
overfitting.

Quantization, Post-Quantization Optimization & Entropy Coding. In Table 5 we
show the default values for the quantization and bitstream coding related stages.
We emphasize that per default we use the combination of AdaRound and QAT.

3D Shape Compression Hyperparameters We use a very similar training
procedure for the 3D shape compression as for image compression. For images
we simply use the pixels of one image as the batch used for overfitting. For 3D
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however, we need to choose a number of 3D point samples, in our case 100000,
for which we first compute the ground truth distance to the surface and then use
them to fit our model. We use a subset of 10000 points as a batch for training.
Overall, we train for 500 epochs with an initial learning rate of 5 · 10�5 and
the same learning rate schedule as for images. For 3D shape compression we do
not use L1 regularization. We use the same architectures as for Kodak, namely
M 2 {32, 48, 64, 128} and L = 16 input frequencies. The overfitted models are
quantized to 8 bit and we then optimize the weights using 2000 iterations of
AdaRound and 50 epochs of retraining with a learning rate of 10�7.
For the Draco baseline we call the encoder with a certain bitwith to quantize
the mesh, in particular, the ”qp” flag. We vary the bithwidth within [5, . . . , 12].
We use the highest compression quality setting ”cl” of 10. To make sure we
only encode a raw mesh, we set the skip flag for TEXTURE, NORMAL and
GENERIC.

7.10 Additional Image Examples

We show additional compression examples to compare our method to the codecs
JPEG and JPEG2000. We first show more images at the lowest bitrate, i.e.,
using the lowest hidden dimension, where our method is most competitive to
JPEG2000: In Fig. 17 we evaluate on KODAK using a model with M = 32
and in Fig. 18 we evaluate on CelebA using a model with M = 24. We visually
confirm a clear advantage over JPEG for all images and similar performance
as JPEG2000 at this bitrate. Moreover, we show examples at higher bitrates,
i.e., using larger hidden dimensions, in Fig. 19 (Kodak) and Fig. 20 (CelebA).
While our method maintains an advantage over JPEG, JPEG2000 outperforms
our approach with an increasing advantage towards higher bitrates, where the
di↵erence is most apparent in the rendering of fine details.

7.11 Visualization of compressed 3D shapes

We demonstrate the e↵ectiveness of INRs for 3D shape compression by vi-
sual comparison in Fig. 21. The SDFs learned by the INRs in general render
a much smoother surface than the mesh compression algorithm Draco, while be-
ing very storage e�cient. Draco introduces significant surface noise making the
compressed shape very rough. The reduction of information for INRs is more
faithful in that the encoded shape is a simplified version of the original: The
smaller model with M = 64, that requires only roughly a quarter of the storage
of the model with M = 128, still looks very much like the original with certain
details smoothed out. This makes it visually much more pleasing than the rough
looking Draco compression, where the details are lost through surface noise.
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Fig. 17: Performance comparison on Kodak using a hidden dimension of M = 32
for all models.
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Fig. 18: Performance comparison on CelebA using a hidden dimension of M = 24
for all models.
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Fig. 19: Performance comparison on Kodak using a hidden dimensions of M = 48
(top), M = 64 (middle), M = 128 (bottom).
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Fig. 20: Performance comparison on CelebA using a hidden dimensions of M =
32 (top), M = 48 (middle), M = 64 (bottom).
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original Draco (7 bit) Draco (6 bit) Ours (M = 128) Ours (M = 64)

407.5 MB 2.2 MB 1.9 MB 57.0 KB 16.9 KB
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32.8 MB 283.0 KB 231.7 KB 54.8 KB 16.6 KB

Fig. 21: Visual comparsion of the mesh compression algorithm Draco compared
to our method applied to 3D shape compression. We compare 2 quantization
setting for Draco, namely 6 and 7 bit, and two hidden dimensions M = 64, 128
using our method. Our method shows a significantly smoother surface recon-
struction and better detail at similar or lower storage.


	Implicit Neural Representations for Image Compression

