
Supplementary Material for
LiP-Flow: Learning Inference-time Priors for Codec

Avatars via Normalizing Flows in Latent Space

Emre Aksan§1, Shugao Ma3, Akin Caliskan§2, Stanislav Pidhorskyi3,
Alexander Richard3, Shih-En Wei3, Jason Saragih3, and Otmar Hilliges1

1 ETH Zürich, Department of Computer Science
2 CVSSP, University of Surrey
3 Meta Reality Labs Research

Fig. 8. Random latent samples decoded for the frontal view. (Left) DAM re-
sults sampled from N (0, I). (Right) Our DAM-Flow variant with an unconditional
normalizing flow between the DAM-encoder and the standard Normal prior N (0, I)
(Sec. A). Before passing to the decoder, latent samples are first transformed to the
DAM-encoder’s (Q) space via z = F−1(z(p)). Our flow-based formulation yields a
much more expressive latent space, generating higher-quality samples with diverse ex-
pressions compared to the KL-based latent space.

This material includes this document and a video. We provide additional
results, qualitative evaluations, implementation details of the models and exper-
imental details. Finally, we provide our broader impact statement, in Sec. I.

A DAM with Unconditional Latent Flow

To evaluate the effectiveness of our flow-based prior formulation, we run an
ablation by ignoring the LiP-encoders. To this end, we tie a standard Normal
priorN (0, I) to the DAM-encoder (Q) via an unconditional normalizing flow and
compare this to the DAM trained via KL-D (see Fig. 9). We follow the same
formulation with LiP-Flow except that we use a standard Normal prior instead
of a conditional learned prior and an unconditional normalizing flow model F̃ .

§ This work was performed during an internship at Meta Reality Labs Research.

2 E. Aksan et al.

Fig. 9. DAM with uncondi-
tional latent flow. We replace
KL-divergence with our flow-based
latent formulation where the prior
distribution is a standard Gaussian
N (0, I) in contrast to the learned
prior in our main model LiP-Flow .

DAM-encoder Decoding Frontal Fitting

PSNR ↑ SSIM ↑ Geom ↓ PSNR ↑ SSIM ↑ Geom ↓

DAM 34.95 0.879 0.013 34.67 0.879 0.180

DAM-Flow 35.02 0.881 0.012 35.49 0.885 0.067

LiP-Flow-HMC 35.20 0.882 0.012 35.91 0.889 0.017

LiP-Flow-KPT 35.25 0.882 0.012 35.90 0.889 0.017

Table 6. DAM-Flow, DAM with unconditional latent flow. Introducing our
flow-based latent space formulation into the base model with a standard Gaussian
prior. We report reconstruction performance of the DAM-encoder and the inference-
time optimization performance with frontal-view targets on one subject.

z̄(p) = F̃ (z(q)), F̃ = f̃K ◦ · · · ◦ f̃2 ◦ f̃1, (1)

log pP (z
(q)) = log pP (z̄

(p)) + log

(
det

∣∣∣∣∂F̃ (z(q))

∂z(q)

∣∣∣∣) , (2)

where log pP (z̄
(p)) = logN (z̄(p);0, I) and z(q) is a latent sample from the

DAM-encoder (Q). Our DAM-Flow is conceptually similar to the LSGM [9]
in terms of learning an invertible mapping between the encoder space and a
standard Normal N (0, I). Different from [9], we use a normalizing flow network
instead of a continuous diffusion process to learn the mapping, and our encoder
(Q) still parameterizes a Gaussian. Moreover, we ignore the negative encoder
entropy term in the KL decomposition and the KL-D latent regularization term
LL (Eq. 4) in the training objective becomes − log pP (z

(q)). We find this for-
mulation to be more expressive than the base model even with the standard
prior. We show that it improves the base model’s reconstruction performance
both for training and optimization (see Tab. 6). The DAM-Flow’s reconstruc-
tion performance is on par with the DAM. However, it achieves significantly
better reconstructions in the inference-time optimization task when we fit latent
codes to single frontal-view images only. We also see that our learned conditional
prior is more favorable compared to the standard Gaussian prior.

In Fig. 8, we present samples generated by the base network DAM and our
variant DAM-Flow. We decode random samples from the standard Gaussian
prior N (0, I) for the frontal view. In our variant DAM-Flow, we first transform
the latent samples to the Q space via our latent flow function F such that
z = F−1(z(p)). Our modification to the base DAM network can be considered

LiP-Flow: Learning Inference-time Priors via Normalizing Flows 3

Models PSNR ↑ SSIM ↑ Geom ↓ PSNR ↑ SSIM ↑ Geom ↓
HMC-Encoder Decoding DAM-Encoder Decoding

(a) DAM n/a n/a n/a 36.05 0.893 0.015

(b) DAM-HMC Enc. 33.93 0.872 0.186 33.93 0.872 0.186

(c) DAM-HMC Reg. 34.16 0.872 0.248 n/a n/a n/a

(d) LiP-KL-HMC 34.39 0.876 0.146 35.79 0.890 0.018

(e) LiP-Flow-HMC 34.04 0.871 0.161 36.21 0.895 0.014

HMC Fitting w/o LL HMC Fitting

(a) DAM 31.00 0.853 0.742 31.65 0.858 0.676

(b) DAM-HMC Enc. 33.68 0.873 0.189 34.14 0.877 0.133

(c) DAM-HMC Reg. 34.28 0.881 0.158 34.58 0.882 0.159

(d) LiP-KL-HMC 33.73 0.876 0.121 34.36 0.881 0.090

(e) LiP-Flow-HMC 33.57 0.876 0.142 34.98 0.885 0.087

Frontal Fitting w/o LL Frontal Fitting

(a) DAM 35.32 0.888 0.312 35.16 0.888 0.212

(b) DAM-HMC Enc. 35.21 0.882 0.047 35.36 0.883 0.047

(c) DAM-HMC Reg. 36.20 0.894 0.049 36.28 0.895 0.057

(d) LiP-KL-HMC 35.96 0.891 0.045 36.08 0.892 0.039

(e) LiP-Flow-HMC 36.10 0.893 0.067 36.50 0.898 0.022

Masked Frontal Fitting w/o LL Masked Frontal Fitting

(a) DAM 32.30 0.867 0.770 32.38 0.867 0.604

(b) DAM-HMC Enc. 34.37 0.876 0.108 34.59 0.878 0.095

(c) DAM-HMC Reg. 34.89 0.883 0.152 35.17 0.886 0.149

(d) LiP-KL-HMC 34.93 0.883 0.094 35.17 0.885 0.071

(e) LiP-Flow-HMC 35.08 0.886 0.088 35.44 0.889 0.060

Table 7. Evaluations in HMC setting. Reporting average performance over 4 sub-
jects. (Left) We provide the forward-pass performance of the HMC-encoder as well as
the inference-time optimization results without using the latent likelihood LL (Eq. 10).
(Right) Results for the DAM-encoder’s forward-pass and inference-time optimization
with the latent likelihood. In the fitting tasks, we initialize the latent code with the
same latent sample we use for evaluating the HMC-encoder. Hence, the “HMC-encoder
Decoding” results denote the performance before running fitting.

minimal. Yet our approach yields more diverse and higher-quality samples. This
ablation shows that our flow-based latent formulation is an effective approach,
and our contribution is not only from learning a conditional prior, both of which
constitute a powerful means to solve our problem.

B Inference-time Optimization Ablations

In Tables 7 and 8, we provide ablations for inference-time optimization and the
latent likelihood term LL (Eq. 10). We evaluate all the models used in the main
paper in both the HMC (Tab. 7) and the 2D keypoint (Tab. 8) settings. The
“HMC-encoder Decoding” column in Tab. 7 reports the HMC-encoder’s forward
pass performance. More specifically, given a set of input HMC images, we esti-
mate a prior distribution via the HMC-encoder, and then decode its mean for
the frontal-view direction. Note that we use the same latent code to initialize
the fitting tasks. Hence, this evaluation provides the performance before opti-

4 E. Aksan et al.

Models PSNR ↑ SSIM ↑ Geom ↓ PSNR ↑ SSIM ↑ Geom ↓
KPT-Encoder Decoding DAM-Encoder Decoding

(a) DAM n/a n/a n/a 36.05 0.893 0.015

(b) DAM-KPT Enc. 33.50 0.866 0.142 33.50 0.866 0.142

(c) DAM-KPT Reg. 33.67 0.864 0.151 n/a n/a n/a

(d) LiP-KL-KPT 34.21 0.872 0.128 35.71 0.888 0.021

(e) LiP-Flow-KPT 33.72 0.863 0.150 36.22 0.895 0.014

KPT Fitting w/o LL KPT Fitting

(a) DAM 31.62 0.865 0.431 31.62 0.865 0.431

(b) DAM-KPT Enc. 33.91 0.873 0.126 33.96 0.873 0.119

(c) DAM-KPT Reg. 34.71 0.884 0.061 34.88 0.886 0.059

(d) LiP-KL-KPT 34.74 0.883 0.099 35.08 0.886 0.089

(e) LiP-Flow-KPT 34.79 0.884 0.063 35.55 0.891 0.053

Frontal Fitting w/o LL Frontal Fitting

(a) DAM 35.32 0.888 0.312 35.16 0.888 0.212

(b) DAM-KPT Enc. 34.74 0.874 0.060 34.75 0.874 0.059

(c) DAM-KPT Reg. 36.27 0.895 0.032 36.31 0.895 0.030

(d) LiP-KL-KPT 35.89 0.890 0.044 35.94 0.890 0.041

(e) LiP-Flow-KPT 36.46 0.897 0.029 36.53 0.898 0.025

Masked Frontal Fitting w/o LL Masked Frontal Fitting

(a) DAM 32.30 0.867 0.770 32.38 0.867 0.604

(b) DAM-KPT Enc. 33.94 0.869 0.106 34.16 0.870 0.085

(c) DAM-KPT Reg. 35.01 0.884 0.060 35.13 0.884 0.055

(d) LiP-KL-KPT 34.72 0.880 0.080 35.14 0.884 0.060

(e) LiP-Flow-KPT 35.09 0.885 0.071 35.45 0.887 0.054

Table 8. Evaluations in 2D key point setting. Reporting average performance
over 4 subjects. (Left) We provide the forward-pass performance of the KPT-encoder
as well as the inference-time optimization results without using the latent likelihood
LL (Eq. 10). (Right) Results for the DAM-encoder’s forward-pass and inference-time
optimization with the latent likelihood. In the fitting tasks, we initialize the latent
code with the same latent sample we use for evaluating the KPT-encoder. Hence, the
“KPT-encoder Decoding“ results denote the performance before running fitting.

mization. The same evaluation steps also apply to the keypoint setting (Tab. 8)
where we evaluate the models with the KPT-encoder expecting 2D keypoints.

When we decode the LiP-encoder samples without optimization, we observe
that the HMC- and the KPT-encoder trained via our flow-based latent formu-
lation performs poorly whereas the KL-based training achieves the best perfor-
mance. We think that this is due to the similarity assumption imposed by the
KL-divergence loss. It can be explained as a trade-off between the forward-pass
accuracy and the iterative fitting performance. While our flow-based formulation
yields a prior performing well in the iterative fitting, the KL-based formulation
works better in the forward-pass case. However, our proposed LiP-Flow achieves
a significant improvement when the latent code is optimized (see “HMC-encoder
Decoding” vs. “HMC Fitting” in Tab. 7 and “KPT-encoder Decoding” vs. “KPT
Fitting” in Tab. 8).

In both settings, we also see that using the latent likelihood in the optimiza-
tion objective is effective for all the models. While its contribution is limited in

LiP-Flow: Learning Inference-time Priors via Normalizing Flows 5

Fitting latent code and headset pose to HMC observations

Models PSNR ↑ SSIM ↑ Geom ↓

(a) DAM 28.54 0.828 1.131

(b) DAM-HMC Enc. 31.52 0.855 0.323

(c) DAM-HMC Reg. 32.93 0.860 0.237

(d) LiP-KL-HMC 33.66 0.869 0.144

(e) LiP-Flow-HMC 34.09 0.872 0.141

Table 9. Fitting both latent
code and headset pose. It is
a 6 DOF global transforma-
tion from the avatar’s reference
frame to the headset. In Tab. 2,
the headset pose is assumed to
be given.

the baseline models, the learned priors (i.e., Lip-KL and Lip-Flow) benefit the
most when the fitting targets carry less information.

We also provide iterative fitting results for the DAM baselines, namely the
“DAM-HMC Encoder” and “DAM-HMC Regressor” in Tab. 7 and the “DAM-
KPT Encoder” and “DAM-KPT Regressor” in Tab. 8. In both settings, both
baselines show improvements via iterative fitting. This suggests our proposed
inference-time optimization approach is necessary to optimize the performance
for all the models.

To make a direct comparison between the clean and noisy targets, we limit the
amount of information in the frontal-view targets by applying masks (Fig. 10).
We use the same set of target images and mask out the face except the mouth and
eye regions. Similar to the “Frontal-view Fitting” task (Tab. 4), the models have
access to the HMC images or the 2D keypoints as the driving signal depending on
the setting and the masked frontal views targets. Although the DAM improves its
reconstruction performance when the latent codes are optimized for the frontal-
view targets (“Frontal Fitting” in Tables 7 and 8), it degrades significantly on
the masked targets. This is inline with the HMC- and keypoint-fitting results.

In Tab. 9, we introduce headset pose as a source of noise to the HMC fitting
task (Tab. 2) and optimize both the latent codes and the headset pose parameters
simultaneously. The headset pose determines the alignment of the renderings
(i.e.predicted HMCs) to the observations.

Fig. 10. Ground-truth images in
left, right, and frontal views. We ap-
ply a mask on the frontal-view im-
ages to limit the amount of informa-
tion in the fitting task.

Finally, in our supplementary video, we provide optimization results with
noisy observations where we apply random perturbations to the headset camera
parameters. We show that our learned prior is more robust to noise, achieving
notably less jitter and more temporally coherent fitting results although we do
not apply any temporal regularizations.

6 E. Aksan et al.

Fig. 11. Latent space visualization in PCA (Left) Samples in the P space. (Right)
Same samples in the Q space after applying our latent transformation via flow F . For
a given HMC sample (color-coded), the HMC-encoder P predicts a prior distribution.
We visualize 100 latent codes sampled from the respective prior distribution, in total
1500 latent samples for 15 HMC inputs. The legend provides the variance of 100 latent
samples, namely the variance of the predicted prior distributionN (µ(p),σ(p)) per HMC
sample. Samples with neutral expressions result in lower variance whereas rare and peak
expressions cause higher variance in the latent space.

C Latent Space

Fig. 11 provides an extended version of the latent space visualization presented
in the main submission. We report the variance of the latent samples for every
HMC input sample. We also visualize corresponding HMC- and frontal-view
images for the samples with high and low variance. We see that our flow-based
latent formulation learns to assign larger variance to the inputs with rare and
peak facial expressions, quantifying the difficulty of the corresponding sample.
While the variances are much larger in the prior (P) space, they get smaller in
the Q space after our latent transformation F−1. We provide more results in our
supplementary video.

D Evaluating on Real HMC Images

We evaluate our model that is trained with synthetic HMC images on real HMC
images without applying any domain adaptation. We provide forward-pass re-
sults in Fig. 12. In the case of real HMC images, inference-time optimization
via differentiable rendering is not feasible due to the large discrepancies in light-
ing, background, and cameras. Our model still achieves promising results with
a forward-pass only.

E Qualitative Results

In Figures 14 and 13, we present qualitative results for both the HMC-view and
2D keypoint observations. For all the models, we optimize the latent codes via
iterative fitting and present the frontal-view decodings. We provide animated
flip-comparisons in our supplementary video.

LiP-Flow: Learning Inference-time Priors via Normalizing Flows 7

Fig. 12. Passing real HMC im-
ages to our model that is trained
on synthetic HMCs. Here we do
not apply inference-time optimiza-
tion and present forward pass results
(i.e.initial step only).

(e) LiP-Flow-KPT

ssim: 0.833 | psnr: 31.78 | geom: 0.076

(a) DAM

ssim: 0.801 | psnr: 27.93 | geom: 0.671

(c) DAM-KPT Regressor

ssim: 0.808 | psnr: 29.18 | geom: 0.330

(b) DAM-KPT Encoder

ssim: 0.828 | psnr: 30.30 | geom: 0.197

(d) LiP-KL-KPT

ssim: 0.805 | psnr: 27.55 | geom: 0.427

Ground-truthFitting Target

Fig. 13. Reconstruction from 2D keypoints. For all the models, we run inference-
time optimization with sparse facial landmarks as the fitting target (cf. Sec. 4.2). Note
that full face is reconstructed from only the 2D keypoints. We visualize (left) frontal-
view renderings of the optimized latent codes, (center) the difference between rendered
and the ground-truth images and (right) close looks for three regions. Compared to
the baselines, our model LiP-Flow (e) achieves lower geometry error and reconstructs
better textures, particularly with no errors around the chin and beard.

8 E. Aksan et al.

Fig. 14. Reconstruction from HMC views. For all the models, we run inference-
time optimization with partial HMC views as the fitting target (cf. Sec. 4.2). Note
that full face is reconstructed from only the HCM images. We visualize (left) frontal-
view renderings of the optimized latent codes, (center) the difference between rendered
and the ground-truth images and (right) close looks for two regions. Our model LiP-
Flow (e) achieves lower geometry error and reconstructs a sharper texture compared
to the baselines.

LiP-Flow: Learning Inference-time Priors via Normalizing Flows 9

Fig. 15. HMC-encoder block for an input HMC image. Number of output chan-
nels is provided in the figure.

F Architecture Details

In our work, we choose the Deep Appearance Model (DAM) of Lombardi et al.[6]
as the base model where the DAM-encoder (Q) and the decoder (D) networks
use the same architecture and hyper-parameters. We provide details for the
components introduced by us, namely the HMC-encoder (P) and the normalizing
flow model in the latent space (F). We use PyTorch [8] for training our models.

In terms of computational complexity, our latent flow requires 0.011 GFLOPs
to transform a latent sample. It is 1.736 and 0.004 for the HMC-Encoder and the
KPT-Encoder, respectively. For reference, the DAM-Encoder and the decoder
need 2.54 and 2.0 GFLOPs. The computational requirement for our flow network
and the KPT-Encoder are lower due to the lower dimensional inputs. We use
the fvcore4 library for computing FLOPs.

F.1 HMC-encoder

Our HMC-encoder consists of 3 separate convolutional blocks for each of the
HMC image H∗ ∈ R480×640. Fig. 15 illustrates a convolutional block. We use
convolutions with kernel size 4 and stride 2, followed by leaky relu activation
functions [7] with a negative slope of 0.2. The final output is reshaped into a
1024-dimensional hidden vector h∗.

After getting initial representations h∗ for 3 HMC views, we apply a 3-
channel attention operation to calculate the HMC representation vector h ∈
R1024 by following Eq. 5. We experimented with different alternatives such as
concatenation of all the representations h∗ and experimentally verified that the
attention mechanism yields the best performance. The attention weights WA ∈
R1024×3 are initialized with samples from N (0, 1). We finally estimate the mean
µ(p) ∈ R256 and the standard deviation σ(p) ∈ R256 by using linear layers
without any activation.

F.2 KPT-encoder

Our KPT-encoder takes 274× 2 dimensional keypoint inputs, which is mapped
to an initial hidden representation of size 512 by a dense layer. We then stack

4
https://github.com/facebookresearch/fvcore/blob/main/docs/flop_count.md

https://github.com/facebookresearch/fvcore/blob/main/docs/flop_count.md

10 E. Aksan et al.

Fig. 16. KPT-encoder. Input keypoints are of shape 274 × 2. We stack 4 residual
blocks with inputs and outputs of shape 512. The final representation h is a 1024
dimensional vector.

Fig. 17. Overview of our normal-
izing flow network F . We stack 4
flow steps following [4]. Each step con-
sists of activation normalization, lin-
ear and additive coupling layers. The
condition input h is passed to the ad-
ditive coupling layer at every level. h
corresponds to the HMC-view repre-
sentations (cf. Eq. 5.)

4 residual blocs consisting of batch normalization, ReLU, dense layers and a
dropout (Fig. 16). Finally, the 512 dimensional hidden representation is trans-
formed to the keypoint representation vector h ∈ R1024 by a dense layer.

F.3 Latent Flow

We use the normalizing flow architecture proposed in [5]. Our flow network
adapts building blocks of Glow [4] to 1D input where the invertible 1 × 1 con-
volution layer is replaced by a linear layer. We implement the normalizing flow
network in our LiP-Flow by using the nflows library [2]. More specifically, we
use ActNorm, LULinear and AdditiveCouplingTransform classes to implement
the fActNorm, fLinear and fAdditiveCoupling layers in Fig. 17. Hence, in Tab. 10,
we provide the hyper-parameters in the same interface with the nflows library.
Our choice of the internal network NN for the coupling layer is a residual block
conditioned on h (i.e., context) as in [5].

In our experiments, we find that the volume preserving additive coupling
layer [1] is essential. Our model LiP-Flow often does not converge with the
affine coupling layer.

G Dataset

We follow the same data preprocessing steps as in [6]. Each subject’s data con-
sists of ∼10,000 training frames where we have 40 camera views for each frame.
We evaluate models on a held-out set of ∼500 frames.

LiP-Flow: Learning Inference-time Priors via Normalizing Flows 11

Hyper-parameter Value

features 256

hidden features 1024

num layers 4

num blocks per layer 2

dropout probability 0

activation ReLU

batch norm within layers True

Table 10. Hyper-parameters of our normalizing flow network.

Our synthetic HMC dataset simulates the application conditions by applying
augmentations including different lighting, background and headset orientation.
The synthetic HMC images are generated by re-projecting the multi-view camera
images into virtual head-mounted camera views. More specifically, we sample
headset camera parameters and render the corresponding HMC view by using
the tracked mesh and the texture available in the multi-view dataset. We note
that the synthetic and real HMC images are not photometrically alike due to
the differences in the lighting conditions and camera properties.

H Experiment Details

H.1 Training

In our experiments, we use the same hyper-parameters for all the models as
in [6]. The batch size and the learning rate are 16 and 5e−4, respectively. We
allow models to train for 200, 000 steps. Different from [6], we implement early
stopping as we observe overfitting issues for all the models. Accordingly, if the
training loss on the held-out set does not improve for 20, 000 steps, training is
terminated. We use the following training objective (see Eq. 2):

L =
∑
v

λILI + λMLM + λLLL, (3)

In the training objective λI = 10, λG = 1. In the keypoint setting where we
use the KPT-encoder conditioned on 2D keypoints, we observe very high amount
of variance in the P space. To alleviate this, we introduce an additional loss
term to the training objective, penalizing the entropy of the predicted Gaussian
N (µ(p),σ(p)). Its weight is the same as the latent log-likelihood term λL. Note
that our LiP-Flow-KPT achieve the best results even in the absence of this prior
entropy regularization term.

Since the latent regularization term LL takes different forms in different
models, its corresponding weight λL is the most important hyper-parameter for
the training. We run a mini hyper-parameter tuning on subject 1 and use the
same set of values on the remaining subjects.

12 E. Aksan et al.

DAM We considered KL-divergence (KL-D) weights of 0.01 and 1. We also
followed an annealing strategy by starting it from 0.01 and increasing it until 1.
In our experiments, the reported model achieved the best performance with the
KL-D weight of 0.01 as in [6].
DAM-HMC-encoder Unlike DAM, this model performed best when trained
with the KL-D weight of 1.
DAM-HMC-Regressor In this setting, we use a pre-trained DAM-encoder
to get the training labels and train the HMC-encoder with the log-likelihood
objective. As it is the only training objective, we set the weight to 1.
LiP-KL We followed the same hyper-parameter setup with the DAM. LiP-KL
performs better when it is trained with KL-D weight 1.
LiP-Flow Since we replace the KL-D term with a latent likelihood, we use a
different set of weights. We consider weights 0.005, 0.0001, 0.0005. Our model
achieved the best performance when λL = 0.0005.

H.2 Inference-time Optimization (Sec. 4.2

We use the HMC-encoder to estimate a prior distribution which is then used for
initialization and likelihood evaluation of the latent code. The HMC-encoder is
available for all the models except the DAM (see Fig. 4). The prior distribution
is set to Normal N (0, I) for the DAM baseline.

In our evaluations, we assume that the camera parameters and the view-
vector are available. The latent code is decoded into 3D geometry and view-
dependent texture which are then rendered to either frontal view or HMC views.
Note that we decode the latent code 3 times for each HMC-view if the target
observations are the HMC images. We sample HMC camera parameters and the
corresponding view-vector from an HMC dataset.

The optimization objective (Eq. 10) consists of image reconstruction and
latent likelihood terms. For the masked frontal-view and partial HMC-view tar-
gets, the image loss is calculated on the visible regions only. After setting the
image loss weight to 1, a grid search is performed on the first evaluation batch
for the latent likelihood weight λL and the learning rate. We then report the per-
formance with the best performing hyper-parameters. The learning rate is deter-
mined from {0.01, 0.1, 0.5}. We use different sets for the latent likelihood weight
λL for the frontal-view and HMC-view targets, which are {0.01, 0.001, 0.0001}
and {0.1, 0.01, 0.001}, respectively. Since the fitting task is more challenging with
the HMC-view targets, we observe that the models rely on the prior more and
hence we run the hyper-parameter tuning with larger weights.

We use the ADAM algorithm [3] for optimizing the latent code. The pre-
trained decoder is frozen during the optimization. We run the optimization up
to 200 steps and stop if there is no improvement in terms of the fitting objective.
The average number of steps was < 200 for all models.

LiP-Flow: Learning Inference-time Priors via Normalizing Flows 13

I Broader Impact Statement

Since we aim to build photorealistic personalized avatars, our work constitutes
a potential risk for negative use cases such as fake content generation and iden-
tity theft. Although the current state of the art including our work has not yet
achieved photorealism, future research may achieve metric quality and produce
synthetic data that are indistinguishable from the real ones. While synthesis of
fake content is a problem for all generative models, our work as well as the prior
works on 3D avatars present another potential misuse. By driving an established
personalized avatar model, third parties may fake the identity. This can be pre-
vented by introducing a verification layer to the mobile telepresence pipeline via
retina-based bio-metric authentication systems.

References

1. Dinh, L., Krueger, D., Bengio, Y.: Nice: Non-linear independent components esti-
mation. arXiv preprint arXiv:1410.8516 (2014) 10

2. Durkan, C., Bekasov, A., Murray, I., Papamakarios, G.: nflows: normalizing flows in
PyTorch (Nov 2020). https://doi.org/10.5281/zenodo.4296287, https://doi.org/
10.5281/zenodo.4296287 10

3. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014) 12

4. Kingma, D.P., Dhariwal, P.: Glow: Generative flow with invertible 1x1 convolutions.
arXiv preprint arXiv:1807.03039 (2018) 10

5. Kolotouros, N., Pavlakos, G., Jayaraman, D., Daniilidis, K.: Probabilistic modeling
for human mesh recovery. In: Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision. pp. 11605–11614 (2021) 10

6. Lombardi, S., Saragih, J., Simon, T., Sheikh, Y.: Deep appearance models for face
rendering. ACM Transactions on Graphics (TOG) 37(4), 1–13 (2018) 9, 10, 11, 12

7. Maas, A.L., Hannun, A.Y., Ng, A.Y., et al.: Rectifier nonlinearities improve neural
network acoustic models. In: Proc. icml. vol. 30, p. 3. Citeseer (2013) 9

8. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E.,
DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai,
J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning
library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox,
E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32,
pp. 8024–8035. Curran Associates, Inc. (2019), http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf 9
9. Vahdat, A., Kreis, K., Kautz, J.: Score-based generative modeling in latent space.

Advances in Neural Information Processing Systems 34 (2021) 2

https://doi.org/10.5281/zenodo.4296287
https://doi.org/10.5281/zenodo.4296287
https://doi.org/10.5281/zenodo.4296287
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

	Supplementary Material for LiP-Flow: Learning Inference-time Priors for Codec Avatars via Normalizing Flows in Latent Space

