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A Appendix

A.1 Projection matrix

In typical cases, we usually have one LIDAR coordinate (3D), Nyjew camera
coordinate (3D) and Nyjew image coordinate (2D). First, a 3D point Xjigar =
(z,y,2,1) in the rectified LIDAR coordinate will be transformed to xgg)m =

(2',y',2',1) in the t'* rectified camera coordinate with a given matrix Mgi)

called extrinsic parameter. Next, B, = («',y',2',1) is projected to a point
(t) _

Ximg = (4,0,1) 7 in the ¢t image plane by
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Here, Ml(fl) is the projection matrix for t** camera. (fy, f,) is the focal length,

(cu, ¢y) is the location of optical center and be) denotes the baseline with respect
to reference camera (0 for nuScenes). In case of 0 < u,v < 1, the point will be

projected inside the image, otherwise outside.

A.2 Downstream task head.

Segmentation head. For the BEV segmentation task, we choose a group of
progressive up-sampling convolution-based semantic segmentation decoder heads
to deal with different elements from the map. Technically, a 1 x 1 Conv layer,
a batch norm layer with ReLU, and a bilinear upsample Conv layer together
form one up-sampling module. The decoder heads for predicting different map
elements use the exact BEV features after the BEV encoder.

A.3 Objective functions

There are two training objectives for our model, including the loss L4+ for object
detection, and the loss L4 for map elements segmentation:

L= ‘Ccls + Eseg- (2)
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Detection To handle the severe class imbalance with the nuScenes dataset,
following CBGS [2] we group the similar classes into the same sub-task head.
We use the focal loss for classification to alleviate the sample imbalance during
our training, and simply adopt L1 loss to regress the normalized box parameters.

The classification loss for a specific sub-task £f, is formulated as follows:

. 1 (1 - gcls)a log(gcls) if Yels = 1
[’cls = N ZycszYds B ~ . ’ (3)
(1 = yers)? (Ge1s)* log(1l — §egs) otherwise

where Y,.;s and N represents the set of pixels on the heatmap and the number of
objects in t-th group, respectively. 9.5 is the predicted classification probability
and y.s is the ground-truth. « and « are the parameters of the focal loss [1].
The 3D bounding box regression loss for a specific sub-task £! = could be
formulated as: -
[’Zow = Z ELl(AresaAres)a (4)

res€R

where Zr; is the predicted residual for the candidate center and A,.s is the
target ground-truth. R is the set of a box parameters, where x,y are the refine-
ment for the location, z stands for the height, [, h, w are the 3D bounding box
size, sin 6 and cos § are the rotation at yaw angel, v,, v, represent the velocities
of the object.

Therefore, the overall detection loss Lg4.; is formulated:

ﬁdet - Z ()\clsﬁils + )\bozﬁiox); (5)

t€Tdet

where Tg.: stands for the set of sub-task groups, Ays and Apo, represent the loss
weights for classification and box regression.

Segmentation We use 5 different segmentation heads for the static elements in
the BEV map, and the pixel-wise binary cross-entropy loss £L¢__ for t-th sub-task.

seg
The overall segmentation loss L4 is computed as follows:

Lseg: Z /\ieg‘aieg’ (6)

t€Tseqg

where Ty, represents the set of elements in the BEV map, A, is the loss weight
of the element.

A.4 Additional ablation studies

Image backbone. We first provide results with different image feature extrac-
tors in Table 1. It presents that the learning of 3D representation relies highly
on 2D representation.
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Table 1: Comparison of different image feature extractors.  means the image
feature extractor is initialized from a FCOS3D checkpoint. I means the image
feature extractor is initialized from a DD3D checkpoint.

Backbone |mATE| mASE| mAOE| mAVE| mAAE||mAP+ NDS?t
ResNet50 0.706  0.281  0.663 0964  0.249 | 0.332 0.380
ResNet101 || 0.714  0.275 0421  0.988  0.202 | 0.355  0.409
ResNet101 || 0.657  0.268  0.391  0.850  0.206 | 0.375  0.450
VoveNet} 0.582 0272 0.316 0.683 0.202 | 0.478 0.534

Table 2: Ablation on each component of Ego3RT. For the baseline, we set
Npoint = 1 (w/o “looking around”), eliminate adaptive attention mechanism
(w/o “adaptive looking”) and polarization (including both polarized grid and

polar attention).

Components mAPT NDSt
baseline 0.353 0.427
+Npoint = 3 0.360 0.433
+adaptive attention|| 0.365 0.437
+polarization 0.375 0.450

Which leads to improvement To further clarify, we summarize the effect of
each component in Table 2, including the choice of N,eint, adaptive attention
mechanism, polarized grid and polar attention. Importantly, each component of
our Ego3RT yields good gain.

A.5 Additional qualitative results

Visualization with video On our page, we simultaneously generate visualiza-
tion of dynamic object detection and static semantic segmentation results from
the 3D representation. In specific, we project all bounding boxes of class vehicle
in nuScenes from the detection head onto the generated BEV segmentation map
for a clear comparison.

Visualization of object detection results Figure 3 presents visualization of
object detection results of two scenes in nuScenes val set. We have the following
observations. (i) Ego3RT yields precise localization regarding to the bird’s-eye-
view visualization, even for the objects at long distance. (ii) Ego3RT can still
work well in rainy whether shown in the second scene, proving its robustness
to the whether condition. (iii) There are some miss-labeling in this dataset. For
example, traffic cone in the BACK_RIGHT image of second scene is mis-labeled as
barrier, but Ego3RT correctly labels it as traffic cone.
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Fig. 1: Visualization results of 2 scenes’ 3D representations given by Ego3RT.
For each scene, left is the ground-truth of objects in bird’s-eye view, while right
is the visualization of 3D representation. Colors closer to Red represent higher
response while colors closer to Blue represent lower response.

Visualization of 3D representation We provide the visualization of Ego3RT’s
learned 3D representation of the same scenes shown in the last section in Fig-
ure 1. The 3D representations predicted by Ego3RT are simply taken average on
the channel to visualize. There is clear activation in the 3D representation wher-
ever there is an object. The visualization demonstrates that Ego3RT actually
learns 3D dense representation.

Objects’ localization distribution There is an interesting observation that
the outer part of 3D representation has different pattern in comparison with
the inner part. At the beginning, we considered it was caused by the error in
codes, but this different pattern remained even after a careful inspection. It is
not until we visualized the objects’ localization distribution of nuScenes that the
answer was uncovered. Objects in nuScenes dataset appear more frequently at
the center than the surrounding area. As is shown in Figure 2(c), the boundary
of 3D representation’s inner part well matches that of the objects’ localization
distribution. Therefore, Ego3RT reveals some data distribution while reasoning
the 3D representation.
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() (b) ()

Fig. 2: (a) Distribution (heat map) of object localization in bird’s-eye-view on
nuScenes dataset. Colors closer to Red represent higher frequency while colors
closer to Blue represent lower frequency. (b) 3D representation generated by
Ego3RT. Colors closer to Red represent higher response while colors closer to
Blue represent lower response. (c¢) Distribution of object localization with the
3D representation, in the same coordinate as bird’s-eye-view.
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Fig. 3: Qualitative results on nuScenes dataset. Two scenes with both ground-
truth and prediction are shown. Left are bird’s-eye-view visualizations of object
detection results. Right are in image perspective with prediction results. Different
colors stand for different categories.
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