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Fig. 1: We propose an ego 3D representation learning method that extracts 3D
representation in bird’s-eye-view (BEV) from multi-view cameras (right). With
the aid of our 3D representation, multiple tasks can be executed efficiently in a
single model: BEV segmentation (left) and 3D object detection (right).

Abstract. A self-driving perception model aims to extract 3D semantic
representations from multiple cameras collectively into the bird’s-eye-
view (BEV) coordinate frame of the ego car in order to ground down-
stream planner. Existing perception methods often rely on error-prone
depth estimation of the whole scene or learning sparse virtual 3D repre-
sentations without the target geometry structure, both of which remain
limited in performance and/or capability. In this paper, we present a
novel end-to-end architecture for ego 3D representation learning from
an arbitrary number of unconstrained camera views. Inspired by the
ray tracing principle, we design a polarized grid of “imaginary eyes” as
the learnable ego 3D representation and formulate the learning process
with the adaptive attention mechanism in conjunction with the 3D-to-2D
projection. Critically, this formulation allows extracting rich 3D repre-
sentation from 2D images without any depth supervision, and with the
built-in geometry structure consistent w.r.t BEV. Despite its simplicity
and versatility, extensive experiments on standard BEV visual tasks (e.g.,
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camera-based 3D object detection and BEV segmentation) show that our
model outperforms all state-of-the-art alternatives significantly, with an
extra advantage in computational efficiency from multi-task learning.

Keywords: 3D object detection, BEV segmentation, Multi-camera.

1 Introduction

Taking an image as input, existing vision models usually either ignore (e.g.,
image classification [0, 10, 26]) or consume directly (e.g., object detection [17,

,41], image segmentation [3, 13, 38]) the coordinate frame of input during
results prediction. Nonetheless, this paradigm does not match the perception
circumstance of self-driving out-of-the-box, where the input source is multiple
cameras each with a specific coordinate frame, and the perception models for
downstream tasks (e.g., 3D object detection, lane segmentation) need to make
predictions in the coordinate frame of the ego car, totally different from all the
input frames. That is, a self-driving perception model needs to reason about 3D
semantics from 2D visual representations of multi-view images, which is non-
trivial and highly challenging.

In the literature, existing methods mostly take the following two strategies.
The first strategy show in Figure 2(a) (e.g., LSS [20], CaDDN [21]) relies on
pixel-level depth estimation, as it can be used to project the 2D visual represen-
tation to the ego coordinate frame alongside intrinsic and extrinsic projection.
Often, the depth prediction is end-to-end learned within the model without su-
pervision [20], or with extra 3D supervision [21]. A downside of these methods
is that depth estimation in unconstrained scenes is typically error-prone, which
would be further propagated down to the subsequent components. This is also
known as the error propagation problem, largely inevitable for such pipelines.

To solve this above issue, the second strategy (e.g., Image2Map [25], OFT
[21], DETR3D [32]) eliminates the depth dimension via directly learning 3D
representations from 2D images through architecture innovation. This approach
has shown to be superior over depth-estimation based counterparts, implying
that learning 3D representation is a superior general strategy. In particular, Im-
age2Map [25] and PON [23] leverage a Transformer or FC layer to learn the
projection from 2D image frame to the bird’s-eye-view (BEV) coordinate frame
forwardly. As is shown in Figure 2(b), However, their 3D representation is struc-
turally inconsistent with 2D counterparts as no rigorous intrinsic and extrinsic
projection can be leveraged, i.e., no explicit one-one correspondence relation
across the coordinate frames, consequently resulting in sup-optimal solutions.
The recent state-of-the-art DETR3D [32] formulates a 3D representation learn-
ing model with a Transformer model, inspired by contemporary image based
object detection models [2]. However, its 3D representation is not only sparse,
but wvirtual in the sense of no geometry structure explicitly involved w.r.t the
ego coordinate frame, and is thus unable to conduct dense prediction tasks such
as segmentation.
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In this work, we present a novel ego 3D representation learning method that
overcomes all the aforementioned limitations in an end-to-end formulation. This
is inspired by the ray tracing principle [33] in computer graphics, which simulates
the light transport process from the sources to human eyes in graphic rendering.
Rather than taking the optical sources as inception, ray tracing backtracks the
optical paths from the imaginary eyes to the objects in an opposite way. Anal-
ogously, we start with introducing a polarized grid of dense “imaginary eyes”
for BEV representation, with each eye naturally occupying a specific geometry
location with the depth information involved. As is shown in Figure 2(c), for
learning 3D representation including height information intrinsically absent in
BEV, we initialize each eye using a uniform value and leave the eyes to look
backward surrounding 2D visual representations subject to the intrinsic and ex-
trinsic 3D-to-2D projection. With the adaptive attention mechanism, eyes focus
dynamically on 2D representations and directly learn to approximate missing
height information in a data driven manner. Critically, our architecture can be
applied for both sparse (e.g., 3D object detection) and dense (e.g., BEV seman-
tic segmentation) prediction tasks. We term our method Ego 3D representation
learning as Ray Tracing (Ego3RT).

We make the following contributions: (1) We propose a novel ego 3D rep-
resentation learning architecture, inspired by the ray tracing perspective. (2)
Without depth supervision, our method can learn geometrically structured and
dense 3D representations from arbitrary camera rigs w.r.t the ego car coordi-
nate frame, subject to the intrinsic and extrinsic 3D-to-2D projection. This is
achieved by adapting the ray tracing concept, where we first introduce a po-
larized grid of “imaginary eyes” as the learnable BEV representation, and then
trace them backwards to camera rigs by formulating the learning process of this
3D representation into an adaptive attention framework. (3) Expensive experi-
ments on 3D object detection and lane segmentation self-driving tasks validate
the superiority of our method over state-of-the-art alternative methods, often by
a large performance gap. In particular, Ego3RT enables multi-task learning by
representation sharing between object detection and BEV segmentation whilst
still yielding superior performance, hence more computationally efficient and
economically scalable for self-driving.

2 Related work

Depth-based strategy Benefited from well-studied depth estimation, Pseudo-
lidar [31], Pseudo-lidar++ [37] and AM3D [10] separate the 3D representation
learning into monocular depth estimation and 3D detection. CaDDN [21] uses
a supervised depth estimation network to accumulate a more precise position of
each voxel from the front-view features. These dual-step methods rely on extra
depth estimation data and are not end-to-end trainable. LSS [20] and FIERY [11]
achieve the front-view features lifting in an end-to-end manner with the depth
distribution prediction to generate the intermediate 3D representations. How-
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Fig. 2: Comparison of dense 3D representation learning strategies. (a) The first
strategy, represented by LSS [20], CaDDN [21], is based on dense pixel-level
depth estimation. (b) The second strategy represented by PON [23] bypasses
the depth estimation by learning implicit 2D-3D projection. (¢) Our strategy
that backtracks 2D information from “imaginary” eyes specially designed in the
BEV’s geometry.

ever, weakly-constrained depth estimation is error-prone, with the depth error
propagated to limit the subsequent 3D localization.

Depth-free strategy OFT [24] simply hypothesizes a uniform distribution over
the depth, leading to poor performance in the 3D detection task. Rather than
predicting depth, [4, 23,25, 35] opt to exploit the 3D-to-2D projection process.
PYVA [35] shows that the correspondence between 2D features and 3D features
can be implicitly learned by cross attention. NEAT [1] further proposes a vari-
ation of cross attention for the same purpose. PON [23] and Image2Map [25]
resort to a Transformer or FC layer to learn a correspondence between images
and 3D features. While decently estimating the 3D-to-2D relationship, a clear
limitation is that these models ignore the intrinsic one-one correspondence. Re-
cently, DETR3D [32] learns sparse 3D representations with a Transformer by
using sparse queries to detect 3D objects. However, this 3D representation has
no geometry structure, making it incapable of performing dense prediction tasks.
In this work, we present Ego3RT, a novel end-to-end trainable ego 3D represen-
tation learning architecture that solves all the above limitations. Critically, it
can learn 3D ego representation from unconstrained camera rigs without any 3D
or depth supervision, achieving superior performance on BEV visual tasks even
in a more efficient multi-task model design.

3 Method

Our architecture can be divided into two components: (1) ego 3D representation
learning (Ego3RT) and (2) downstream task head.



Learning Ego 3D Representation as Ray Tracing 5

3D representation

e/
Deformable
attention - —

&
Polar

Multi-view
adaptive
attention

Image features ! 5 i
e o o 3D object semantic
— 2D Feature stream

| FFN I
detection segmentation
— 3D Feature stream
—— Back tracing stream

Fig. 3: Our pipeline comprises two stages: learning ego 3D representation from
2D features and executing multiple downstream tasks based on 3D representa-
tion. The gray lines represent the 2D feature stream while the blue lines represent
the 3D feature stream. Besides, the orange lines specify our back tracing path.

3.1 Ego3RT: Ego 3D representation learning

Ego3RT consists of two parts: image feature extractor and back tracing decoder.
In addition, to illustrate back tracing decoder clearly, we will first introduce
its components — imaginary eyes, tracing 3D backwards to 2D mechanism and
multi-view multi-scale adaptive attention.

Image feature extractor Given a set of images Z = {p1, P2, PNy, } from
multiple camera sensors (i.e., multiple views), where each image p; € RH*Wx3
with ¢ the index of surrounding cameras (e.g., Nyiew = 6 for nuScenes). These
images are then encoded by a single shared ego-sensor feature extractor, includ-
ing a CNN and a transformer encoder. ResNet [10] is used to extract image
feature maps at Ngcale spatial resolutions. To capture global context informa-
tion, we further apply a transformer encode [41] at each resolution individually.
As a result, we obtain the multi-view multi-scale self-attentive 2D representation
{Xl(t)}fisial‘), where xl(t) e REWixC g = B W, = Wt e[l Nyjewl-

Imaginary eyes From this part, we will specify how Ego3RT learning 3D rep-
resentation from 2D. To avoid exhaustive pixel-level prediction and inconsistent
coordinate projection, we draw an analogue in the back tracing idea from ray
tracing [33]. We start with introducing a polarized grid of dense “imaginary eyes”
shown in Figure 4, for BEV representation, with each eye naturally occupying a
specific geometry location with built-in depth information. The grid of eyes are
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Fig. 4: An illustration of tracing 3D backwards to 2D mechanism for imaginary
eyes. The golden balls represents the polarized grid of dense “imaginary eyes”.
Specially, for eyes have multiple visible images (e.g. eyes), they backtrack to
multiple images, while eyes having only single visible image (e.g. eye; ) backtrack
to single image. The blue points on image from light blue to deep show their
degree of significance to their eye, thus facilitating the adaptive attention.

in size of Neyes = R X S, where R is the number of eyes on each polar ray, and
S is the number of these polar rays. To construct or, “render” our BEV repre-
sentation, these imaginary eyes send rays backwards to 2D visual representation
following the above 3D-2D projection routine (which will be described later).
Since each eye only occupies a single, fixed geometry location, tracing back at
its corresponding 2D position alone is less informative due to limited local ob-
servation. To solve this problem, we propose to encourage the eyes look around
to focus adaptively on pivotal feature points across multiple scale per image and
multiple camera views. This results in our multi-view multi-scale adaptive at-
tention module (MVAA). And finally, the features of these imaginary eyes will
be the final 3D representation.

Tracing 3D backwards to 2D To specify the tracing back mechanism, we
first illustrate coordinate transformation between 3D and 2D. In typical cases,
we usually have one LIDAR coordinate (3D), Nyjew camera coordinate (3D)
and Nyjew image coordinate (2D). A 3D point Xjigar can be projected to image
point Xi(xtrzg of t'" camera by the projection matrix M®) = Ml(rtl)M,(aQ Details
of projection matrix will be illustrated in supplement. If the Xy, is inside the
image, we say that the image is visible to the corresponding Xj;qa,. In our method,
imaginary eyes are encouraged to “look” around their 2D projection point in each

image coordinate. We denote the set of visible images of the ¢'"* eyes as Z, C Z.

Multi-view multi-scale adaptive attention (MVAA) MVAA is the core
of transferring 2D representation into 3D. We formulate the learning of these
imaginary eyes in an adaptive self-attention detection framework [41]. This is
based on an idea of regarding the eyes as object queries, denoted as y € RE*Neve,
Let r € R3*Neve he the location of eyes in ego car coordinate. Formally, each eye



Learning Ego 3D Representation as Ray Tracing 7

(i.e., query) will dynamically choose Npin feature points at every scale of 2D
image representation. This gives us a total of Nycale X |Zq| X Npoint feature points.
Our MVAA then chooses the most significant feature points from them and fuse
them across multiple scales and views into the desired 3D representation. The
process can be expressed as

MVAA(yye s (B} 55} ) =

gon](\zfatwh Z Z Z A - Who (:Ul(t)7 M®y 4 Arhvlk) (1)
€{Nn} 1€{Nscae} t€Zq kE{ Npoint }

Vector y, is the q'" query (eye), r, is its position, IV}, is the head number, M® is
the projection matrix. A and Ar are conditioned on y, by learnable parameters:

A= softmaxtk(WéA)Yq) 2)
with learnable parameter W<(1A) € RNn*Necale X[ Zq| X Npoint XC - anq
Ar = W®y, 4+ b® (3)

with learnable parameter WS € RVwXNscate X |Zg| X Npoine x2xC

ter bff) € RNnXNocate X[ Zq| X Nooint X2 To avoid these Npoint feature points collapse

, and fixed parame-

into one point, bgr) is initialized with |bér) [, k]| = k, so that the more Npging,
the larger offset of these feature points can be achieved. Therefore, Npoint can be
utilized to control the receptive field. ¢(z,r) represents access ‘" feature points
from z by index. For adaptively assigning the significance to Nscate X | Zg| X Npoint
points, the Softmax function is applied across all the attended feature points,

scales, and views:
Y DY Auw=1 (4)

le{Nscale} teI‘Z kE{Npoint}

Back tracing decoder Technically, back tracing decoder takes randomly ini-
tialized features of imaginary eyes and scales of 2D feature provided by image
feature extractor as input, and finally outputs the fine-grained features of imag-
inary eyes as 3D representation. Back tracing decoder is made up with a stack
of attention layers adapted from the transformer decoder layers [17]. As shown
in Figure 3, each layer stacks two self-attention modules and one cross-attention
module in order: deformable attention module [41], polar attention and MVAA.
Compared to self-attention, deformable attention is more memory efficient. On
the on 3D representation, we apply a standard self-attention on the eyes of same
polar ray for polar attention. Also, the feed-forward network (FFN) block is
equipped with a depth-wise convolution like [30]. As illustrated before, MVAA
is responsible for back tracing 2D features into 3D representation.
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Table 1: Comparison of different paradigms on the nuScenes val set. FCOS3Dt
is trained with 1x learning schedule, depth weight 0.2 and is finetuned on another
FCOS3D checkpoint. PGDT is trained with 2x learning schedule, depth weight
0.2 on another PGD checkpoint. DETR3Dt and Ego3RT are initialized from the
same pretrained FCOS3D checkpoint. Ego3RT1 is initialized from the pretrained
DD3D checkpoint.

Methods mATE| mASE| mAOE| mAVE| mAAE|||mAP} NDSt
FCOS3D [29] 0.790 0.261  0.499  1.286  0.167 || 0.298 0.377
DETR3D [32] 0.860 0278  0.327 0.967  0.235 | 0.303 0.374
PGD [2¢] 0.732  0.263  0.423  1.285  0.172 || 0.336 0.409
Ego3RT(Ours) || 0.714 0275  0.421  0.988  0.292 || 0.355 0.409
FCOS3DT [29] || 0.754  0.260  0.486  1.331  0.158 || 0.321 0.395
DETR3D{ [32] || 0.765  0.267 0392  0.876  0.211 || 0.347 0.422
PGDf [29] 0.667  0.264 0435 1276  0.177 || 0.358 0.425
Ego3RT(Ours)t|| 0.657  0.268 0.391 0.850 0.206 || 0.375 0.450

Ego3RT(Ours)|| 0.582 0272  0.316 0.683 0202 [ 0.478 0.534

3.2 Downstream task head design

BEYV sampling. Before the features of imaginary eyes being processed at down-
stream task, we first grid sample the polarized features into the rectangular ego
car coordinate system to match with dataset annotation.

BEYV encoder. To encode the 3D representation for multiple tasks, we adopt
the same BEV encoder module from OFT [24]. This kind of sub-network is also
widely used in the LIDAR-based 3D detector [12,34].

Downstream task head. While the previously mentioned stage has generated
a dense BEV features, we adopt the popular 3D detection head from Center-
Point [36] for our detection task. For the BEV segmentation task, we choose a
group of progressive up-sampling convolution-based semantic segmentation de-
coder heads. Details are shown in Supplement.

4 Experiments

4.1 Setup

Dataset. We evaluate the proposed model on the nuScenes [1]| dataset, a large-
scale autonomous driving dataset with 1000 driving scenes. Specifically, for
multi-camera 3d object detection, it provides streams of images of 6 cameras
covering all round from these 1000 scenes, which are then split into 700/150/150
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Table 2: Comparisons to top-performing works on the nuScenes test set.
represents that the method uses external data other than nuScenes 3D box an-
notations. DD3D{ uses extra data for depth estimation. DETR3D? and Ego3RT1
are initialized from the pre-trained DD3D checkpoint.

Methods mATE| mASE| mAOE| mAVE| mAAE||mAP} NDS?}
MonoDIS 0.738  0.263  0.546  1.553  0.134 | 0.304 0.384
CenterNet [39] || 0.658  0.255  0.629  1.629  0.142 | 0.338  0.400
FCOS3D [29)] 0.600  0.249 0452 1434 0.124 | 0.358 0.428
PGD [25] 0.626  0.245 0.451  1.509  0.127 | 0.386 0.448
Ego3RT(Ours) || 0.599  0.268 0470 1.169  0.172 | 0.389 0.443
DD3Dj [19] 0572  0.249 0.368 1.014  0.124 | 0.418 0.477
DETR3D; [32] | 0.641  0.255 0394 0.845 0.133 | 0.412 0.479
Ego3RT(Ours)f|| 0.549  0.264 0433  1.014  0.145 | 0.425 0.473

scenes respectively for training, validation, and testing. nuScenes also provide
informative annotations of the map. We choose 5 segmentation tasks: drivable
area, pedestrian crossing, walkway, carpark, and divider.

Metrics. To evaluate performance, mean Average Precision (mAP) [8] and
NuScenes Detection Score (NDS) [1] are reported. The segmentation task uses
Intersection over Union(IoU) to assess the performance. As done by the LSS [20],
we create a binary image for each element based on a specific threshold to eval-
uate with the ground truth image.

Implementation details. Following FCOS3D [29] and DETR3D [32], ResNet-
101 [10], with 3rd and 4th stages equipped with deformable convolutions is ap-
plied as our image backbone. The following deformable DETR encoder then
utilizes multi-scale feature maps from the 2nd, 3rd, and 4th stages of the back-
bone. We use eyes of density 80 x 256 for Ego3RT and be sampled to rectangular
160 x 160 grids by BEV sampling. For the BEV encoder, we use 8 Bottleneck
block [10] identical to OFT [24]. In the segmentation task, we set our ground-
truth BEV segmentation map of 480 x 480 size with 0.2m/pixel resolution. There-
fore, 1 block of the upsampling module with the bilinear upsampling ratio of 3x
is adopted to mitigate lossing details of the screen. Additionally, loss functions
are illustrated in supplement.

Training & testing. Our models are trained 24 epoch with AdamW [14] of base
learning rate 2.5 x 10™* and weightdecay 0.01. Especially, the learning rate of
the backbone is 1/10 of the global learning rate and the parameter of batch nor-
malizations of backbone still participate in fine-tuning. To avoid over-fitting, we
apply an early stop at 16 epoch. Since a total batch size of 48 across six cameras
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Table 3: Comparison of BEV semantic segmentation IoU on the nuScenes val
set. Multi means wether generate a full surrounded BEV segmentation map
from multi-view images. “-” represents the unprovided result. Single-task version
Ego3RT uses EfficientNet-B0 [27] as the image backbone to align with OFT [24]
and LSS [20]. Multi-task version Ego3RT9 means we only train the segmentation
head with the pretrained detection model frozen.

Method multi?||Drivable Crossing Walkway Carpark Divider
VED [17] X 54.7 12.0 20.7 13.5 -
VPN [19] X 58.0 27.3 29.4 12.3 -
PON [23] X 60.4 28.0 31.0 18.4 -
OFT [2] X 62.4 30.9 34.5 23.5 -
LSF [7] X 61.1 33.5 37.8 25.4 -
Image2Map [25] X 74.5 36.6 35.9 31.3 -
OFT [2]] v 71.7 R - - 18.0
LSS [20] v 72.9 - - - 20.0
Ego3RT(Ours) v 79.6 48.3 52.0 50.3  47.5
Ego3RT(Ours) § v [ 74.6 33.0 42.6 44.1  36.6

on eight NVIDIA A6000 GPUs is used, we apply synchronized implementation
for every batch normalization. During the training process, we use the input
image of 1500 x 900 resolution with only photometric distortion augmentation.
Random flip, random rotation, and random scaling are applied to the 3D feature.
Our 3D detection head is trained with class-balanced grouping method [410] (but
no DS sampling) as default. After the detection head is well trained, we fix the
parameters of Ego3RT and fine-tune our segmentation head for multi-task.

4.2 Comparison with state of the art

3D object detection. We compare our model with previous state-of-the-art
methods on both nuScenes validation set and test set. Following FCOS3D [29]
and DETR3D [32], all our experiments are trained using ResNet-101 with de-
formable convolution as backbone for prototype verification. Models without spe-
cial notification is initialized from a ResNet-101 checkpoint which pre-trained on
ImageNet [5]. We also present the result of our model on pre-trained checkpoints
from FCOS3D [29] and DD3D [19]. In specific, the DD3D [19] fintunes on extra
DDAD15M [9] dataset. To be noted, the monocular-camera paradigms [28,

] and the multi-camera ones can be fairly compared. They all take
6 cameras as input, but the monocular paradigms process these input images
independently while the multi-view paradigms process these input images simul-
taneously.

Table 1 summarizes our multi-camera 3D object detection results on the
nuScenes validation set. The upward arrow means the large the better while
the downward one means the small the better. Our method leads in both mAP
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Table 4: Comparisons of detection performance in non-overlap region and over-
lap region. FCOS3D is trained with 1x learning schedule, depth weight 0.2 and
is finetuned on another FCOS3D checkpoint. PGD is trained with 2x learn-
ing schedule, depth weight 0.2 and is finetuned on another PGD checkpoint.
DETR3D and Ego3RTare initialized from a same pretrained FCOS3D check-
point.

Methods overlap? mATE| mASE| mAOE|mAVE| mAAE|mAPt NDSt

FCOS3D [29] X 0.747 0.260 0.487 1.351 0.156 | 0.320 0.395
PGD [24] 0.658 0.263 0.425 1.290 0.178 | 0.357 0.426
DETR3D [37] 0.769  0.267 0.390 0.893 0.215 | 0.343 0.419

FCOS3D [29] 0.816  0.272  0.571 1.084 0.173 | 0.229 0.329
PGD [28] 0.768  0.274  0.495 1.090 0.186 | 0.255 0.354
DETR3D [32] 0.807  0.273  0.453 0.788 0.184 | 0.268 0.384

X
X
Ego3RT(Ours) X 0.655 0.267 0.395 0.854 0.208 |0.371 0.448
v
v
v
Ego3RT(Ours) v 0.671 0.268 0.347 0.797 0.212 | 0.298 0.420

and NDS. Specially, it achieves the best in transition error (mATE), proving back
tracing strategy’s ability in localization reasoning. Just with simple attention,
Ego3RT outperforms localization prediction than the well-designed PGD.

Table 5: Ablation on the effectiveness of adaptive attention mechanism.

adaptive? | mATE| mASE| mAOE|mAVE| mAAE|mAPT NDSt
X 0.688 0.272 0403 0.835 0.217 | 0.365 0.441
v 0.657 0.268 0.391 0.850 0.206 |0.375 0.450

Table 2 shows our results on the nuScenes test set. The training sets are the
same as the validation set. The least transition error (mATE) also reflects the
overwhelming localization power of back tracing mechanism. We achieve the best
mAP but the NDS is hindered by the attribute error. We have to say that the 2D
representation has a manifest advantage on classification over 3D representation.

BEV segmentation. Table 3 summarizes our BEV segmentation results on
nuScenes validation set. We achieve the best performance in all tasks ex-
cept the pedestrian crossing, but its overwhelming advantage in other tasks
still proves its success. We also present single-task version using ImageNet pre-
trained Efficient-B0 [27] as our image backbone to make a fair comparison with
OFT [24] and LSS [20]. In terms of the single-task version, Ego3RT leads the
board with huge superiority.
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Table 6: Ablations on polarized grid of imaginary eyes.

larized pol
polarized  polat || ATE| mASE| mAOE|mAVE| mAAE|mAP+ NDSt
grid? attention?

X X 0.673  0.271 0.397  0.901 0.211 | 0.365 0.437
v X 0.656  0.271 0.397  0.881 0.206 | 0.362 0.440
v v 0.657 0.268 0.391 0.850 0.206 |0.375 0.450

Table 7: (a) Results with different density of imaginary eyes. (b) Results with
different height above the ground of imaginary eyes in meter.

#eyes||96 x 256 64 x 256 80 x 224 80 x 256 height|| Om 0.4m 0.8m
mAP 1|| 0.372 0.366 0.372 0.375 mAP 1| 0.375 0.375 0.375
NDS 1|| 0.447 0.444 0.445 0.450 NDS 1| 0.445 0.437 0.450

4.3 Qualitative results

We present our visualization in Figure 5. The structural similarity to the ground-
truth highlights the superiority of our Ego3RT, which simultaneously generates
dynamic object detection and static semantic segmentation results from the
3D representation. In specific, we project all bounding boxes of class vehicle in
nuScenes from the detection head onto the generated BEV segmentation map for
a clear comparison. As can be seen from the perspective of images, our detection
results demonstrate appealing localization ability even in distance situations.
More qualitative results are shown in supplement.

4.4 Ablation studies

In this section, we will figure out how the performance is established and prove
the effectiveness of our innovation. Additional studies are shown in the supple-
ment.

Back tracing mechanism Here, we prove that the back tracing mechanism
posses superiority in localization. To eliminate interference of multi-view mech-
anism, in the top part of Table 4, hence, we validate the 3D detection result
only at the non-overlap region where only a monocular camera is used. We show
advantage in overall mAP, NDS metrics at monocular region. Specially, the lowest
transition error mATE proves the best localization reasoning of Ego3RT .

Multi-view mechanism We will prove the superiority of the multi-view mech-
anism over the former monocular ones. In the bottom part of Table 4, we vali-
date the 3D detection result at region where only multiple cameras are used. We



Learning Ego 3D Representation as Ray Tracing 13

Table 8: Comparison of the efficiency and the performance of different configu-
rations of Ego3RT and the other methods. “FPS” is a metric for efficiency stand-
ing for frames per second. “Resolution” represents input image shape. “FFN”
represents the channel expansion dimension of FFN in Back tracing decoder.
“Blocks” notes the number of blocks in BEV encoder. “x” means we test the
speed at 1600 x 900.

Methods Resolution Eyes density FFN #Blocks| FPST |mAP1t NDSt
FCOS3D [29] || 1600 x 900 - - - 2.0 0.321  0.395
PGD [28] 1600 x 900 - - - 1.5 0.358  0.425
DETR3D [32] || 1600 x 900 - - - 3.0 0.347 0.422

Ego3RT(Ours)|| 1600 x 900* 80 x 256 1024
Ego3RT(Ours)|| 1280 x 768 72 x 192 1024
Ego3RT(Ours)|| 1280 x 768 64 x 128 256

1.7 0.375 0.450
2.3 0.372  0.438
3.0 0.355  0.423

N OO0 00

find that multi-view methods DETR3D and our Ego3RT outperform mono-view
methods FCOS3D [29] and PGD [28] remarkably in all metrics. Additionally,
Ego3RT achieves overwhelming performance over the other methods in both
mAP and NDS.

Adaptive attention mechanism We state in the method section that the
adaptive attention mechanism can approximate missing height information. All
the other conditions remaining the same, we switch off the adaptive attention
module by fixing learnable parameter Wgr) vqin Eq. (3) to prove its effectiveness.
The results shown in Table 5 prove our statement.

Polarized grid of imaginary eyes We apply a polarized grid of “imaginary
eyes” rather than a rectangular grid. Here, we compare these two settings in
Table 6. The first line and the second line compare the grid type of eyes without
polar attention. Although the polarized grid doesn’t show manifest superiority
over the rectangular grid, the polarized grid achieves a remarkable advantage in
localization prediction (mATE). Finally, with the help of polar attention on the
eyes of each polar ray, the model achieves the best.

Imaginary eyes Table 7 studies density and height of imaginary eyes. Lower
density will lead to coarser feature maps while the higher density imposes a
burden on optimization, so a balance should be achieved. Table 7(a) shows that
our final choice 80x 256 is the optimal choice. Table 7(b) shows that no significant
difference exists among the different choices of height.

Efficiency of Ego3RT In Table 8, our Ego3RT (of main configuration) achieves
the best mAP and 3rd FPS, and Ego3RT with smaller input image size and imag-
inary eyes density barely looses its performance while achieves a better efficiency.
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Fig. 5: Qualitative results on nuScenes dataset. Left is the BEV segmentation
map with projected vehicle 3D bounding boxes result from detection head. Right
are in image perspective with prediction results. Different colors stand for dif-
ferent categories.

When Ego3RT further reduces its eyes density, FFN channel expansion dimen-
sion and BEV encoder blocks, it reaches the best trade-off between accuracy and
efficiency.

5 Conclusion

In this work, we have presented Ego3RT, a novel end-to-end architecture for ego
3D representation learning given multiple unconstrained camera views. In the
absence of depth or 3D supervision, it can learn rich and semantic 3D represen-
tation with multi-view images efficiently in the ego car coordinate frame. This
is realized by drawing an analog from the ray tracing concept, where we cre-
ate a polarized grid of learnable “imaginary eyes” as the ego 3D representation
and formulate the learning with the adaptive attention mechanism subject to
the 3D-to-2D projection. It is easy to implement and able to support multiple
different tasks. Extensive experiments validate the superiority of our Ego3RT in
comparison to state-of-the-art alternatives in terms of both accuracy and versa-
tility.
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