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1 More Training Details

In default settings, we sample 16-frame clip sequence, then apply temporally
consistent random resized crop and random horizontal flip to obtain the frame
sequence with spatio-temporal resolution 16 x 112 x 112. We randomly select a
frame, and repeat 16 times on temporal axis to form the static frame sequence,
which does not contain temporal dynamics. We respectively apply color jitter
and Gaussian blur to form the RGB input v, static frame input s. We calculate
the difference between adjacent frames in v to form frame difference input d. In
this way, v, s and d are all of spatio-temporal resolution 16 x 112 x 112 and input
to the same encoder.

The feature maps extracted by the encoder are of size C x T'x H x W =
512 x 2 x 7 x 7. We set the feature transformation o to identity mapping in
default, and employ two-layer MLP 100-512-512 as the light-weight decoder to
reconstruct the feature vector. In the first 5 epochs, we do not include L, in
the loss function to stabilize training.

We respectively use the training set of UCF-101, Kinetics-400 and Diving-48
for self-supervised pretraining. Following [TJ4I3], we use split 1 of UCF-101 and
HMDB-51, and V2 test set of Diving-48 for downstream evaluation and analysis.
Action Recognition. We use the pretrained parameters to initialize the net-
work except the last fully-connected layer. We employ two popular protocols: (1)
Finetune the whole network; (2) Only train the last linear classifier denoted as
linear probe. We follow the prevalent evaluation protocols [6] to uniformly sam-
ple ten 16-frame clips from each video, then center crop and resize to 112 x 112.
We average the softmax probability of each clip and report Top-1 accuracy.
Video Retrieval. We use the pretrained model to extract video features with-
out training. We use videos in the test set as query and retrieve nearest neighbors
in the training set, and report Top-k recall RQk.

2 More Ablation Study

We show more ablation studies regarding to some modules in the framework,
including the feature transformation head o, the decoder g, and the number of
valid concepts top-K.
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o Shape |UCF-101 HMDB-51
Identity 512-512 72.1 45.9
Linear  512-512 73.3 46.5
MLP 512-512-512| 73.4 46.3

Table 1. Ablation study on the feature transformation head.

Feature Transformation Head. We use the same architecture but do not
share parameters for all three transformation heads, i.e., o,, 05 and o4, and
we use the same symbol o for concise presentation in Table. [Il We report the
linear probe accuracy on UCF-101 and HMDB-51. We observe that using extra
transformation improves the performance over the identity mapping, which is
partially consistent with the analysis in SimCLR [2]. But the difference is that
nonlinear transformation head is comparable with linear transformation, this is
probably because we calculate cosine similarity to generate latent concept code
for contrast, which has contained nonlinear operations (£, normalization). Thus,
a linear transformation head is enough to further improve performance.

g Shape g, Shape g/g94/UCF-101 HMDB-51
Linear 100-512 50-512 70.2 44.5
MLP 100-128-512 50-128-512 71.8 45.6
MLP 100-512-512 50-512-512 72.1 45.9

Table 2. Ablation study on the concept latent code decoder.

Concept Code Decoder. We show ablation study on the concept latent code
decoder in Table. |2 and report linear probe accuracy on two datasets. We set
K, = K4 =50, and compare three variants of the decoder. We observe that the
linear decoder leads to slight performance drop due to limited reconstruction
ability. And the performance under different MLP designs maintains stable.

K|Avg|UCF-101 HMDB-51
2116 704 44.1
5138 721 45.9
10| 7.1 71.8 45.3
Table 3. Ablation study on the number of valid concepts.

Number of Valid Concepts. We explore using different number of valid con-
cepts, i.e., the hyper-parameter K in Eq. 8. The total number of concepts are
K, = K; = 50, and in default settings we select top-10%, i.e., K = 5. Recall
that the final number of valid concepts is the intersection of top-K indexes from
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two concept codes, the real number of valid concepts is no greater than K. Thus,
besides linear probe accuracy, we also report average number of valid concepts
after taking intersection. From Table[3] we can see that the ratio of final number
of valid concepts over K is around 0.7-0.8, and we reach best performance with
K = 5. It indicates that when K is small, we just neglect some useful concepts,
thus failing to make full use of the detailed information of valid concepts. While
when K is large, there exists redundancy and also corrupts the performance.

3 More Experimental Results

We also validate the potential of our method to scale to deeper backbone or larger
resolution. Due to limited computation resource, we do not directly compare with
CVRL [5] under the same settings. But in Table [4] the improvements brought
by using deeper backbone (R3D-34 vs R(2+1)D-18) or larger resolution (224 vs
112) indicate that our method has potential to reach higher performance.

Method Backbone Resolution|UCF-101 HMDB-51
Ours R(2+1)D-18 112 86.1 54.8
Ours R(24+1)D-18 224 89.2 60.1
Ours R3D-34 112 89.4 58.3

CVRL [5] R3D-50 224 [ 929 679

Table 4. Experiments on deeper backbone and larger resolution.

Besides, we also compare the results of using separate backbones for v, s, d, or
share the same backbone. We pretrain for 100 epochs and show the linear probe
accuracy on UCF-101 every 20 epochs as well as the per epoch training time in
Table |5l We observe that these two settings reach comparable performance, but
using the same backbone (default setting) leads to faster convergence. Also, using
three different backbones costs about 1.2x training time. This is because after
the normalization data pre-processing, the distribution of the original clip, static
frame and frame difference is not that different, thus it is practical to use the
same backbone to extract features. And the shared gradient back-propagation
improves learning efficiency.

Setting | 20 40 60 80 100 Time
Share [52.3 61.566.8 71.1 72.1 1.0x
Separate|45.5 57.2 63.3 68.9 71.8 1.2x
Table 5. Experiments with using the same backbone or three different backbones as
feature extractors.
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