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Appendix

A Proofs

A.1 Preliminary

In this section we give the detailed proof of Theorem 1 and Theorem 2. For the
convenience of mathematical expression, let X∆i = [0, 0, . . . , xi

′ − xref
i , . . . , 0] ∈

Rd×n, where the ith column of X∆i is equal to xi
′ − xref

i and all the others are
zero vectors. Then we have Xi = Xref +X∆i.

A.2 Proof of Theorem 1

First, we will introduce an important Theorem proposed in [3]. Let Rn,n denote
the space of all n× n square matrices and Vn denote the space of n× n positive
semi-definite matrices. Let λi(A) denote the ith eigenvalue of matrix A. Then
we have the following theorem

Theorem 1. For any A ∈ Rn,n and B ∈ Vn, the following inequality holds

tr(AB) ≤ λ1(Ā)tr(B) (1)

where Ā = (A+AT )/2. λ1(A) denotes the largest eigenvalue of matrix A

Proof. Please refer to [3]

Notice that we consist M ′ to be a symmetric positive semi-definite matrix,
by introducing Theorem 1 into tr(XT

i M
′XiCi), we have

tr(XT
i M

′XiCi) = tr(XiCiX
T
i M

′) ≤ λ1(XiCiXT
i )tr(M

′) (2)

Let A := XiCiX
T
i , then we have A = (XiCiX

T
i +XiC

T
i X

T
i )/2 = XiCiX

T
i ,

A is a d×d square matrix. We known that for any square matrix, the eigenvalues
are all smaller or equal to is operator norm, denoted as |λ(A)| ≤ ∥A∥, where
⋆ Corresponding Author
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∥A∥ is the operator norm of matrix A defined as ∥A∥ = sup|x|=1 |Ax| and |x| is
the norm of vector x. For simplicity, we choose induced L2 norm as the operator
norm, thus λ1(A) ≤ ∥A∥2. Since, ∥A∥2 ≤ ∥A∥F , the induced L2 norm is less or
equal to the Frobenius norm for any square matrix, then the following inequality
holds

tr(Xi
TM ′XiCi) ≤ ∥XiCiX

T
i ∥F tr(M ′) (3)

Notice that for any matrix A and B, such inequality always hold that ∥AB∥F ≤
∥A∥F ∥B∥F . Then we have ∥XiCiX

T
i ∥F ≤ ∥Xi∥F ∥Ci∥F ∥XT

i ∥F = ∥Ci∥F ∥Xi∥2F
For ∥Ci∥F , recall that C is the summation of all sampling matrix of data

triples multiplied by one 0, 1 choosing matrix, C =
∑

t∈T CtΛt. Then, the ele-
ments of the Ci can be represented as

cij =

{
−1 ×(times{i, j}is selected as positive pair), {i, j}is a positive pair
1 ×(times{i, k}is selected as negative pair), {i, j}is a negative pair

(4)
To upper bound ∥Ci∥F , we might as well consider the extreme case of Ci, when
all data triplet are selected and ∥Ci∥F is the maximum one. In this case, Ci will
be like

Ci =


(m− n)1 (m− 1)1 . . . (m− 1)1
(m− 1)1 (m− n)1 . . . (m− 1)1

. . . ·
(m− 1)1 (m− 1)1 . . . (m− n)1

 (5)

where 1 is a n
m× n

m matrix whose elements are all 1. Therefore, we have ∥Ci∥F ≤√
n
m (m− n)2 + n2−n

m2 (m− 1)2, where m and n are determined by the assump-

tion of the dataset. For simplicity, let δ2 :=
√

n
m (m− n)2 + n2−n

m2 (m− 1)2. The

same analysis also applies for ∥CT
i ∥F , so similar conclusion can be derived that

∥CT
i ∥F ≤ δ2 and ∥Ci∥F ≤ δ2
For ∥Xi∥2F , it is easy to verify that

∥Xi∥2F = ∥Xref +X∆i∥2F = ∥Xref∥2F + 2(xi
′ − xref

i )Txi
ref + ∥X∆i∥2F (6)

where ∥Xref∥2F is regarded as a constant value. Assume that (1) the maximum
distortion that random variable xi

′ shifts from xi
ref is bounded by |xi

′−xi
ref | ≤

ϵ1 (2) for any embedding vector in xref
i ∈ Xref , its L2 norm is bounded by

|xref
i | ≤ ∥Xref∥F . Then, we have (xi

′ − xref
i )Txi

ref ≤ |xi
′ − xref

i ||xi
ref | ≤

ϵ1∥Xref∥F , and ∥X∆i∥2F ≤ ϵ21. When we denote δ1 := ∥Xref∥2F+ϵ21+2ϵ1∥Xref∥F =
(∥Xref∥F + ϵ1)

2, we have ∥Xi∥2F ≤ δ1
Based on the analysis above, Eq. 3 can be rewritten as

tr(Xi
TM ′XiCi)/∥M ′∥F ≤ δ1δ2tr(M

′)/∥M ′∥F (7)

which is exactly the inequality proposed in Theorem 1.
Notice that during the proof of principle 1, when introducing Theorem 1

into Eq. 2, we assume that M ′ is one positive semi-definite matrix, which means
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principle 1 holds only if M ′ is positive semi-definite. Therefore, the precondition
for principle 1 requests that M ′ is one symmetric positive semi-definite matrix.
We attach one additional request of symmetry so that the similarity function
parameterized by M ′ is symmetric.

A.3 Proof of Theorem 2

First, we will rewrite the objective formula as

tr(XT
i M

′XiCi) = tr((Xref +X∆i)
TM ′(Xref +X∆i)Ci)

= tr(XT
∆iM

′(Xref +X∆i)Ci) + tr(XT
∆iM

′X∆iCi) + tr(XT
refM

′XrefCi) (8)

For the first component of Eq. 8, recall that X∆i = [0, 0, . . . , xi
′−xref

i , . . . , 0],

therefore for any matrix A, tr(XT
∆iA) = (xi

′ − xref
i )Tai ≤ |xi

′ − xref
i ||ai|, where

ai is the ith column of matrix A. Since |xi
′ − xref

i | ≤ ϵ1 by assumption and
|ai| ≤ ∥A∥F holds for all matrix, we have

tr(XT
∆iM

′(Xref +X∆i)Ci)

≤ϵ1∥M ′(Xref +X∆i)Ci∥F
≤ϵ1∥Xref +X∆i∥F ∥Ci∥F ∥M ′∥F
≤ϵ1

√
δ1δ2∥M ′∥F (9)

where δ1 := (∥Xref∥2F + ϵ1)
2, δ2 :=

√
n
m (m− n)2 + n2−n

m2 (m− 1)2 is defined in

Section A.2. Similarly, the second component of Eq. 8 is bounded by

tr(XT
∆iM

′X∆iCi) ≤ ϵ21δ2∥M ′∥F (10)

For the third component, we directly apply the inequality that for any matrix
A and B, we have tr(AB) ≤ ∥A∥F ∥B∥F . Then

tr(XT
refM

′XrefCi)

≤∥Xref∥2F ∥M ′∥F ∥Ci∥F
≤δ2∥Xref∥2F ∥M ′∥F (11)

Summarizing Eq. 9, Eq. 10 and Eq. 11, we can derive the second formula of
the upper bound as

tr(XT
i M

′XiCi)/tr(M
′) ≤

(
ϵ1
√

δ1δ2 + ϵ21δ2 + δ2∥Xref∥2F
)
∥M ′∥F /tr(M ′) (12)

which is exactly the formula in Theorem 2.
It is worth pointing out that Eq. 12 holds for any matrix M ′, not as strict

as the precondition of principle 2. Thus the precondition of principle 2 can be
released that M ′ is symmetric.
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B Experimental Results

B.1 Problem Observation

In table 1, we compare the performance of the trained metric, the identity metric
matrix and the best performance of diagonal or random restraint metric matrix
cross all DML methods mentioned in [6] on three benchmark datasets simulta-
neously. As can be clearly observed, for each DML methods, the performance
of identity metric matrix has an remarkable margin advanced to the trained
metric, and the evaluated two restraint methods are comparable to the identi-
cal metric. Such experimental results imply that there exists a certain data-free
pluggable posterior refinement operation on the trained metric matrix which can
significantly improve the generalization ability of DML methods.

B.2 Discussion

One may concern that the posterior refinement operations in Section 4.2 do not
satisfy the prerequisite in two principles, which acquires that the refined metric
matrix M ′ is still a symmetric positive semi-definite matrix. Here we give a brief
explanation that even though in some cases these operations may not strictly
satisfy such a prerequisite, they can still be used to verify the correctness of two
principles.

For Identity Refinement, obviously an identity matrix is a symmetric pos-
itive definite matrix. Besides, during the restraint procedure we never restrain
any diagonal elements, thus tr(M ′) is fixed to tr(M∗).

For Random Restraint, M ′ is still a symmetric matrix because we always
restrainmij = 0 andmji = 0 at the same time. Thus random restraint satisfy the
precondition for principle 2. It is worth pointing out that even though the positive
semi-definiteness of M ′ can not be mathematically guaranteed, M ′ can still serve
as one metric matrix. As pointed out in [2], we do not have to require the metric
matrix to be positive semi-definite in metric learning. It can be tolerated if there
exists a d dimensional vector x so that xTM ′x < 0, since we concern more about
the ranking of the similarity between data pairs instead of the similarity itself.
We only need to require the metric matrix to be symmetric so that the similarity
function is symmetric.

For Diagonal Restraint, notice that Theorem 1 holds only if M ′ is a posi-
tive semi-definite matrix. First, restraining the diagonal elements can still remain
the symmetry of the matrix, thus the matrices generated by diagonal restraint
are all symmetry matrices. A symmetric matrix is a positive semi-definite ma-
trix if and only if all its eigenvalues are non negative. Therefore, in Fig. 1 we
statistics the eigenvalues of the refined matrix M ′ under different restraint de-
gree r. It can be observed that the majority of the eigenvalues are far larger that
zero, and only a small set of eigenvalues are around zero. Considering the in-
evitable numerical error in the computation of eigenvalues, these eigenvalues are
negligible, thus the matrices generated by diagonal restraint can be regarded as
positive semi-definite matrices. Thus, we claim that diagonal restraint satisfies
the precondition of Principle 1.
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Table 1. Comparison between the trained metric, identity matrix (marked as ∗) and
the best refined matrix under random restraint or diagonal restraint (marked as †). The
superscript D/R, r represents such best refinement method is Diagonal or Random
restraint with restraint degree r. The best and the second best metric for each DML
method is highlighted in red and blue, respectively.

Methods
CUB Cars SOP

MAP Pre@1 RP MAP Pre@1 RP MAP Pre@1 RP

ArcFace[9] 21.51 60.12 32.39 17.48 72.88 27.66 42.23 71.98 45.15
ArcFace∗ 24.20 65.06 35.05 18.10 78.79 27.78 42.18 72.28 44.93

ArcFace† 24.18 64.90 35.03R,1 18.66 78.80 28.55D,1 43.08 73.02 45.88D,1

Contrastive [4] 21.39 60.07 32.28 17.69 70.70 28.24 40.80 69.68 43.84
Contrastive∗ 23.28 64.13 34.05 18.74 77.54 28.64 41.41 70.86 44.29

Contrastive† 23.30 64.12 34.06R,1 18.74 77.53 28.64R,1 41.69 70.84 44.63R,1

CosFace [10] 20.69 58.24 31.45 18.60 74.56 28.81 40.78 70.77 43.67
CosFace∗ 23.58 64.13 34.40 19.20 80.78 28.77 41.44 71.54 44.21

CosFace† 23.57 64.06 34.38D,1 19.21 80.76 28.77D,1 41.59 71.71 44.34D,1

FastAP [1] 18.99 55.47 29.62 15.99 65.55 26.68 38.89 68.17 42.07
FastAP∗ 21.74 61.51 32.46 17.12 75.13 27.35 40.27 70.18 43.25

FastAP† 21.71 61.59 32.43R,1 17.12 75.04 27.34R,1 40.53 70.16 43.58D,1

Margin [13] 17.77 53.84 28.46 16.65 68.31 27.48 36.38 65.67 39.62
Margin∗ 20.72 60.34 31.55 17.69 76.99 27.89 38.75 68.76 41.78

Margin† 20.70 60.32 31.53R,1 18.37 75.59 28.94D,1 38.63 68.41 41.74D,1

Margin/class [13] 18.37 55.13 29.21 15.41 67.12 26.18 37.51 66.97 40.73
Margin/class∗ 21.43 61.69 32.33 15.90 74.53 26.12 39.54 69.56 42.56

Margin/class† 21.42 61.70 32.32R,1 16.67 73.70 27.24D,1 39.60 69.62 42.61R,1

MS+Miner [11] 20.96 58.79 31.85 19.36 71.89 29.94 41.88 70.99 44.99
MS+Miner∗ 23.68 64.89 34.51 21.29 80.84 31.15 42.25 71.90 45.15

MS+Miner† 23.68 64.89 34.50R,1 21.30 80.90 31.16R,1 42.94 72.29 45.90D,1

MS [11] 20.06 57.25 30.77 18.89 73.54 29.50 40.87 70.24 43.96
MS∗ 22.35 62.71 33.04 19.72 80.42 29.49 41.95 71.78 44.86

MS† 22.35 62.67 33.04R,1 19.73 80.51 29.50R,1 42.42 71.99 45.37D,1

NTXent [8] 19.61 58.05 30.56 16.92 68.19 27.81 40.14 69.67 43.35
NTXent∗ 22.67 64.60 33.58 17.90 76.91 28.15 41.03 71.02 44.06

NTXent† 22.66 64.65 33.57R,1 17.91 76.86 28.16R,1 41.65 71.34 44.75D,1

ProxyNCA[5] 19.39 56.99 30.18 18.85 73.91 29.43 41.90 71.51 44.86
ProxyNCA∗ 22.16 63.64 33.03 18.43 80.10 28.27 41.96 71.79 44.75

ProxyNCA† 22.16 63.55 33.03R,1 19.58 79.82 29.76D,1 42.80 72.48 45.65D,1

SNR [14] 20.18 57.98 30.96 17.04 69.54 27.49 40.34 69.45 43.38
SNR∗ 22.63 62.87 33.45 17.48 76.17 27.33 41.14 70.78 44.00

SNR† 22.62 62.96 33.45R,1 17.47 76.14 27.33R,1 41.43 70.84 44.35D,1

SoftTriple [7] 21.54 60.02 32.36 19.02 73.97 29.42 40.82 70.72 43.75
SoftTriple∗ 24.38 65.43 35.19 19.93 80.81 29.78 39.38 69.72 42.11

SoftTriple† 23.85 64.35 34.75R,1 19.92 80.86 29.78R,1 40.55 70.89 43.31D,1

Triplet[12] 18.29 54.95 29.09 15.35 64.92 26.14 38.50 67.96 41.75
Triplet∗ 21.16 61.52 32.07 16.90 74.86 27.21 40.33 70.49 43.33

Triplet† 21.16 61.61 32.08R,1 17.16 72.53 27.82D,1 40.45 70.28 43.55D,1
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Fig. 1. Comparison between the eigenvalues of the matrices generated by the diagonal
restraint under different restrain degree. The metric matrix is trained by ArcFace on
CUB.
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