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Abstract. Deep metric learning (DML) attempts to learn a representa-
tion model as well as a metric function with a limited generalization gap,
so that the model trained on finite known data can achieve similitude
performance on infinite unseen data. While considerable efforts have been
made to bound the generalization gap by enhancing the model architec-
ture and training protocol a priori in the training phase, none of them
notice that a lightweight posterior refinement operation on the trained
metric matrix can significantly improve the generalization ability. In this
paper, we attempt to fill up this research gap and theoretically analyze
the impact of the refined metric matrix property on the generalization
gap. Based on our theory, two principles, which suggest a smaller trace
or a smaller Frobenius norm of the refined metric matrix, are proposed
as guidance for the posterior refinement operation. Experiments on three
benchmark datasets verify the correctness of our principles and demon-
strate that a pluggable posterior refinement operation is potential to
significantly improve the performance of existing models with negligible
extra computation burden.

Keywords: deep metric learning, generalization, metric matrix, poste-
rior refinement

1 Introduction

Deep metric learning (DML) attempts to map instances onto an embedding
space, in which similar instances are closer to each other by means of a prede-
fined distance metric function. The most studied metric is Mahalanobis distance,
which is parameterized by a metric matrix learned automatically from the data.
To enhance the discriminability of the learned metric, recent works focus on the
constraints on the embedding space, such as the loss functions [6, 27, 26, 14, 21,
11, 20] which provide direct criterion to learn powerful embedding space, the
mining strategies [29, 7, 9, 25] which select training samples contributing signif-
icantly to the training procedure, and topology-based methods [30, 32] which
considers prior knowledge about the data manifold.
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Fig. 1: (a) Demonstration about the standard pipeline of training and testing
phase for DML models (in blue boxes and arrows). Posterior refinement (red box)
can serve as a data-free pluggable operation on the trained metric matrix before
the testing phase. (b) Comparison between the standard pipeline (evaluated by
the trained metric directly) and refining the metric matrix to one identity metric
matrix.

In the common scenarios of DML, there is no overlap in the data category
between the training set and the testing set, which implies extreme data distribu-
tion shift. Therefore, achieving good generalization ability of the learned metric
is one crucial problem for DML. The generalization ability can be quantified by
the generalization gap, which is the difference between the evaluation error on
the training set (called empirical risk error) and the whole space of possible data
(called expected risk error), measures the capacity that the metric learned on the
finite training set can yield approximate performance on infinite unseen data.
The generalization gap is proven to be influenced by the training hypothesis [4]
and model magnitude [8]. Accordingly, several methods with theoretical guar-
antee and practical achievement, including more effective training strategies [4,
13] and model regularizer [2, 18], are proposed to provide prior guidance during
the training phase to improve the generalization ability of the trained model.

Despite the efforts mentioned above to learn a more discriminative and gen-
erative metric, we uncover an important fact that, even though trained by state-
of-the-art DML methods, the trained metric matrix still generalizes no better
than an identity matrix as shown in Fig. 1(b). Compared to the standard evalu-
ation pipeline of DML, evaluating with identity metric matrix can be viewed as
an additional operation that refines the learned metric matrix before the testing
phase as shown in Fig. 1(a) (in this case, the learned metric matrix is refined to
be an identity matrix). Such discovery implies that there exists a certain refine-
ment operation on the learned metric matrix which can reduce the generalization
gap efficiently. We call these operations as posterior refinement, since they are
data-free methods that enhance the property of the metric matrix after the
training phase. As far as we know, there is no existing work investigating in
this subject. Therefore, in this paper, we try to fill up this research gap and
provide a theoretical explanation of our discovery. To this end, we establish an
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upper bound of the generalization gap, which suggests that a smaller trace or
smaller Frobenius norm of the refined metric matrix facilitates the generaliza-
tion ability and vice versa. Based on our formula of the generalization gap, two
principles are proposed to serve as the foundation of future posterior refinement
operations. The contributions of this paper are three-fold. (1) We indicate the
fact that posterior refinement on the metric matrix can improve generalization
ability in DML. (2) We provide two principles, which suggest a smaller trace or
smaller Frobenius norm of the refined metric matrix, to guide the conduction
of the posterior refinement operation and corresponding theoretical analysis to
support these principles. (3) We conduct comprehensive experiments to verify
the correctness of the proposed principles and demonstrate the effectiveness of
the posterior refinement operations.

2 Preliminaries

2.1 Notation

Let Dn = {(I1, y1), (I2, y2), . . . , (In, yn)} denote a dataset with n instances,
where Ii ∈ I is the input image sampled from an unknown distribution space I
and yi is the category label of Ii. For simplicity, we assume that each category
contains m instances and there are totally n/m different categories in Dn. Let f
denote a feature extractor model parameterized by θ, which maps an image to
a d dimensional embedding vector xi, denoted as xi := f(Ii, θ). We assume that
xi is independently and identically distributed (i.i.d.) sampled from an unknown
distribution space, xi ∈ X ⊆ Rd. Let Xn = [x1, x2, . . . , xn] denote the matrix
of embedding vectors extracted from the images in Dn, then Xn ∈ Xn ⊆ Rd×n.
Let M ∈ M ⊂ Rd×d denote a trainable metric matrix, where M denotes the
space of symmetric positive semi-definite matrices.

Given a dataset Dn, a feature extractor model f and a metric matrix M ,
the evaluation error of DML model, denoted as L(Xn,M), can be derived as
follows. Let sim(xi, xj ,M) denote the similarity between the embedding vectors
of two instances under the metric of M . Let T denote the set of all possible data
triplets collected from Dn, where each data triplet t = {i, j, k} ∈ T is composed
of the instance index of an anchor instance i, a positive instance j and a negative
instance k. sim(xi, xj ,M) is supposed to overpass sim(xi, xk,M). In practice,
the positive instance is generally sampled from the instance set sharing the same
category with the anchor, and the negative instance belongs to another different
category. Let l(t,M) = max{sim(xi, xk,M)−sim(xi, xj ,M), 0} denote the error
caused by one data triplet. When l(t,M) = 0, the similarity between positive
data pairs has surpassed that of negative pairs so there is no error. Otherwise, a
bigger l(t,M) implies a relatively higher degree that the model deviates from the
successful discrimination of data triplet t. Then, the evaluation error L(Xn,M)
can be expressed as the expected error for all data triplets

L(Xn,M) = E
t∈T

[l(t,M)] =
1

|T |
∑
t∈T

l(t,M) (1)
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where |T | denotes the number of data triplets in T .

Now we rewrite Eq.1 in the form of matrices. Let S = XT
n MXn denote the

pairwise similarity matrix of Xn, where each element of S is equal to the sim-
ilarity of two instances, sij = xT

i Mxj = sim(xi, xj ,M). For each data triplet
t = {i, j, k}, a n × n sparse sampling matrix Ct is generated, where ctji = −1,
ctki = 1 and all other elements are zero. Let A := SCt, so the diagonal elements
of matrix A are all zero except aii = sim(xi, xk,M) − sim(xi, xj ,M). Let Λt

denote a sparse matrix where λii = 1 if aii > 0 and λii = 0 otherwise. There-
fore, l(t,M) can be rewritten in the form of matrices as l(t,M) = tr(AΛt) =
tr(XT

n MXnC
tΛt).

However, consider one case that M1 = 2M2, then l(t,M1) = 2l(t,M2), but
the performance of M1 and M2 will be exactly the same because the similar-
ity ranking of data pairs are not changed. To eliminate the influence of the
scalar on the metric matrix, we introduce P (M) to l(t,M), defining the error
as l(t,M) := tr(XT

n MXnC
tΛt)/P (M), where P (M) represents a certain prop-

erty of the metric matrix. It is easy to verify that in the case of M1 = 2M2, if
we define the property function as the Frobenius norm P (M) := ∥M∥F , then
l(t,M1) = l(t,M2). Thus, in this paper we will only discuss the reduction of
generalization gap on condition that P (M) is fixed.

Then, L(Xn,M) can be rewritten as

L(Xn,M) =
1

P (M)|T |
∑
t∈T

tr(XT
n MXnC

tΛt) (2)

=
1

P (M)|T |
tr(XT

n MXn(
∑
t∈T

CtΛt))

=
1

P (M)|T |
tr(XT

n MXnCn)

where Cn :=
∑

t∈T CtΛt is named as the similarity sampling matrix for Dn.

In the general protocol of DML, two datasets sharing non-overlap in class
category are collected, namely the training set Dtr and the testing set Dte. For
simplicity, in this paper the instance numbers ofDtr andDte are both assumed to
be n and each category is assumed to contain m instances, which is generally the
case of DML benchmark datasets as described in Section 4.1. This assumption
means that T and |T | are exactly the same for Dtr and Dte. Therefore, in the
rest of this paper we will not distinguish these symbols separately for the training
set and testing set.

2.2 Generalization gap of DML

Given a training set Dtr and a metric matrix M , the empirical risk error is
defined as the evaluation error of the current model on Dtr, which can be rep-
resented as empirical risk error := L(Xtr,M). According to the empirical
risk minimization (ERM) optimization principle, the task of the DML training
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procedure is to obtain optimal parameters for feature extractor function θ∗ and
an optimal metric matrix M∗ such that

θ∗,M∗ = argmin
θ,M

L(Xtr,M)

The training procedure of the DML model attempts to minimize the empirical
risk error via a certain optimization algorithm, such as gradient descent (GD).

Since we concern more about the performance of the trained model on unseen
data, the expected risk error, which refers to the evaluation error on the whole
space of all possible data, is wished to approximate the empirical error which
has been reduced during the training procedure. Therefore, a good DML model
should have a small generalization gap, which is the difference between the em-
pirical risk error and expected risk error. Let L(X ,M∗) denote the expected risk
error, the generalization gap G(X ,M∗) of DML is denoted as

G(X ,M∗) := L(X ,M∗)− L(Xtr,M
∗) (3)

The previous works [8, 18, 4, 2] attempt to study G(X ,M∗) directly. To reach
a tighter bound of G(X ,M∗), these works study the impact of property of M∗

and θ∗ on G(X ,M∗), proposing restraints or training protocols to adjust the
property of optimalM∗ a priori in the training phase. Orthogonal to these works,
in this paper we investigate in the impact of posterior refinement operation on
the metric matrix. Suppose that an optimal metric matrixM∗ and corresponding
θ∗ have been obtained via certain optimization procedure, before evaluating the
learned metric in the testing phase, we further refine the trained metric matrix
M ′ = g(M∗) by a matrix refinement operation g : M → M. M ′ is assumed
to be still symmetric positive semi-definite, which is the prerequisite that one
square matrix can serve as a metric matrix. Then, our objective generalization
gap G(X ,M ′,M∗) is represented as

G(X ,M ′,M∗) := L(X ,M ′)− L(Xtr,M
∗) (4)

which is the difference between the expected risk error under the metric of M ′

and the empirical error under the metric of M∗. Since by definition, posterior
refinement will not consider the improvement of θ∗ or M∗, θ∗ and M∗ can be
regarded as constant variables, thus L(Xtr,M

∗) can be regarded as one definite
and constant number. Then the upper bound of G(X ,M ′,M∗) is purely deter-
mined by L(X ,M ′). In the next section, we will analyze the upper bound of
L(X ,M ′), which has only one constant difference to the generalization gap.

3 Upper Bound of the Generalization Gap

In this section, we will derive the formula of the expected risk error under the
posterior refined metric matrix L(X ,M ′), and establish the link from its upper
bound to the property of the refined metric matrix. Finally, based on our the-
orem, we will point out two principles to reduce the upper bound of L(X ,M ′),
which also lowers the upper bound of the generalization gap.
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3.1 Formula of Expected Risk Error

Consider the general evaluation pipeline to evaluate a trained metricM on distri-
bution X . First, n instances are newly sampled to form the reference set denoted
as Dref . None of the instances in Dref has been used for training. Let Xref =

[xref
1 , xref

2 , . . . , xref
n ] denote the embedding matrix of Dref generated by feature

extractor function f . In practice, the testing set can be regarded as the reference
set. Then, let xi

′ ∈ X denote a random variable which is supposed to share the
same category as xref

i . Let Xi = [xref
1 , xref

2 , . . . , xref
i−1, xi

′, xref
i+1, . . . , x

ref
n ] denote

the embedding matrix which is prepared to evaluate the error caused by xi
′ and

let Ci denote the corresponding similarity sampling matrix. Xi only differs Xref

in the ith column. Then, the error on random variable xi
′ can be denoted as

L(Xi,M
′). Therefore, the expected risk error can be represented as the expec-

tation of the error caused by all xi
′.

L(X ,M ′) = E
i
[L(Xi,M

′)] =
1

n

n∑
i=1

L(Xi,M
′) (5)

For L(Xi,M
′), notice that Xi is a finite set with only one random variable

xi
′. Then, L(Xi,M

′) can be represented as the expectation over this random
variable

L(Xi,M
′) =

1

P (M ′)|T |

∫
xi

′∈X
p(xi

′)tr(XT
i M

′XiCi)dxi
′ (6)

where p(xi
′) is the probability density function (PDF) of xi

′. Carrying Eq.6 into
Eq.5, we get

L(X ,M ′) =
1

nP (M ′)|T |

n∑
i=1

∫
xi

′∈X
p(xi

′)tr(XT
i M

′XiCi)dxi
′ (7)

Let X ′ = [x1
′, x2

′, . . . , xn
′] denote the embedding matrix of n random vari-

ables. Since xi
′ is i.i.d, then p(X ′) = p(x1

′)p(x2
′) . . . p(xn

′). Also notice that
∀i,

∫
xi

′∈X p(xi
′)dxi

′ = 1, thus we can always attach an additional integral on xj
′

such that the following equation holds∫
xi

′∈X
p(xi

′)tr(XT
i M

′XiCi)dxi
′ =

∫
xi

′∈X ,xj
′∈X

p(xi
′)p(xj

′)tr(XT
i M

′XiCi)dxi
′dxj

′

(8)
Then, Eq.7 can be further rewritten as

L(X ,M ′) =
1

nP (M ′)|T |

n∑
i=1

∫
x1

′,...,xn
′∈X

p(x1
′) . . . p(xn

′)tr(XT
i M

′XiCi)dx1
′ . . . dxn

′

=
1

nP (M ′)|T |

n∑
i=1

∫
X′∈Xn

p(X ′)tr(XT
i M

′XiC)dX ′

=

∫
X′∈Xn

p(X ′)
1

n

n∑
i=1

(
1

P (M ′)|T |
tr(XT

i M
′XiCi)

)
dX ′. (9)
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The last equality switch the order of 1
n

∑n
i=1 and

∫
X′∈Xn p(X ′), because these

two components are separable.
Eq. 9 points out the difference between the evaluation error on the testing set

L(Xte,M
′) and the expected error L(X ,M ′). Consider the standard evaluation

procedure of DML models. For each instance in the testing set, the rest of the
testing set is regarded as the reference set. Then the set prepared to evluate the
error of ith testing instance is Xtei = [xref

1 , . . . , xref
i−1, x

te
i , xref

i+1, . . . x
ref
n ] = Xte =

Xref , here by assumption the testing set is used as the reference set. Thus the er-
ror caused by the ith testing instance is L(Xtei ,M

′) = 1
P (M ′)|T | tr(X

T
refM

′XrefC).

The evaluation error on the testing set is the expected error across all test-

ing instances, denoted as L(Xte,M
′) = 1

n

∑n
i=1

(
1

P (M ′)|T | tr(X
T
refM

′XrefC)
)
=

1
P (M ′)|T | tr(X

T
refM

′XrefC). Therefore, from Eq. 9, we known that actually, there

is a gap between L(Xte,M
′) and L(X ,M ′), where L(X ,M ′) further requires an

integral over X ′. Such a gap is caused by the oversight of the current evaluation
procedure that, when evaluating the error of xte

i , it should be regarded as a
random variable instead of one fixed variable. Therefore, to give a more funda-
mental theoretical analysis of the generalization gap, we will analyze and try to
reduce the upper bound of L(X ,M ′) instead of L(Xte,M

′).
For the upper bound of L(X ,M ′), we only need to analysis the upper bound

of 1
n

∑n
i=1

(
1

P (M ′)|T | tr(X
T
i M

′XiCi)
)
, since in Eq. 9 (1) p(X ′) is determined

by the intrinsic distribution of image space and the model parameters θ∗, thus
changing the property of M ′ will not influence p(X ′). So we neglect the impact
of p(X ′) on the upper bound of L(X ,M ′). (2) p(X ′) is a non-negative function,
so the upper bound of L(X ,M ′) is positively correlated to the upper bound of
1
n

∑n
i=1

(
1

P (M ′)|T | tr(X
T
i M

′XiCi)
)
. Then, in the following the upper bound of

1
n

∑n
i=1

(
1

P (M ′)|T | tr(X
T
i M

′XiCi)
)
will be linked to the property of M ′.

3.2 Upper Bound of Expected Error

In the following the uniform upper bound u of tr(XT
i M

′XiCi)/P (M ′) across the
index i will be derived, denoted as tr(XT

i M
′XiCi)/P (M ′) ≤ u. Then the objec-

tive formula can be upper bounded by 1
n

∑n
i=1

(
1

P (M ′)|T | tr(X
T
i M

′XiCi)
)
≤ u

|T | .

Therefore, eliminating u can reach a tighter upper bound of expected risk error
L(X ,M ′). Suppose |xi

′ − xref
i |2 ≤ ϵ1, where |x|2 denote the L2 norm of vector

x. Let ∥X∥F denote the Frobenius norm of matrix X. First, consider the most
simple and general case that P (M ′) := ∥M ′∥F , then

Theorem 1. tr(XT
i M

′XiCi)/∥M ′∥F is upper bounded by

tr(Xi
TM ′XiCi)/∥M ′∥F ≤ δ1δ2tr(M

′)/∥M ′∥F (10)

where δ1 := (∥Xref∥F + ϵ1)
2, δ2 :=

√
n
m (m− n)2 + n2−n

m2 (m− 1)2

Proof. See Supplementary A.2
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Except tr(M ′)/∥M ′∥F , the dominating factors of other components, includ-
ing ϵ1, δ1, δ2, are not related to the property of M ′. Observing Eq. 10, it is easy
to verify that reducing the trace of the learned metric matrix will result in a
relative smaller tr(M ′)/∥M ′∥F . Then the first principle to guide the posterior
refinement operation on the metric matrix can be summarized as

Principle 1 If the refined matrix is symmetric positive semi-definite, then re-
ducing the trace of the learned metric matrix leads to a tighter upper bound for
expected risk error under the metric of the refined matrix.

Theorem 1 points out the correlation of the generalization ability and the
trace of the refined metric matrix. Since tr(M ′) can also eliminate the influence
of matrix scalar, in the following, we attempt to derive another upper bound of
tr(XT

i M
′XiCi)/P (M ′) when P (M ′) := tr(M ′). The following theorem holds

Theorem 2. tr(XT
i M

′XiCi)/tr(M
′) is upper bounded by

tr(XT
i M

′XiCi)/tr(M
′) ≤ δ3∥M ′∥F /tr(M ′) (11)

where δ3 = ϵ1
√
δ1δ2 + ϵ21δ2 + δ2∥Xref∥2F .

Proof. See supplementary A.3.

The Theorem 2 is simple and straightforward. Since δ3 is not dominated by
the metric matrix anymore, it is easy to draw the following second principle

Principle 2 If the refined matrix is symmetric, then fixing the trace and re-
ducing the Frobenius norm of the learned metric matrix leads to a tighter upper
bound for expected risk error under the metric of the refined matrix.

4 Experiments

4.1 Experiment Setup

Dataset We conduct experiments on three widely-used benchmark datasets for
deep metric learning: CUB-200-2011 (CUB) [28], Cars196 (Cars) [12] and Stan-
ford Online Products (SOP) [16]. For CUB, we use the first half split of 100
classes with 5, 864 images for training and 5, 924 images from the last half split
for testing. Similarly, for Cars, 8, 054 images of the first 98 classes are used for
training and 8, 131 images of the rest classes are used for testing. For SOP, we
follow the official dataset split using the first 11, 318 classes with 59, 551 images
for training and the rest 11, 316 classes with 60, 502 instances for testing. There-
fore, for the training set and testing set, neither the total instance number nor
the class number differs much, supporting our assumption about DML datasets
in Section 2.1.
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Trained Models All the evaluated models have already been trained under the
constraint of a certain loss function following the training protocols on powerful-
benchmarker [15], a fair comparison platform for deep metric learning. To be
more specific, BN-Inception [10] pretrained on ImageNet dataset [3] is adopted
as the backbone model with output embedding dimension of 1024. A Multi-layer
Perceptron (MLP) as the neck model further reduces the embedding dimension
to 128. All mini-batches are constructed by arbitrarily sampling 32 (or 8) classes
and 1 (or 4) instances per class for training data, resulting in a mini-batch size
of 32. As for image augmentation, all images are resized into 256 × 256 pixels
and then randomly cropped to patches of 227× 227 pixels during training. RM-
Sprop [22] under a fixed learning rate of 10−6 is employed to train the backbone
model and the neck model simultaneously. The training is terminated when no
improvement is gained on the validation set. 50 iterations of Bayesian optimiza-
tion are run to find the best hyperparameters of the DML methods compared in
[15]. Each iteration consists of 4-fold cross-validation. Therefore, the best per-
formance yielded by the Bayesian optimization measures the upper bound of
the discrimination ability that the corresponding DML method can achieve. We
refer the readers to [15] for more details about the training protocol.

Evaluation Protocol Each run of the experiment consists of 4-fold cross-
validation, generating 4 different packages of model, each model package contains
the checkpoints of one backbone model and one neck model. For each fold, the
accuracy of the corresponding model package is obtained, and therefore we can
obtain 4 different accuracies for each DML method. Then the average of these
4 accuracies is reported as the final accuracy for this run.

For each DML method, the hyperparameters and the corresponding model
checkpoints for the highest-accuracy run are provided by [15]. We directly fetch
these checkpoints and follow the above-mentioned evaluation protocol to com-
pare the testing accuracy under different posterior refinement methods.

4.2 Posterior Refinement Methods

From the view of deep metric learning, the backbone model serves as the feature
extractor, mapping an input sample Ii to an embedding vector xi ∈ Rd. Let
W ∈ Rd′×d denote the weight of the neck model which conducts linear dimension
reduction from d to d′. The similarity of two samples (Ii, Ij) can be represented
as the inner product of two d′ dimensional embeddings, denoted as xT

i (W
TW )xj .

Therefore, the symmetric positive semi-definite matrix M∗ := WTW can serve
as the metric matrix, which is trainable as model parameters during the training
procedure. To verify the correctness of our principles, we implement several
refinement operations on the trained metric matrix M∗, namely

1. Diagonal Restraint which randomly restrains the diagonal elements of
M∗ to be zero. To be more specific, given a hyperparameter 0 ≤ r ≤ 1, we
randomly set one non-zero diagonal element of M∗ to be zero and repeated
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this operation until tr(M ′) ≤ (1−r)tr(M∗). In the extreme case when r = 1,
all the diagonal elements ofM∗ are set to zero. Diagonal restraint is prepared
to evaluate the correctness of Principle 1.

2. Random Restraint which randomly restrains the non-diagonal elements
of M∗ to be zero. Analogous to diagonal restraint, we randomly select an
index pair {i, j}(i ̸= j), and set two elements to be zeros mij = 0, mji = 0.
This operation is repeated until ∥Moff

′∥F ≤ (1 − r)∥M∗
off∥F , where Moff

denote the off-diagonal part of the matrix. Random restraint is prepared
to evaluate the correctness of Principle 2. To decouple the effect of matrix
trace, we avoid setting the diagonal elements to zero, so that the accuracy
diversification can be purely traced to ∥M ′∥F .

3. Identity Refinement which set M ′ to be a d×d identity matrix regardless
of M∗.

The above three restraint methods can satisfy the precondition in two prin-
ciples as discussed in Section B.2, thus they can be used to verify the correctness
of two principles. For diagonal restraint and random restraint, the hyperparam-
eter r controls the degree to which the matrix restraint is carried out. A relative
larger r requests that we have to restrain more elements of M∗ to be zero, re-
sulting in smaller tr(M ′) for diagonal restraint, or smaller ∥M ′∥F for random
restraint.

After the refinement operation, on the testing set we collect the embedding
vectors generated by the trunk model, compute the pairwise similarity under
the refined metric matrix, and compute the accuracy via a KNN classifier just
as the standard evaluation pipeline.

Table 1: Comparison between the trained metric, identity matrix (marked as
∗) and the best refined matrix under random restraint or diagonal restraint
(marked as †). The superscript D/R, r represents such best refinement method
isDiagonal orRandom restraint with restraint degree r. The best and the second
best metric for each DML method is highlighted in red and blue, respectively.

Methods
CUB Cars SOP

MAP Pre@1 RP MAP Pre@1 RP MAP Pre@1 RP

ArcFace[23] 21.51 60.12 32.39 17.48 72.88 27.66 42.23 71.98 45.15
ArcFace∗ 24.20 65.06 35.05 18.10 78.79 27.78 42.18 72.28 44.93

ArcFace† 24.18 64.90 35.03R,1 18.66 78.80 28.55D,1 43.08 73.02 45.88D,1

ProxyNCA[14] 19.39 56.99 30.18 18.85 73.91 29.43 41.90 71.51 44.86
ProxyNCA∗ 22.16 63.64 33.03 18.43 80.10 28.27 41.96 71.79 44.75

ProxyNCA† 22.16 63.55 33.03R,1 19.58 79.82 29.76D,1 42.80 72.48 45.65D,1

Triplet[27] 18.29 54.95 29.09 15.35 64.92 26.14 38.50 67.96 41.75
Triplet∗ 21.16 61.52 32.07 16.90 74.86 27.21 40.33 70.49 43.33

Triplet† 21.16 61.61 32.08R,1 17.16 72.53 27.82D,1 40.45 70.28 43.55D,1
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r r r

Triplet

r r r

ProxyNCA

MAP Precision@1 RP

r r r

ArcFace

Fig. 2: Ablation of the restraint degree r for diagonal restraint on three DML
methods. From left to right column enumerates the accuracy of MAP, Preci-
sion@1 and RP. Models are trained by ArcFace, ProxyNCA and Triplet.

4.3 Problem Observation

Recall that the motivation of this paper is founded on one observation that the
identity matrix generalizes better than the trained metric matrix. To reveal this
observation more comprehensively and specifically, in Table 1 we compare the
performance of the trained metric, the identity matrix and the best performance
of diagonal restraint or random restraint based metric matrix among three DML
methods over three benchmark datasets. Of the three methods, ArcFace [23] is
the SOTA method on CUB, ProxyNCA is a classical classification-based method,
and Triplet loss is one classical pair-based method. Please refer to supplementary
for full comparison across all methods in [15]. As can be clearly observed, for
each DML method, the performance of identity matrix or restrained based metric
has a remarkable margin in advance of the trained metric. Roughly speaking,
the refined matrices improves MAP by 3%, precision@1 by 5%, RP by 3% on
CUB, MAP by 1%, precision@1 by 7%, RP by 0.5% on Cars, and MAP by 1%,
precision@1 by 2%, RP by 1% on SOP. Since identity refinement can be regarded
as one special case of posterior refinement operation, we claim that there exist
lightweight posterior refinement operations which can boost the performance of
the trained metric significantly.

4.4 Verification of two Principles

Principle 1 To evaluate the correctness of principle 1, we conduct ablation
study about the restraint degree r for diagonal restraint. A relatively larger r
means that we have to set more diagonal elements of M ′ to be zero, leading to
a relatively smaller tr(M ′)/∥M ′∥F . According to Principle 1, this will result in
a tighter upper bound for the expected risk error, thus increasing the accuracy
in practice. Therefore, we conduct diagonal restraint under different restraint
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r r r

Triplet

r r r

ProxyNCA

MAP Precision@1 RP

r r r

ArcFace

Fig. 3: Ablation of the restraint degree r for random restraint on three DML
methods. From left to right column enumerates the accuracy of MAP, Preci-
sion@1 and RP. Models are trained by ArcFace, ProxyNCA and Triplet.

degrees r on the metric matrix trained by ArcFace, ProxyNCA and Triplet on
CUB, and then compute the accuracy under the metric of the refined metric.
As depicted in Fig. 2, better performance is achieved as r increases on three
datasets consistently, which exactly follows the tendency in Principle 1.

Principle 2 A relatively larger restraint degree r for random restraint leads to
a smaller Frobenius norm of M ′ while tr(M ′) is fixed. According to Principle 2,
this will lead to a tighter upper bound of the generalization gap, thus reflected
as advanced performance. As illustrated in Fig. 3, all the DML methods benefit
from a relative larger r. Also, notice that in the extreme case of r = 1 when all
off-diagonal elements are all restrained to zero, random restraint converges to
an identity matrix. Such observation implies the reason that the identity matrix
generalizes better than the trained matrix because it has a reduced Frobenius
norm. In the next we will give a more concrete discussion on the identity matrix.

4.5 Discussion of Identity Matrix

Based on the theoretical analysis and experimental results above, we attempt
to explain the most original question that why an identity matrix generalizes
better than the trained metric. Let M∗ denote the metric matrix trained by
ArcFace on CUB, and I denote an identity matrix having the same shape as
M∗. In practice, tr(M∗) = 42.72 and ∥M∗∥2F = 16.03. In the following, we will
compare the property of M∗ and aI, where a > 0 is a scalar to preserve several
properties consistent between M∗ and aI, so that we can decouple the impact
of two objective factors (trace and Frobenius norm) discovered in this paper. A
numerical analysis to verify whether aI follows two principles is given as
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1. Principle 1 To control ∥aI∥F = ∥M∗∥F , then we have a = ∥M∗∥F√
1024

. Thus

the trace of tr(aI) =
√
1024∥M∗∥F > tr(M∗), which means that the identity

matrix actually violates Principle 1.

2. Principle 2 To control tr(aI) = tr(M∗), then we have a = tr(M∗)
1024 . Thus

the Frobenius norm of ∥aI∥F = tr(M∗)
32 < ∥M∗∥F . Therefore, identity matrix

follows Principle 2. Such conclusion can also be confirmed by such observa-
tion that, for random restraint when r = 1, all off-diagonal elements are
restrained to zero, then the refined matrix approximates an identity ma-
trix. Correspondingly, as depicted in Fig. 2 random restraint will converge
to identity matrix as restraint degree increases.

Therefore, one conclusion can be drawn that an identity matrix generalizes
better than a trained metric because it has a limited Frobenius norm. It is worth
noticing that one good posterior refinement operation does not have to follow
two principles at the same time. As long as one principle is followed, a relatively
tighter upper bound of the generalization gap can be established.

5 Related Work

5.1 Classical DML Methods

Deep metric learning attempts to learn a powerful embedding space where in-
stances can be discriminated based on the inter-instance similarity. Early metric
learning losses, such as contrastive loss [6] and triplet loss [27], construct in-
stance pairs from the training set, maximizing the similarity of positive pairs
while minimizing that of negative ones. These methods are known as pair-based
method. Some of the recent pair-based methods attempt to consider adaptive
margin for flexible expected gap between the similarity of positive pairs and
negative pairs [24, 29], whereas others construct more data pairs to consider
denser relationships among data [16, 19]. At the same time, some studies [26, 20]
provide efficient approaches for collecting and weighting informative pairs based
on gradient analysis. Meanwhile, other methods leverage concepts defined in
signal processing to devise new similarity functions [31, 1]. However, pair-based
methods are known to suffer from the slow convergence speed, which is caused
by the manner of learning on enormous but low informative data pairs [29].

In contrast to pair-based methods, another mainstream of studies, called
proxy-based method, resolve such problem by introducing learnable category rep-
resentations (called proxies) into the organization of the loss formula. These
methods only consider data-to-proxy relations, which significantly reduces the
computation burden since the number of objective proxy-data pairs is much
less than data pairs. ProxyNCA [14] is one of the first studies to introduce this
paradigm. ProxyNCA++ [21] and proxy anchor loss [11] integrate several im-
provements into Proxynca, including backbone enhancement, carefully designed
learning rate scheduler, temperature scaling and denser proxy-to-data relations.
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Moreover, GS-TRS loss [5] and softtriple [17] loss attempt to construct multiple-
center embedding structure such that intra-class variance and inter-class diver-
sity can be handled separately.

5.2 Generalization Bound of DML

Despite the remarkable success the popular DML methods have achieved, there
are no theoretical guarantees that these methods have strong generalization abil-
ity, which refers to the capacity that the trained metric can yield approximate
performance on unseen data. Recently, a few works attempt to theoretically ana-
lyze the generalization ability of DML methods and propose several principles to
reduce the upper bound of the generalization gap. Some of these works propose
regularizers on the learned metric. Cao et al. [2] first proposes to learn a sparse
metric via L1 norm regularization. Roth et al. [18] conduct comprehensive ex-
periments to show that ranking-based DML methods are hurt by the excessive
compressed level of instance representation, thus proposing a simple technique
to regularize the compression of the learned embedding space. Others consider
the impact of several important components of the backbone model. Huai et al.
[8] involve dropout into the generalization bound, thus proving the benefit of
taking an adaptive dropout into account during the training process. Further,
Dong et al. [4] suggests that early stopping as well as the Lipschitz smooth loss
function and classifier has a positive influence on the generalization error.

The existing DML generalization theorems all assume that the trained metric
will be directly employed in evaluation. Therefore, they propose methods to in-
troduce the discovered prior knowledge about the generalization into the training
procedure to enhance the current DML pipeline. Orthogonality to these meth-
ods, in this paper we investigate in the impact of the posterior refinement on the
metric matrix, which is a lightweight data-free operation but also significantly
improves the generalization ability of the trained metric.

6 Conclusion

In this paper, we uncover an observation that, before the testing phase, a lightweight
posterior refinement operation on the learned metric can significantly improve
the generalization ability of the deep metric learning models. Based on the the-
oretical analysis of the generalization bound the refined matrix, we propose two
simple principles to guide the refinement operations, and conduct experiments on
three benchmark datasets to verify the correctness of these principles. The the-
ories and experiments prove that posterior refinement can serve as a lightweight
plug-in to boost the performance of DML models dramatically.
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