
Advanced Null Space 19

Appendix: Balancing Stability and Plasticity through
Advanced Null Space in Continual Learning

The content of the appendix is arranged as follows:

• A Experiments
• A.1 Implementation Details
In this part, we will introduce the low-rank approximation, details of
α(t), kl, and experimental setup.

• A.2 Additional Experimental Results
The additional experimental results include the comparison of running
time, and exploration of plasticity and stability.

• B Theoretical Analysis. In this section, we provide the proof of Theorems
1 and 2, respectively.

A Experiments

This section provides the implementation details in Appendix A.1 and the ad-
ditional experimental results in Appendix A.2.

A.1 Implementation Details

Low-Rank Approximation
Now we describe how to obtain Ul by solving the problem of low-rank approxi-

mation for the concatenation matrix Ũl = [Ul
pre,U

l
cur] ∈ Rdl×n0 :

minimizeÛl ∥Ũl − Ûl∥F
s.t. Rank(Ûl) ≤ kl, l ∈ {1, ..., L}, (6)

where dl is the dimension of the feature at l-th layer and n0 is the sum of
the colomns of Ul

pre and Ul
cur. Let Ū, Σ̄, V̄⊤ = SVD(Ũl), where Σ̄ is a diagonal

matrix sorted by singular values. Then the low-rank approximation matrix Ûl =

UlΣl(Vl)⊤, where Ul ∈ Rdl×kl , Σl ∈ Rkl×kl ,Vl ∈ Rn0×kl ; Σl is a diagonal
matrix sorted by the kl largest singular values, and Ul and Vl are constructed
by the singular vectors corresponding to the kl largest singular values in Ū and
V̄, respectively. Then Ul is the objective matrix whose columns span the shared
low-rank null space.
Details of α(t)
Instead of solving the constraint ∥X l

t−1∆wl∥1 ≤ ϵ(t), we use the function α(t)
to replace ϵ(t) to balance the stability and plasticity. We propose non-uniform
constraint strength, which linearly decreases with the task number t, i.e., αt =
αmax − t−1

T−1 (αmax − αmin), where αmax and αmin are the values of α(t) for the
first and last task, respectively.
Details of kl
When computing the shared low-rank null space, it is hard to set kl for all



20 Y. Kong et al.

tasks and layers manually because we lack prior knowledge about the features
at each layer. Therefore, we use a task-adaptive and layer-adaptive strategy to
select kl, i.e., we use the strategy of “Avg” in the paper to select kl for all
experiments. Specifically, assume that the dimensions of Ul

pre and Ul
cur are p

and q, respectively. Then “Avg” means that k = Avg(p, q) × k0, where Avg(·)
computes the average value of p and q, and k0 is used to adjust the value of
k. Note that we use the same operation for each layer. Therefore, we use k to
denote kl at each layer. Because the dimensions of the previous null space and
the current candidate null space at each layer are determined by each task and
the features at that layer, obtaining k by such strategy is task adaptive and
layer-adaptive.

Datasets
The CIFAR100 dataset contains 100 classes, each of which has 500 training color
images and 100 testing color images. TinyImageNet is a 200 classes dataset which
contains 100,000 training images and 10,000 validation images and consists of
64× 64 color images.
Experimental Setup
We use Pytorch7 to implement the proposed algorithm and other experiments.
The optimizer is Adam. Following [49], we use EWC [17] to regularize the pa-
rameters of batch normalization layer and set the regularization coefficient to
100. The learning rates for the first task are 2×10−4, 1×10−4, and 1×10−4 for
10-Split CIFAR-100, 20-Split CIFAR-100, and 25-Spilt TinyImageNet, respec-
tively. Then the learning rate after the first task is set to 1×10−4, 5×10−5, and
1 × 10−4, respectively. After that, we delay the learning rate at epoch 30 and
60 by multiplying with 0.5. The total epoch is 80 for all benchmarks. The batch
size of 10-Split CIFAR-100, 20-Split CIFAR-100, and 25-Spilt TinyImageNet are
32, 16, and 16, respectively. We set k0 = 0.9 for all benchmarks. The αmax are
160, 180, and 20, and αmin are 150, 150, and 5 for 10-Split CIFAR-100, 20-Split
CIFAR-100, and 25-Spilt TinyImageNet, respectively.

A.2 Additional Experimental Results

Comparison of Running Time In this part, we compare the running time
of the proposed method with Adam-NSCL [49], the most related baseline, to
validate that the time consumption of the proposed method is comparable. The
device is a single Nvidia Tesla V100 (16GB) GPU. As shown in Table 4, the run-
ning time of AdNS is comparable to Adam-NSCL on all benchmarks, validating
that the time consumption of low-rank approximation is moderate.

Plasticity and Stability The effect of k. Like previous works [39], we use
Learning Accuracy (LA), which is the accuracy of the model on a task right
after it finishes training the task, to measure the plasticity. Higher LA indicates

7 https://pytorch.org/

https://pytorch.org/


Advanced Null Space 21

Table 4. Comparison of running time (s). The device is a single Nvidia Tesla V100
(16GB) GPU. The results of 10-Split CIFAR-100 and 20-Split CIFAR-100 are the
average running time over five repetitions, and the results of 25-Split TinyImageNet
are over three repetitions.

Method 10-S-CIFAR-100 20-S-CIFAR-100 25-S-TinyImageNet

Adam-NSCL [49] 5167 ± 5 23175 ± 416 32676 ± 1237
AdNS (Ours) 5623 ± 13 26286 ± 501 33462 ± 172

0.8 0.85 0.9 0.95 1.0
k0

77

78

79

80

81

LA
 [

]

0.8 0.85 0.9 0.95 1.0
k0

6

5

4

3

2

BW
T 

[
]

Max
Avg
Min

0.8 0.85 0.9 0.95 1.0
k0

75.0

75.5

76.0

76.5

AC
C 

[
]

Fig. 5. The effect of k. Higher BWT indicates less forgetting (high stability) and higher
LA indicates higher plasticity. The dataset is 10-Split CIFAR-100. [↑] higher is better.

better plasticity. In formal, LA is defined by

LA =
1

T

T∑
i=1

Ai,i, (7)

where T is the total number of tasks, and Ai,i is the accuracy of task Ti after
training on the task Ti sequentially. The larger the LA, the better the plasticity
of the model. As shown in Fig. 5, for all strategies, with the increase of k0, the
plasticity becomes better while the forgetting becomes worse. The ACC first
increases and then decreases due to the stability-plasticity trade-off. The results
agree with the theoretical findings. With the increase of k0, k becomes larger
and the rank of the shared low-rank null space is larger. According to Theorems
1 and 2, it would result in better plasticity and worse forgetting. Finally, the
performance of ACC will first increase and then decrease due to the stability-
plasticity dilemma.

The effect of α. Larger α indicates looser constraint in (3), i.e., ∥X l
t−1∆wl∥1 ≤

ϵ(t). As shown in Fig. 6, with the increase of α, LA becomes higher while BWT
becomes worse. ACC first increases and then decreases as a result of the stability-
plasticity dilemma.

The plasticity of different values of β. Now we validate that intra-task
distillation is beneficial to improve the performance of the current task. Fig. 7



22 Y. Kong et al.

50 100 150 200 250 300 350 400

77.4

79.2

81.0

LA
 [

]

50 100 150 200 250 300 350 4005

4

3

2

BW
T 

[
]

50 100 150 200 250 300 350 400
75

76

77

AC
C 

[
]

Fig. 6. The effect of α. Higher BWT indicates less forgetting (high stability) and higher
LA indicates higher plasticity. The dataset is 10-Split CIFAR-100. [↑] higher is better.

0.0 0.3 0.5 0.8 1.0 1.3 1.5 1.8 2.0
78.4

78.8

79.2
LA

 [
]

Fig. 7. The plasticity of different values of β. Higher LA indicates higher plasticity.

shows that with proper β, the LA can be improved, validating the effectiveness
of intra-task distillation on improving the performance of the current task.

B Theoretical Analysis

In this part, we present the proof of Theorems 1 and 2, respectively.

Lemma 2. Assume that f(x) is L-smooth, let learning rate be η ≤ 1
L and the

update be xt+1 = xt − η∇h(xt), we have

η

2
∥∇f(xt)∥22 ≤f(xt)− E[f(xt+1)] +

Lη2

2
E∥∇h(xt)− E[∇h(xt)]∥22

+
1

2
η∥∇f(xt)− E[∇h(xt)]∥22.

Proof. Based on the definition of the smoothness of f(x) and the update of
xt+1 = xt − η∇h(xt), we obtain,

f(xt+1) =f(xt − η∇h(xt))

≤f(xt) + ⟨∇f(xt), xt+1 − xt⟩+
L

2
∥xt+1 − xt∥22

=f(xt)− ⟨∇f(xt), η∇h(xt)⟩+
L

2
η2∥∇h(xt)∥22.

Taking expectation on both sides, we

E[f(xt+1)] ≤f(xt)− E⟨∇f(xt), η∇h(xt)⟩+
L

2
η2E∥∇h(xt)∥22

=f(xt)− η⟨∇f(xt),E[∇h(xt)]⟩+
L

2
η2E∥∇h(xt)−E[∇h(xt)] + E[∇h(xt)]∥22



Advanced Null Space 23

=f(xt)−
1

2
η
(
∥∇f(xt)∥22 + ∥E[∇h(xt)]∥22 − ∥∇f(xt)− E[∇h(xt)]∥22

)
+
Lη2

2

(
∥E[∇h(xt)]∥22+E∥∇h(xt)−E[∇h(xt)]∥22+2E⟨E[∇h(xt)],∇h(xt)−E[∇h(xt)]⟩

)
=f(xt)−

1

2
η
(
∥∇f(xt)∥22 + ∥E[∇h(xt)]∥22 − ∥∇f(xt)− E[∇h(xt)]∥22

)
+

L

2
η2 (∥E[∇h(xt)]∥22 + E∥∇h(xt)− E[∇h(xt)]∥22

)
=f(xt)−

1

2
η∥∇f(xt)∥22 −

(
1

2
η − 1

2
Lη2

)
∥E[∇h(xt)]∥22

+
1

2
Lη2E∥∇h(xt)− E[∇h(xt)]∥22

+
1

2
η∥∇f(xt)− E[∇h(xt)]∥22,

where the second equation is based on the fact that a2 + b2 − (a − b)2 = 2ab.
By arranging, we have

1

2
η∥∇f(xt)∥22 +

(
1

2
η − 1

2
Lη2

)
∥E[∇h(xt)]∥22 ≤f(xt)− E[f(xt+1)]

+
1

2
Lη2E∥∇h(xt)− E[∇h(xt)]∥22

+
1

2
η∥∇f(xt)− E[∇h(xt)]∥22.

If η ≤ 1
L , we have

1

2
η∥∇f(xt)∥22 ≤f(xt)− E[f(xt+1)] +

1

2
Lη2E∥∇h(xt)− E[∇h(xt)]∥22

+
1

2
η∥∇f(xt)− E[∇h(xt)]∥22.

Theorem. 1 (Plasticity) Suppose Assumptions 1, 2, and 3 hold. Let wt,s be the
parameters on task Tt at the s-th step. Let the range of space of Ul be the null
space of previous tasks for l-th layer, then the loss of the current task Tt after
training on task Tt is upper bound by

L̂t(wt,S)≤ L̂t(wt,0)+
η

2

S−1∑
s=0

L∑
l=1

∥(I−Ul(Ul)⊤)glt,s∥22−
1

2
η

S−1∑
s=0

∥∇L̂t(wt,s)∥22+
1

2
SLfη

2σ2,

where glt,s is l-th layer gradient of L̂t(wt,s).

Proof. When training on the task Tt, based on Lemma 2, if η ≤ 1
Lf

we have

L̂t(wt,s+1) ≤L̂t(wt,s) +
1

2
Lfη

2σ2 − 1

2
η∥∇L̂t(wt,s)∥22 (8)

+
1

2
η∥∇L̂t(wt,s)−

[
(U1(U1)⊤(g1t,s)

⊤ ... (UL(UL)⊤(gLt,s)
⊤]⊤ ∥22 (9)



24 Y. Kong et al.

=L̂t(wt,s) +
1

2
Lfη

2σ2 − 1

2
η∥∇L̂t(wt,s)∥22 +

1

2
η

L∑
l=1

∥(I −Ul(Ul)⊤)glt,s∥22.

(10)

Summing from s = 0 to s = S − 1, we obtain

L̂t(wt,S)≤ L̂t(wt,0)+
η

2

S−1∑
s=0

L∑
l=1

∥(I−Ul(Ul)⊤)glt,s∥22−
1

2
η

S−1∑
s=0

∥∇L̂t(wt,s)∥22+
1

2
SLfη

2σ2.

Theorem. 2 (Stability) Suppose Assumptions 1 and 2 hold. Let wt,s be the

parameters on task Tt at the s-th. Let L̂1:t−1 be the sum of empirical loss function
of previous t− 1 tasks and gl1:t−1,s is its gradient of l-th layer at wt,s. Let g

l
t,s be

the gradient of the current task at wt,s of l-th layer. Let the range of space of Ul

be the null space of previous tasks for l-th layer, then the forgetting of previous
t− 1 tasks generated by the training on the task Tt is upper bound by

L̂1:t−1(wt,S)− L̂1:t−1(wt,0) ≤η
S−1∑
s=0

L∑
l=1

∥Ul(Ul)⊤∥2∥glt,s∥2∥gl1:t−1,s∥2

+
Lf

2
η2

S−1∑
s=0

L∑
l=1

∥Ul(Ul)⊤∥22∥glt,s∥22.

Proof. Because the distributions between tasks are different, we could assume
that ⟨∆wt,s, g1:t−1,s⟩ ≤ 0. Based on the smoothness of L̂1:t−1, we obtain

L̂1:t−1(wt,s+1) ≤ L̂1:t−1(wt,s)− η ⟨∆wt,s,g1:t−1,s⟩+
Lf

2

L∑
l=1

∥η∆wt,s∥22

= L̂1:t−1(wt,s)− η ⟨∆wt,s,g1:t−1,s⟩+
Lf

2
η2

L∑
l=1

∥Ul(Ul)⊤glt,s∥22

≤ L̂1:t−1(wt,s)− η ⟨∆wt,s,g1:t−1,s⟩+
Lf

2
η2

L∑
l=1

∥Ul(Ul)⊤∥22∥glt,s∥22,

where wt,s+1 = wt,s − η∆wt,s, g1:t−1,s is the gradient of L̂1:t−1, and gl1:t−1,s is

the gradient of L̂1:t−1 at l-th layer.
Because of

⟨∆wt,s,g1:t−1,s⟩ =
L∑

l=1

〈
Ul(Ul)⊤glt,s, g

l
1:t−1,s

〉
≤

L∑
l=1

∥Ul(Ul)⊤∥2∥glt,s∥2∥gl1:t−1,s∥2,

we have

L̂1:t−1(wt,s+1) ≤L̂1:t−1(wt,s) + η

L∑
l=1

∥Ul(Ul)⊤∥2∥glt,s∥2∥gl1:t−1,s∥2



Advanced Null Space 25

+
Lf

2
η2

L∑
l=1

∥Ul(Ul)⊤∥22∥glt,s∥22.

Summing from s = 0 to s = S − 1, we obtain

L̂1:t−1(wt,S)− L̂1:t−1(wt,0) ≤η
S−1∑
s=0

L∑
l=1

∥Ul(Ul)⊤∥2∥glt,s∥2∥gl1:t−1,s∥2

+
Lf

2
η2

S−1∑
s=0

L∑
l=1

∥Ul(Ul)⊤∥22∥glt,s∥22.


