
Balancing Stability and Plasticity through
Advanced Null Space in Continual Learning

Yajing Kong1, Liu Liu1, Zhen Wang1, and Dacheng Tao1,2

1 The University of Sydney, Darlington, NSW 2008, Australia
2 JD Explore Academy, Beijing, China

{ykon9947, liuliu1, zwan4121}@sydney.edu.au, dacheng.tao@gmail.com

Abstract. Continual learning is a learning paradigm that learns tasks
sequentially with resources constraints, in which the key challenge is
stability-plasticity dilemma, i.e., it is uneasy to simultaneously have the
stability to prevent catastrophic forgetting of old tasks and the plasticity
to learn new tasks well. In this paper, we propose a new continual learning
approach, Advanced Null Space (AdNS), to balance the stability and
plasticity without storing any old data of previous tasks. Specifically, to
obtain better stability, AdNS makes use of low-rank approximation to
obtain a novel null space and projects the gradient onto the null space
to prevent the interference on the past tasks. To control the generation
of the null space, we introduce a non-uniform constraint strength to
further reduce forgetting. Furthermore, we present a simple but effective
method, intra-task distillation, to improve the performance of the current
task. Finally, we theoretically find that null space plays a key role in
plasticity and stability, respectively. Experimental results show that the
proposed method can achieve better performance compared to state-of-
the-art continual learning approaches.

Keywords: continual learning · catastrophic forgetting · null space

1 Introduction

Humans have excellent abilities in learning new knowledge while maintaining the
knowledge learned from past experience through their lifelong time. Continual
learning aims at developing algorithms for neural networks with the same capa-
bilities from a stream of data [34, 48]. However, although deep neural networks
have made impressive achievements across various domains, they easily suffer
performance degradation on the previous tasks when applied to sequential tasks
without any access to historical data. The problem, referred to as catastrophic
forgetting, is a key challenge in continual learning [16,21,30,34,38,48].

This problem is closely related to the stability-plasticity dilemma [31, 32].
Specifically, when learning in a sequential fashion, the network is required to have
the plasticity to integrate new knowledge well and the stability to prevent the for-
getting of previous tasks. However, the stability-plasticity dilemma indicates that
it is hard to simultaneously have high plasticity and high stability. To relieve the



2 Y. Kong et al.

Intra-task Distillation
𝒴"!𝒴#!

𝒞!𝒞""

Task t+1Task t -1

...

Task t

...

𝑼𝒄𝒖𝒓

Obtaining Null Space

𝑼𝒑𝒓𝒆 𝑼𝒄𝒖𝒓

𝓓'()

𝓓'

gradient

𝑼𝒔𝒉𝒂𝒓𝒆 𝑼𝒔𝒉𝒂𝒓𝒆

𝑼𝒑𝒓𝒆

Fig. 1. The pipeline of the proposed method. Left: At the task Tt−1, we obtain the
shared low-rank null space Ushare based on Upre and Ucur. Middle: We project the
gradient at each layer onto the shared low-rank null space. Right: Ushare is used for the
next task Tt+1 as Upre. Note at the task Tt (t>1), we conduct Intra-task Distillation
between Ỹt and Ŷt.

dilemma, a growing body of continual learning methods are introduced. These
method can be roughly divided into four categories: architecture-based methods
expand the network or allocate new neurons for new tasks [13,28,42,60]; replayed-
based methods interleave old data with current data by storing historical data in
a buffer or generating virtual old data [4,8,12,39,40]; regularization-based meth-
ods penalize the update of important parameters of previous tasks [1,17,21,58];
algorithm-based methods modify the update rule of parameters to prevent the
interference across tasks [7, 26,43,47,49].

For algorithm-based methods, one of the classical approaches is to project
the gradient onto the approximation null space of all previous tasks, in which
the gradient has little interference on the performance of previous tasks [43, 49,
57]. However, despite the impressive performance achieved by these methods,
there are still some challenges that impede the null space methods to achieve
satisfactory stability-plasticity trade-off. First, the null space methods are based
on the finding that the model modifies the parameters in the exact null space of
previous tasks. However, due to the approximation of null space, the model will
occur in interference on the previous tasks. Moreover, the interference would
affect the subsequent approximation of null space of past tasks, thus leading
to more information deficiency of null space of previous tasks. Therefore, the
stability of the model will be unsatisfactory. Second, the model update is based
on the gradient projection on the null space of previous task, preventing the
model from learning the current task well, i.e., resulting in worse plasticity.

To address the above challenges, we propose a new algorithm-based contin-
ual learning approach, Advanced Null Space (AdNS), to achieve a good balance
between stability and plasticity. Specifically, to alleviate the impact of approx-



Advanced Null Space 3

imation on the stability, AdNS makes use of the low-rank approximation to
extract the shared null space between the previous null space and the current
candidate null space. Unlike existing works that only focus on the current candi-
date null space [43, 57], AdNS projects the gradient onto the shared null space,
which contains the core spaces between null spaces, and thus could mitigate the
information deficiency of the previous null spaces and reduce forgetting. More-
over, we present a constraint to control the approximation of null space and
propose non-uniform constraint strength, which monotonically decreases with
the number of tasks increasing, to further relieve the forgetting. What’s more,
to improve the performance of the current task, we leverage a simple method,
intra-task distillation, to self-distill the knowledge of the current task. The pro-
cedure of the proposed method is shown in Fig. 1.

Finally, although various algorithms about null space have been proposed,
few efforts were spent on the theoretical foundations. Therefore, in this paper,
we theoretically analyze the impact of null space and present two theorems to
prove that null space plays a key role in stability and plasticity. The theoretical
finding indicates the inherent properties of the stability-plasticity dilemma, in
which it is hard to have high plasticity and high stability simultaneously. To
summarize, our contributions are threefolds:
– To address the stability-plasticity dilemma, we propose a new algorithm-

based continual learning approach, AdNS, which projects the gradient into
the shared null space under non-uniform constraint strength to reduce forget-
ting, and uses intra-task distillation to improve the tasks’ performance.

– We present two theorems from the perspective of stability and plasticity, which
show that the null space plays a key role in balancing the stability-plasticity
dilemma. Specifically, the larger the dimension of the null space, the better
the plasticity, the worse the stability.

– We validate the proposed method in several benchmarks, and the empirical
results show that the proposed method can outperform related state-of-the-art
continual learning methods.

2 Related Work

Algorithms-based methods design the update rule to decrease the interfer-
ence of parameter update on the performance of old tasks [6,7,24,26,43,47,49,54].
For example, GEM [26] and A-GEM [7] used the historical samples to compute
the gradients of old tasks and proposed inequality constraints of gradients to
avoid the increase of losses of past tasks. Arslan et al. [6] manually divided a
random orthonormal space into several subspaces and allocated these subspaces
one-to-one to each task. However, these methods require storing data of previous
tasks. In contrast, GPM [43] stored the bases of core gradient space and modified
the parameters in the direction orthogonal to the core space. OWM [57] mod-
ified the parameters in the direction orthogonal to the input space of previous
tasks. Adam-NSCL stored uncentered feature covariance and used it to compute
the null space [49]. Our work is closely related to Adam-NSCL. However, unlike



4 Y. Kong et al.

Adam-NSCL that only considers the current candidate null space, we project
the gradient onto the shared null space between null spaces, which could relieve
the information deficiency of null space of previous tasks, resulting in less for-
getting. Moreover, our method does not rely on any data of previous tasks and
only needs to update the null space in one shot manner at the end of each task.
Regularization-based methods can be divided into two classes: one is to
distill knowledge from the previous model which is trained on the previous tasks
[14, 15, 23, 36, 52, 59]; another is to explicitly use a regularizer to penalize the
update of important parameters of previous tasks, preventing the model from
deviating too much from the previous one to avoid forgetting [19, 21, 33, 35, 58].
For example, for the first class, LwF [23] distills the knowledge by using the
previous model outputs as soft labels and penalizing the distillation term between
the current and recorded output. For the latter one, EWC [17] used the diagonal
of the Fisher information matrix as the importance.
Other Approaches. Architecture-based methods allocate different parameters
or add new parameters for the new task, while sharing parameters across tasks
to reduce the interference of previous tasks [3, 22, 27–29, 41, 42, 44, 53, 56, 60].
However, such methods may lead to a cumbersome and complex network if new
tasks continually arrive. Replayed-based methods leverage episodic memory to
store representative history data or generate virtual data via a generative model,
and replay these samples with current data [2, 7, 8, 12, 26, 37, 39, 40, 45, 50, 51].
However, replayed-based methods may bring some problems since storing old
data will result in data imbalance, and the generative model would be large and
expensive if it synthesizes the historical data reasonably.

3 Preliminaries

3.1 Settings and Notations

In this part, we present the settings and notations. We consider a sequence of
tasks Tt, t ∈ {1, ..., T}, where T is the total number of tasks. Let Dt = {Xt,Yt} be
the dataset of task Tt, where Xt and Yt are the corresponding inputs set and label
set. In continual learning, the model is trained on these datasets sequentially.
Let w = {w1, ..., wL} be the parameters of L-layer neural network, where wl is
the parameter vector of the l-th layer, l ∈ {1, ..., L}. Let L̂t(w) be the empirical
loss of task Tt with parameters w. Define w̃t as the convergence parameters
after the model has been trained on the task Tt. Rank(·) denotes the rank of a
matrix, and [·, ·] denotes the concatenation of vectors or matrices. ∥ · ∥F denotes
Frobenius norm, ∥ · ∥1 denotes L1 norm, and ∥ · ∥2 denotes L2 norm.

3.2 Null Space

Let ∆wl be the parameter update for l-th layer for the current step. If ∆wl

lies in the null space of previous tasks at each training step for the l-th layer,
l ∈ {1, ..., L}, then the stability can be guaranteed, which is illustrated by the
following lemma.



Advanced Null Space 5

Lemma 1. [49] Define X l
p,p as the input feature of l-th layer when the network

is fed with data Xp after training on the task Tp. Let N (w̃t;Xp) be the output
of the L-layer network with parameters w̃t when the network is fed with data
Xp. If at each training step of task Tt, ∆wl lies in the null space of X l

t−1 =
[X l

1,1, ..., X
l
t−1,t−1] , i.e.,

X l
t−1∆wl = 0, l = 1, ..., L, (1)

then we have N (w̃t;Xp) = N (w̃p;Xp) for all p ∈ {1, ..., t− 1}.

According to Lemma 1, if the parameters are modified in the null space of
X l

t−1, then the training loss of previous tasks will be retained and the forgetting
can be avoid. Nevertheless, it is unrealistic to expect the existence of the null
space, thus previous works [43,49,57] use the approximation null space instead.
However, the approximation will cause that Eq.(1) no longer holds and result
in the occurrence of interference on previous tasks. Moreover, the interference
would affect the subsequent approximation of null space of past tasks, leading
to more performance degradation on past tasks, i.e., catastrophic forgetting.

4 Methodology

In this section, we propose a new continual learning method, Advanced Null
Space (AdNS), involving shared low-rank null space (Section 4.1), non-uniform
constraint strength (Section 4.2), and intra-task distillation (Section 4.3), to
balance the stability and plasticity. The procedure of AdNS is shown in Fig. 1
and the algorithm is shown in Algorithm 1.

4.1 Shared Low-Rank Null Space

In this part, we introduce a noval null space, the shared low-rank null space,
which extracts the shared null spaces between the previous null space and the
current candidate null space based on low-rank approximation.

When training on the current task Tt (t>1), the gradient of l-th layer is
projected onto the null space of previous tasks, which is spanned by the columns
of Ul

pre
3, l ∈ {1, ..., L} and Upre = {U1

pre, ...,U
L
pre} is the set containing the

previous null spaces of L layers. After training the current task, the current
candidate null space Ucur = {U1

cur, ...,U
L
cur} could be obtained based on the

input features of tasks seen so far. Specifically, we use the uncentered feature
covariance, i.e., X̃ l

t = (X l
t)

⊤X l
t, to compute the current candidate null space [49].

Such process has moderate memory consumption since the dimension of X̃ l
t

is irrelevant to the size of data. It can be easily proved that the null space
of X̃ l

t is equal to X l
t. We update the input features of each layer by X̃ l

t ←
X̃ l

t−1+(X l
t,t)

⊤X l
t,t, where X

l
t,t is the input feature of l-th layer when the network

3 We use the matrix whose columns are consisted of the orthonormal basis of the null
space to represent null space.



6 Y. Kong et al.

Algorithm 1 Advanced Null Space (AdNS)

Input: Network N with parameters w
Output: Target network N
for t = 1, 2, .., T do

if t = 1 then
while not converged do

Update the gradient according to L̂1(w)
end while
X̃ l

1 ← (X l
1,1)

⊤X l
1,1

Ul ← Null space of X̃ l
1 based on (3)

Ul
pre ← Ul

Break ▷ Return to the next task
end if
Ỹt ← N (w;Xt) after updating the classifier C̃t
while not converged do

Update the gradient in the null space at each layer based on U =
{U1, ...,UL} according to (5)

end while
X̃ l

t ← X̃ l
t−1 + (X l

t,t)
⊤X l

t,t

Ul
cur ← Null space of X̃ l

t based on (3)
Ũl = [Ul

pre,U
l
cur] , l = 1, ..., L

Ul ← The shared low-rank null space obtained in (P2)
Ul

pre ← Ul

end for
return N

is fed with data Xt after training on the task Tt, and then obtain the current
candidate null space at the end of task.

To alleviate the impact of approximation on the stability, rather than using
Ucur, we extract the shared null space between Upre and Ucur by solving the prob-

lem of low-rank approximation for the concatenation matrix Ũl = [Ul
pre,U

l
cur]:

minimizeÛl ∥Ũl − Ûl∥F s.t. Rank(Ûl) ≤ kl, l = 1, ..., L, (P2)

where kl is the rank of the shared null space of l-th layer. The optimization
problem (P2) has analytic solutions in terms of the singular value decomposition.
Because we want to project the gradient onto an orthonormal space, according
to the properties of singular value decomposition, the objective matrix Ul, i.e.,
the shared low-rank null space of l-th layer, can be constructed by the singular
vectors of Ûl rather than using Ûl directly. The implementation details can be
found in the Appendix.

The shared low-rank null space, which is the range space of Ul, contains the
shared information of the previous null space and the current null space. Thus,
projecting the gradient onto the shared low-rank space could relieve catastrophic



Advanced Null Space 7

forgetting. In formal, we project gl as the following projection operation:

∆wl = Ul(Ul)⊤gl, l = 1, ..., L, (2)

and the parameter is updated by wl ← wl − η∆wl, where η is the learning rate.
Regarding the computing complexity, let the dimension of the feature at l-th

layer be dl and the dimension of Ũl be k̃l, where k̃l<dl. Then the complex-
ity of computing the current candidate null space O((dl)3) is larger than the
complexity of the low-rank approximation O(dl(k̃l)2). Therefore, the time con-
sumption of our proposed method is comparable to previous works [43,49]. The
comparisons of running time can be reffed to Appendix.

4.2 Non-uniform Constraint Strength

In continual learning, it is essential to balance the importance of previous tasks
and the current task to achieve satisfying performance [19,21,58]. For example,
if the model puts too much weight on the current task, it may suffer significant
performance degradation on the prior tasks and vice-versa. Therefore, to make a
trade-off between the importance of previous tasks and current task, i.e., stability
and plasticity, we rewrite the constraint X l

t−1∆wl = 0 for l ∈ {1, ..., L} to
∥X l

t−1∆wl∥1 ≤ ϵ, where ϵ is a factor controlling the strength of constraint.
Such a constraint is reasonable for the following two reasons: (a) In practice, it
is unrealistic to expect that there exists a null space satisfying X l

t−1∆wl = 0
for l ∈ {1, ..., L}. (b) Although the constraint X l

t−1∆wl = 0 could guarantee
that the model would not suffer from catastrophic forgetting, it would result in
poor performance of the current task because the constraint is too strict for the
parameter update of the current task. In contrast, introducing the balance factor
ϵ allows us to make a trade-off between stability and plasticity flexibly.

Moreover, with new tasks occurring, the number of previous tasks increases,
resulting in a greater impact of previous tasks on the final performance than
the current task [19, 21, 58]. Hence, with the growth of observed tasks, it is
necessary to pay more attention to previous tasks to relieve the catastrophic
forgetting. Therefore, we propose non-uniform constraint strength following a
common assumption that the importance of previous tasks is related to the
number of tasks seen so far. In particular, the non-uniform constraint strength
can be represented as

∥X l
t−1∆wl∥1 ≤ ϵ(t), for l = 1, ..., L, (3)

where ϵ(t) is a function monotonically decreasing with the number of tasks seen
so far. With new tasks continually coming, the constraint strength becomes
more restrictive, and thus the model pays more attention to preserving the per-
formance of previous tasks, achieving better stability.

4.3 Intra-task Distillation

To further address the plasticity-stability dilemma, we leverage knowledge dis-
tillation of the current task, called intra-task distillation, to improve the perfor-
mance of the current task. In particular, as shown in Fig. 1, before training the



8 Y. Kong et al.

task Tt, we first freeze the backbone, which is learned on the previous t−1 tasks
sequentially, and only train the classifier C̃t of the task Tt. Then we store the out-
puts Ỹt for the current task Tt. The frozen backbone and the classifier absorb the
information of prior tasks and the current task, respectively. Therefore, by penal-
izing the difference between the record outputs Ỹt from the classifier C̃t and the
current outputs Ŷt from the classifier Ct, intra-task distillation could improve the
performance of the current task while preserving the acquired knowledge from
previous tasks.

Specifically, we use the modified cross-entropy loss as the distillation loss.
When training on the task Tt, the distillation loss can be represented as:

L̂d(ỹt, ŷt) = −
Ct∑
c=1

ỹ
′(c)
t logŷ

′(c)
t , (4)

where ỹ
′(c)
t =

exp(ỹ
(c)
t /τ)∑

i exp(ỹ
(i)
t /τ)

, ŷ
′(c)
t =

exp(ŷ
(c)
t /τ)∑

i exp(ŷ
(i)
t /τ)

, Ct is the number of classes of

task Tt, τ is the temperature factor; ỹ
(c)
t and ŷ

(c)
t are the recorded and current

outputs of a sample xt in task Tt, respectively. We set τ = 2 by default.
In summary, when training on the task Tt (t>1), the optimization problem

including (P2) and (2)-(4), which is represented as:

minimize
w

L̂t(w) + βL̂d(Ỹt, Ŷt),

s.t. Rank(h(X l
t−1)) ≤ kl, ∥X l

t−1∆wl∥1 ≤ ϵ(t), l = 1, ..., L,
(5)

where L̂t(w) is the cross-entropy loss for the current task and β is a coefficient
that balances the importance between the cross-entropy loss and the distillation
loss L̂d(Ỹt, Ŷt); w is the network parameters and ϵ(t) is the constraint strength
which impacts the trade-off between the stability and plasticity; h(X) denotes
X is mapped to its approximation null space which satisfies the constraint; kl is
used to control the rank of the matrix of l-th layer.

5 Analysis

In this section, we present two theorems to theoretically prove that the null
space plays a key role in the stability-plasticity dilemma. Theorem 1 is in terms
of plasticity and Theorem 2 is in terms of stability. The proof can be found in
Appendix. Before introducing the two theorems, we first present three assump-
tions. Comparable assumptions are also made in existing studies on continual
learning [55].

Assumption 1. L̂t(w) is Lf -smooth, i.e., L̂t(w) ≤ L̂t(v) + ⟨∇L̂t(v),w− v⟩+
Lf

2 ∥w − v∥22, t ∈ {1, ..., T}, for any v,w ∈ Rd.

Assumption 2. For each task Tt, t ∈ {1, ..., T}, the number of iterations is
bounded by an integer S.



Advanced Null Space 9

Assumption 3. L̂t has the σ2-uniformly bounded gradient variance, i.e.,

∥∇L̂t(w;x, y)−∇L̂t(w;Xt,Yt)∥22 ≤ σ2, (x, y) ∈ Dt, t ∈ {1, ..., T}.

Based on the assumptions, we derive the following two Theorems regarding
the plasticity and stability. Specifically, we obtain the upper bound of the loss
of the current task and forgetting.

Theorem 1. (Plasticity) Suppose Assumptions 1, 2, and 3 hold. Let wt,s be
the parameters on task Tt at the s-th step and η be the learning rate. Let the
range of space of Ul be the null space of previous tasks for l-th layer, then the
loss of the current task Tt is upper bound by

L̂t(wt,S)≤ L̂t(wt,0)+
η

2

S−1∑
s=0

L∑
l=1

∥(I−Ul(Ul)⊤)glt,s∥22−
η

2

S−1∑
s=0

∥∇L̂t(wt,s)∥22+
SLfη

2σ2

2
,

where glt,s is l-th layer gradient of L̂t(wt,s).

Theorem 2. (Stability) Suppose Assumptions 1, 2, and 3 hold. Let wt,s be the

parameters on task Tt at the s-th and η be the learning rate. Let L̂1:t−1 be the
sum of empirical loss function of previous t− 1 tasks and gl1:t−1,s is its gradient

of l-th layer at wt,s. Let g
l
t,s be the gradient of the current task at wt,s of l-th

layer. Let the range of space of Ul be the null space of previous tasks for l-th
layer, then the forgetting of the previous t− 1 tasks generated by training on the
task Tt is upper bound by

L̂1:t−1(wt,S)− L̂1:t−1(wt,0) ≤η
S−1∑
s=0

L∑
l=1

∥Ul(Ul)⊤∥2∥glt,s∥2∥gl1:t−1,s∥2

+
Lf

2
η2

S−1∑
s=0

L∑
l=1

∥Ul(Ul)⊤∥22∥glt,s∥22.

Remark 1. From Theorems 1 and 2 , we could conclude that Ul plays a key role
in the stability and plasticity. According to Theorem 1, if the rank of the null
space is larger, then the term ∥(I−Ul(Ul)⊤)glt,s∥22 will be smaller and the upper

bound of L̂t(wt,S) will be smaller. Therefore, the model could learn the current
task better, indicating better plasticity. However, according to Theorem 2, the
larger the rank of the null space, the larger the term ∥Ul(Ul)⊤∥22. Therefore, the
upper bound of the forgetting would be larger, resulting in poorer stability. The
two theorems indicate the inherent properties of the stability-plasticity dilemma
that it is hard to have high plasticity and high stability simultaneously.

6 Experiments

6.1 Experimental Setup

Datasets and Architecture. Following [49], we perform experiments on three
continual learning benchmarks: 10-Split CIFAR-100 (10-S-CIFAR100), 20-Split-
CIFAR-100 (20-S-CIFAR100), and 25-Spilt TinyImageNet (25-S-TinyImageNet).



10 Y. Kong et al.

Specifically, 10-Split CIFAR-100 and 20-Split CIFAR-100 are constructed by
splitting CIFAR100 [18] into 10 and 20 sequential tasks, respectively. Each task
contains the same classes without replacement out of the total 100 classes. Sim-
ilarly, 25-Spilt TinyImageNet is constructed by splitting 200 classes of Tiny-
ImageNet [46] into 25 sequential tasks, where each task has 8 classes. We use
ResNet-18 [11] as the backbone [4,6,10,11]. All tasks share the same backbone,
while each task has its separate classifier.
Baselines. We compare the proposed method against competitive and well-
established methods4, including 5 regularization-based methods using impor-
tance measure (EWC [17], MAS [1], MUC-MAS [25], SI [58], and CPR [5]), 2
regularization-based methods using knowledge distillation (LwF [23] and GD-
WILD [20]), 1 architecture-based method (InstAParam [9]), and 6 algorithm-
based methods (GEM [26], A-GEM [7], MEGA [10], OWM [57], GPM [43], and
Adam-NSCL [49]). We also provide a lower bound performance of Vanilla which
trains tasks sequentially without any countermeasure to forgetting.
Performance Metrics. To evaluate the performance, we use two standard met-
rics: a) Average accuracy (ACC) [26,32] is the average test accuracy evaluated on
all tasks after learning all tasks sequentially; b) Backward Transfer (BWT) [7,26]
is the average performance decrease of the network on previous tasks after
new learning. In formal, ACC and BWT are defined as: ACC = 1

T

∑T
i=1 AT,i,

BWT = 1
T−1

∑T−1
i=1 (AT,i − Ai,i), where T is the total number of tasks and Aj,i

is the accuracy of task Ti after training on the task Tj sequentially. The larger
the two metrics, the better the model. If the performances of ACC are similar,
then the method with a larger value of BWT is better [26].
Implementation Details. When obtaining the null space at the end of each
task, we approximate the constraint ∥X l

t−1∆wl∥1 ≤ ϵ(t) like [49]. Specifically,
when computing the current candidate null space, we approximate the current
candidate null space with the singular values satisfying λ ∈ {λ̃|λ̃ ≤ α(t)λl

min},
where λl

min is the smallest singular value of X̃ l
t−1 and α(t) is a positive value

which balances the stability and plasticity. For the non-uniform constraint strength,
we use a simple strategy that α(t) linearly decreases with task number t observed
so far. We perform experiments on the 10-Split CIFAR-100 and 20-Split CIFAR-
100 5 runs, and 25-Spilt TinyImageNet 3 runs. Note that the update of the null
space in our method is only performed at the end of task, and no data of old
data are stored during training. More implementation details, including the hy-
perparameters settings, can be found in Appendix.

6.2 Performance Comparison

We show the comparison results of the proposed method and baselines in Table 1.
The results execept Vanilla, CPR, and GPM are from [49]. According to Table
1, our method achieves the highest average accuracy (ACC) with comparable
forgetting (BWT) on all benchmarks.

4 We do not compare with replay-based methods because they store the data of pre-
vious tasks, which is out of the scope of this paper’s setting.



Advanced Null Space 11

Table 1. Results of ACC (%) and BWT (%) evaluated on the all tasks after finishing
learning all tasks. [↑] higher is better.

Method
10-S-CIFAR-100 20-S-CIFAR-100 25-S-TinyImagNet
ACC [↑] BWT [↑] ACC [↑] BWT [↑] ACC [↑] BWT [↑]

Vanilla 34.91 -60.96 30.48 -65.90 16.96 -66.06
EWC [17] 70.77 -2.83 71.66 -3.72 52.33 -6.71
MAS [1] 66.93 -4.03 63.84 -6.29 47.96 -7.04
MUC-MAS [25] 63.73 -3.38 67.22 -5.72 41.18 -4.03
SI [58] 60.57 -5.17 59.76 -8.62 45.27 -4.45
CPR [5] 74.56 -2.51 72.98 -2.32 58.01 -2.45
LwF [23] 70.70 -6.27 74.38 -9.11 56.57 -11.19
GD-WILD [20] 71.27 -18.24 77.16 -14.85 42.74 -34.58
InstAParam [9] 47.84 -11.92 51.04 -4.92 34.64 -10.05
GEM [26] 49.48 2.77 68.89 -1.2 - -
A-GEM [7] 49.57 -1.13 61.91 -6.88 53.32 -7.68
MEGA [10] 54.17 -2.19 64.98 -5.13 57.12 -5.90
OWM [57] 68.89 -1.88 68.47 -3.37 49.98 -3.64
GPM [43] 73.66 -2.20 75.20 -7.58 58.96 -6.96
Adam-NSCL [49] 75.03 -2.98 75.59 -3.66 59.10 -7.19

AdNS (Ours) 77.21 -2.32 77.33 -3.25 59.77 -4.58

Compared with regularization-based methods, the proposed method achieves
over 5% ACC higher with less forgetting than EWC and MAS on all bench-
marks. Although MUC-MAS and SI obtained comparable forgetting on the 25-
Spilt TinyImageNet, their ACCs are lower than 50%, largely below AdNS’s ACC
(59.77%). The forgetting of CPR on the 20-Split CIFAR-100 and 25-Spilt Tiny-
ImageNet are less, while its performance of ACC is worse than the proposed
method on all benchmarks. For the regularization-based methods using knowl-
edge distillation, the ACCs of LwF and GD-WILD are comparable to the pro-
posed method on the 20-Split CIFAR-100 while their stability is very poor. For
the architecture-based method, AdNS is significantly better than InstAParam,
e.g., over 25% ACC higher on three benchmarks.

Now we compare AdNS with algorithm-based methods. On the 10-Split
CIFAR-100, although the forgetting of GEM, A-GEM, MEGA, OWM, and GPM
is slightly better than our method, their ACCs are largely below the proposed
method. It is also observed that our method can obtain better performance with
less forgetting than Adam-NSCL. As shown in Table 1, the ACCs of the proposed
method are 2.18%, 1.74%, and 0.66% higher than Adam-NSCL on the 10-Split
CIFAR-100, 20-Split CIFAR-100, and 25-Spilt TinyImageNet, respectively. As
for forgetting, the BWTs of the proposed method are 0.66%, 0.41%, and 2.61%
better than Adam-NSCL on the three benchmarks, respectively. It is because
AdNS considers the shared null space between null spaces and also leverages
knowledge distillation to further mitigate the stability-plasticity dilemma.



12 Y. Kong et al.

Table 2. Different methods to obtain the shared null space. “Random” obtains the
shared null space with the dimensions randomly from Ul

pre and Ul
cur.

Method
10-S-CIFAR-100 20-S-CIFAR-100 25-S-TinyImageNet
ACC [↑] BWT [↑] ACC [↑] BWT [↑] ACC [↑] BWT [↑]

Random 76.10 -4.13 75.70 -5.81 59.07 -6.78
Low-Rank 76.45 -2.87 76.31 -3.66 59.26 -5.77

2 4 6 8 10
Task

6

4

2

0

BW
T 

[
]

10-S-CIFAR-100 

2 5 8 11 14 17 20
Task

12

8

4

0

BW
T 

[
]

20-S-CIFAR-100 

2 5 8 11 14 17 20 23
Task

12

8

4

0

BW
T 

[
]

25-S-TinyImageNet 

Pure Null Space
Shared Low-Rank Null Space

Fig. 2. Comparison of forgetting between the pure null space and the shared low-rank
null space. The results are the curves of BWT when the network has been trained on
each task ([↑] Higher BWT indicates less forgetting).

6.3 Ablation Studies and Analyses

Effect of Low-Rank. First, we compare the forgetting of using shared low-rank
null space and pure null space, in which pure null space projects the gradient
onto the current candidate null space instead of the shared null space. According
to Fig. 2, with new tasks continually coming, the superiority of the shared low-
rank null space on alleviating forgetting becomes more and more obvious than
the pure null space, validating that our shared low-rank null space can relieve
the catastrophic forgetting due to null space approximation. Next, we validate
whether it is effective to use low-rank approximation to obtain the shared space.
To realize this, we compare the performance of the shared low-rank null space
with the method that obtains the shared null space by extracting dimensions
randomly from Ul

pre and Ul
cur

5. For a fair comparison, intra-task distillation is
excluded, and all the settings including the constraints are the same. According
to Table 2, using low-rank approximation can achieve higher ACC and better
BWT on all benchmarks. Especially for BWT, “Low-Rank” is at least 1% better
than the method of “Random”, indicating the effectiveness of low-rank approx-
imation.
Effect of Each Component. We now validate the effect of each component to
demonstrate that AdNS could achieve better stability-plasticity trade-off. From
Table 3, we can find that (1) Both “Low-Rank” and “Non-uniform Constraint

5 We extract kl/2 dimensions randomly from Ul
pre and another kl/2 dimensions ran-

domly from Ul
cur. If the dimension of Ul

pre or Ul
cur is smaller than kl/2, to make up

kl dimensions, we concatenate the whole matrix and the rest dimensions randomly
extracted from another matrix.



Advanced Null Space 13

Table 3. Effect of each component. “NS” denotes “Null Space”, “LR” denotes “Low-
Rank”, “NCS” denotes “Non-uniform Constraint Strength”, and “ID” denote Intra-
task Distillation.

Module 10-S-CIFAR-100 20-S-CIFAR-100 25-S-TinyImagnet
NS LR NCS ID ACC [↑] BWT [↑] ACC [↑] BWT [↑] ACC [↑] BWT [↑]
! 76.11 -5.02 75.53 -7.67 59.20 -7.69

! ! 76.45 -2.87 76.31 -3.66 59.26 -5.77

! ! 76.15 -4.98 75.66 -7.36 59.42 -5.07

! ! ! 76.45 -2.84 76.34 -3.55 59.27 -5.11

! ! 76.99 -4.36 77.04 -6.09 60.00 -6.98

! ! ! ! 77.21 -2.32 77.33 -3.25 59.77 -4.58

0.8 0.85 0.9 0.95 1.0
k0

75.0

75.5

76.0

76.5

AC
C 

[
]

0.8 0.85 0.9 0.95 1.0
k0

6

5

4

3

2

BW
T 

[
]

Max
Avg
Min

Fig. 3. The effect of k. The dataset is 10-Split CIFAR-100. [↑] higher is better.

Strength” decrease forgetting significantly with better performance. Especially,
on the 20-Split CIFAR-100, the shared low-rank null space (“NS” + “LR”) is
4.01% BWT better and 0.78% ACC higher than the pure null space (“NS”).
On the 25-Spilt TinyImageNet, adding non-uniform constraint strength (“NS”
+ “NCS”) increases BWT 2.62%. (2) Intra-task Distillation improves ACC sig-
nificantly with better BWT. For example, on the 20-Split CIFAR-100, adding
intra-task distillation (“NS” + ”ID”) increases ACC 1.51 % with less forgetting.
(3) Combing all modules can achieve better stability and plasticity simultane-
ously. For example, on 20-Spilt CIFAR100, combing all modules is 1.8% ACC
higher and 4.42% BWT better than the pure null space (“NS”).
Effect of k. Now we explore the effect of k. We use k to denote kl because
we apply the same operation for kl at each layer. Assume that the dimensions
of Ul

pre and Ul
cur are p and q, respectively. Then “Max”, “Avg”, and “Min”6

means that k = Max(p, q) × k0, k = Avg(p, q) × k0, and k = Min(p, q) × k0,
respectively, where k0 is used to adjust the value of k. As shown in Fig. 3,
for all strategies, with the decrease of k0, forgetting continually decreases while
ACC first increases and then decreases. It is because with the decrease of k0, k
becomes smaller and the rank of null spaces is smaller. According to Theorems

6 Max(·),Avg(·), and Min(·) are functions that compute the maximum, average, and
minimum values over inputs, respectively.



14 Y. Kong et al.

Fig. 4. The effect of α and β. The dataset is 10-Split CIFAR-100. [↑] higher is better.

1 and 2, it would result in better forgetting and worse plasticity, and thus the
ACC first increases then decreases as a result of the stability-plasticity dilemma.
Considering both stability and plasticity, we choose the strategy of “Avg” for
all experiments.
Effect of α and β. Finally, we explore the effect of α in constraint and β in
intra-task distillation, respectively. For simplification, we apply constant α for
all tasks. Larger α indicates looser constraint in (3). As shown in Fig. 4, with the
increase of α, BWT becomes worse, and ACC first increases and then decreases as
a result of the stability-plasticity dilemma. The results agree with the theoretical
analysis that larger null space (looser constraint) leads to better plasticity and
worse stability and vice-versa. For intra-task distillation, as shown in Fig. 4, with
proper β, it could mitigate the forgetting and achieve a good balance between
stability and plasticity. Too large or too small β will have a negative impact on
the performance.

7 Conclusion

To relieve the stability-plasticity dilemma, we propose a new algorithm-based
continual learning method, Advanced Null Space (AdNS). Specifically, AdNS
extracts the shared low-rank null space based on low-rank approximation and
projects the gradient onto the null space to reduce forgetting. Moreover, we
introduce non-uniform constraint strength to further alleviate the catastrophic
forgetting, and present intra-task distillation to improve performance. Further-
more, we provide theoretical findings of the impact of null space on the stability
and plasticity, respectively. Empirical results validate that the proposed algo-
rithm could achieve a better stability-plasticity trade-off.

Acknowledgements. Ms Yajing Kong and Dr Liu Liu are supported by ARC
FL-170100117 and DP-180103424.



Advanced Null Space 15

References

1. Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., Tuytelaars, T.: Memory
aware synapses: Learning what (not) to forget. In: Proceedings of the European
Conference on Computer Vision (ECCV). pp. 139–154 (2018)

2. Aljundi, R., Belilovsky, E., Tuytelaars, T., Charlin, L., Caccia, M., Lin, M., Page-
Caccia, L.: Online continual learning with maximal interfered retrieval. In: Ad-
vances in Neural Information Processing Systems. pp. 11849–11860 (2019)

3. Aljundi, R., Chakravarty, P., Tuytelaars, T.: Expert gate: Lifelong learning with a
network of experts. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. pp. 3366–3375 (2017)

4. Buzzega, P., Boschini, M., Porrello, A., Abati, D., Calderara, S.: Dark expe-
rience for general continual learning: a strong, simple baseline. arXiv preprint
arXiv:2004.07211 (2020)

5. Cha, S., Hsu, H., Hwang, T., Calmon, F.P., Moon, T.: Cpr: Classifier-projection
regularization for continual learning. arXiv preprint arXiv:2006.07326 (2020)

6. Chaudhry, A., Khan, N., Dokania, P.K., Torr, P.H.: Continual learning in low-rank
orthogonal subspaces. arXiv preprint arXiv:2010.11635 (2020)

7. Chaudhry, A., Ranzato, M., Rohrbach, M., Elhoseiny, M.: Efficient lifelong learning
with a-gem. arXiv preprint arXiv:1812.00420 (2018)

8. Chaudhry, A., Rohrbach, M., Elhoseiny, M., Ajanthan, T., Dokania, P.K., Torr,
P.H., Ranzato, M.: Continual learning with tiny episodic memories (2019)

9. Chen, H.J., Cheng, A.C., Juan, D.C., Wei, W., Sun, M.: Mitigating forgetting in
online continual learning via instance-aware parameterization. Advances in Neural
Information Processing Systems 33 (2020)

10. Guo, Y., Liu, M., Yang, T., Rosing, T.: Improved schemes for episodic memory
based lifelong learning algorithm. In: Conference on Neural Information Processing
Systems (2020)

11. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks.
In: European conference on computer vision. pp. 630–645. Springer (2016)

12. Isele, D., Cosgun, A.: Selective experience replay for lifelong learning. In: Proceed-
ings of the AAAI Conference on Artificial Intelligence. vol. 32 (2018)

13. Jerfel, G., Grant, E., Griffiths, T., Heller, K.A.: Reconciling meta-learning and con-
tinual learning with online mixtures of tasks. In: Advances in Neural Information
Processing Systems. pp. 9122–9133 (2019)

14. Jing, Y., Yang, Y., Wang, X., Song, M., Tao, D.: Amalgamating knowledge from
heterogeneous graph neural networks. In: CVPR (2021)

15. Jung, H., Ju, J., Jung, M., Kim, J.: Less-forgetting learning in deep neural net-
works. arXiv preprint arXiv:1607.00122 (2016)

16. Kemker, R., McClure, M., Abitino, A., Hayes, T., Kanan, C.: Measuring catas-
trophic forgetting in neural networks. In: Proceedings of the AAAI Conference on
Artificial Intelligence. vol. 32 (2018)

17. Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu,
A.A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., et al.: Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of
sciences 114(13), 3521–3526 (2017)

18. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

19. Lee, J., Hong, H.G., Joo, D., Kim, J.: Continual learning with extended kronecker-
factored approximate curvature. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 9001–9010 (2020)



16 Y. Kong et al.

20. Lee, K., Lee, K., Shin, J., Lee, H.: Overcoming catastrophic forgetting with unla-
beled data in the wild. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision. pp. 312–321 (2019)

21. Lee, S.W., Kim, J.H., Jun, J., Ha, J.W., Zhang, B.T.: Overcoming catastrophic
forgetting by incremental moment matching. In: Advances in neural information
processing systems. pp. 4652–4662 (2017)

22. Li, X., Zhou, Y., Wu, T., Socher, R., Xiong, C.: Learn to grow: A continual struc-
ture learning framework for overcoming catastrophic forgetting. arXiv preprint
arXiv:1904.00310 (2019)

23. Li, Z., Hoiem, D.: Learning without forgetting. IEEE transactions on pattern anal-
ysis and machine intelligence 40(12), 2935–2947 (2017)

24. Lin, S., Yang, L., Fan, D., Zhang, J.: Trgp: Trust region gradient projection for
continual learning (2022)

25. Liu, Y., Parisot, S., Slabaugh, G., Jia, X., Leonardis, A., Tuytelaars, T.: More clas-
sifiers, less forgetting: A generic multi-classifier paradigm for incremental learning.
In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, Au-
gust 23–28, 2020, Proceedings, Part XXVI 16. pp. 699–716. Springer (2020)

26. Lopez-Paz, D., Ranzato, M.: Gradient episodic memory for continual learning. In:
Advances in neural information processing systems. pp. 6467–6476 (2017)

27. Mallya, A., Davis, D., Lazebnik, S.: Piggyback: Adapting a single network to multi-
ple tasks by learning to mask weights. In: Proceedings of the European Conference
on Computer Vision (ECCV). pp. 67–82 (2018)

28. Mallya, A., Lazebnik, S.: Packnet: Adding multiple tasks to a single network by
iterative pruning. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. pp. 7765–7773 (2018)

29. Masse, N.Y., Grant, G.D., Freedman, D.J.: Alleviating catastrophic forgetting us-
ing context-dependent gating and synaptic stabilization. Proceedings of the Na-
tional Academy of Sciences 115(44), E10467–E10475 (2018)

30. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks:
The sequential learning problem. In: Psychology of learning and motivation, vol. 24,
pp. 109–165. Elsevier (1989)

31. Mirzadeh, S.I., Farajtabar, M., Ghasemzadeh, H.: Dropout as an implicit gating
mechanism for continual learning. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops. pp. 232–233 (2020)

32. Mirzadeh, S.I., Farajtabar, M., Pascanu, R., Ghasemzadeh, H.: Understanding the
role of training regimes in continual learning. Advances in Neural Information
Processing Systems 33 (2020)

33. Nguyen, C.V., Li, Y., Bui, T.D., Turner, R.E.: Variational continual learning. arXiv
preprint arXiv:1710.10628 (2017)

34. Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S.: Continual lifelong
learning with neural networks: A review. Neural Networks 113, 54–71 (2019)

35. Park, D., Hong, S., Han, B., Lee, K.M.: Continual learning by asymmetric loss
approximation with single-side overestimation. In: Proceedings of the IEEE Inter-
national Conference on Computer Vision. pp. 3335–3344 (2019)

36. Rannen, A., Aljundi, R., Blaschko, M.B., Tuytelaars, T.: Encoder based lifelong
learning. In: Proceedings of the IEEE International Conference on Computer Vi-
sion. pp. 1320–1328 (2017)

37. Rao, D., Visin, F., Rusu, A., Pascanu, R., Teh, Y.W., Hadsell, R.: Continual un-
supervised representation learning. In: Advances in Neural Information Processing
Systems. pp. 7647–7657 (2019)



Advanced Null Space 17

38. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: icarl: Incremental classifier
and representation learning. In: Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition. pp. 2001–2010 (2017)

39. Riemer, M., Cases, I., Ajemian, R., Liu, M., Rish, I., Tu, Y., Tesauro, G.: Learning
to learn without forgetting by maximizing transfer and minimizing interference.
arXiv preprint arXiv:1810.11910 (2018)

40. Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T., Wayne, G.: Experience replay
for continual learning. In: Advances in Neural Information Processing Systems. pp.
350–360 (2019)

41. Rosenfeld, A., Tsotsos, J.K.: Incremental learning through deep adaptation. IEEE
transactions on pattern analysis and machine intelligence 42(3), 651–663 (2018)

42. Rusu, A.A., Rabinowitz, N.C., Desjardins, G., Soyer, H., Kirkpatrick, J.,
Kavukcuoglu, K., Pascanu, R., Hadsell, R.: Progressive neural networks. arXiv
preprint arXiv:1606.04671 (2016)

43. Saha, G., Garg, I., Roy, K.: Gradient projection memory for continual learn-
ing. In: International Conference on Learning Representations (2021), https:

//openreview.net/forum?id=3AOj0RCNC2

44. Serra, J., Suris, D., Miron, M., Karatzoglou, A.: Overcoming catastrophic forget-
ting with hard attention to the task. In: International Conference on Machine
Learning. pp. 4548–4557. PMLR (2018)

45. Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep generative re-
play. In: Advances in neural information processing systems. pp. 2990–2999 (2017)

46. Stanford: Tiny ImageNet Challenge (CS231n) (2015), http://tiny-imagenet.

herokuapp.com/

47. Tang, S., Chen, D., Zhu, J., Yu, S., Ouyang, W.: Layerwise optimization by gradient
decomposition for continual learning. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 9634–9643 (2021)

48. Tani, J.: Exploring robotic minds: actions, symbols, and consciousness as self-
organizing dynamic phenomena. Oxford University Press (2016)

49. Wang, S., Li, X., Sun, J., Xu, Z.: Training networks in null space of feature co-
variance for continual learning. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 184–193 (June 2021)

50. Wang, Z., Liu, L., Duan, Y., Kong, Y., Tao, D.: Continual learning with lifelong
vision transformer. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 171–181 (June 2022)

51. Wang, Z., Liu, L., Duan, Y., Tao, D.: Continual learning through retrieval and
imagination. Proceedings of the AAAI Conference on Artificial Intelligence 36(8),
8594–8602 (Jun 2022). https://doi.org/10.1609/aaai.v36i8.20837, https://ojs.

aaai.org/index.php/AAAI/article/view/20837

52. Wang, Z., Liu, L., Tao, D.: Deep streaming label learning. In: International Con-
ference on Machine Learning (ICML). vol. 119, pp. 9963–9972 (2020)

53. Wu, L., Liu, B., Stone, P., Liu, Q.: Firefly neural architecture descent: a general
approach for growing neural networks. Advances in Neural Information Processing
Systems 33 (2020)

54. Yiduo, G., Wenpeng, H., Dongyan, Z., Bing, L.: Adaptive orthogonal projection
for continual learning. AAAI (2022)

55. Yin, D., Farajtabar, M., Li, A., Levine, N., Mott, A.: Optimization and general-
ization of regularization-based continual learning: a loss approximation viewpoint
(2020)

https://openreview.net/forum?id=3AOj0RCNC2
https://openreview.net/forum?id=3AOj0RCNC2
http://tiny-imagenet.herokuapp.com/
http://tiny-imagenet.herokuapp.com/
https://doi.org/10.1609/aaai.v36i8.20837
https://ojs.aaai.org/index.php/AAAI/article/view/20837
https://ojs.aaai.org/index.php/AAAI/article/view/20837


18 Y. Kong et al.

56. Yoon, J., Kim, S., Yang, E., Hwang, S.J.: Scalable and order-robust continual
learning with additive parameter decomposition. arXiv preprint arXiv:1902.09432
(2019)

57. Zeng, G., Chen, Y., Cui, B., Yu, S.: Continual learning of context-dependent
processing in neural networks. Nature Machine Intelligence (NMI) 1(8), 364–372
(2019)

58. Zenke, F., Poole, B., Ganguli, S.: Continual learning through synaptic intelligence.
In: International Conference on Machine Learning. pp. 3987–3995. PMLR (2017)

59. Zhang, J., Zhang, J., Ghosh, S., Li, D., Tasci, S., Heck, L., Zhang, H., Kuo, C.C.J.:
Class-incremental learning via deep model consolidation. In: Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision. pp. 1131–
1140 (2020)

60. Zhou, G., Sohn, K., Lee, H.: Online incremental feature learning with denoising
autoencoders. In: Artificial intelligence and statistics. pp. 1453–1461 (2012)


	Balancing Stability and Plasticity through Advanced Null Space in Continual Learning

