
Manifold Adversarial Learning for Cross-domain
3D Shape Representation

Hao Huang1,2,3,4, Cheng Chen1,3,4, and Yi Fang1,2,3,4†

1 NYU Multimedia and Visual Computing Lab
2 NYUAD Center for Artificial Intelligence and Robotics

3 NYU Tandon School of Engineering, New York University, USA
4 New York University, Abu Dhabi, UAE

{hh1811,cc6858,yfang}@nyu.edu

Abstract. On a variety of 3D vision tasks, deep neural networks (DNNs)
for point clouds have outperformed the conventional non-learning-based
methods. However, generalization to out-of-distribution 3D point clouds
remains challenging for DNNs. As annotating large-scale point clouds
is prohibitively expensive or even impossible, strategies for generaliz-
ing DNN models to unseen domains of point clouds without access to
those domains during training are urgently needed but have yet to be
substantially investigated. In this paper, we design an adversarial learn-
ing scheme to learn point cloud representation on a seen source domain
and then generalize the learned knowledge to an unseen target domain.
Specifically, we unify several geometric transformations into a manifold-
based framework under which a distance between transformations is well-
defined. Measured by the distance, adversarial samples are mined to form
intermediate domains and retained in an adaptive replay-based memory.
We further provide theoretical justification for the intermediate domains
to reduce the generalization error of the DNN models. Experimental re-
sults on synthetic-to-real datasets illustrate that our method outperforms
existing 3D deep learning models for domain generalization.

Keywords: 3D point cloud, domain generalization, adversarial learning,
manifold and memory

1 Introduction

If a 3D point cloud classifier was trained on intact point clouds, would it work
on partial point clouds? What if a neural network trained on point clouds uni-
formly sampled from clean CAD models is tested on real-scanned point clouds
containing noise? Is it possible to deploy a classification model trained on point
clouds with a certain prior under a wild condition where all point clouds are
randomly collected from the Internet? Answers to these questions heavily de-
pend on the capability of the classification models to deal with the domain shift
problem, which refers to the distribution shift/discrepancy between the samples
from training (source) domain and those from testing (target) domain [3, 24, 47].

2 Huang et al.

��

��

source domain

target domain

Fig. 1. Three intermediate domains con-
sist of adversarial samples transformed
from source point clouds. The distances
between the transformed point cloud to
the source and target are d1 and d2.

Although DNNs have been success-
ful in various applications and sepa-
rately obtained state-of-the-art classi-
fication results in both synthetic and
real-scanned point clouds datasets [25,
26, 21, 5], studies in [27, 16] suggest
that deep learning models’ perfor-
mance degrades significantly on out-
of-distribution (OOD) datasets. Most
statistical learning models, including
DNNs, strongly rely on an over-
simplified assumption, i.e., the source
and target samples are drawn from in-
dependent and identically (i.i.d.) distri-
butions, while ignoring OOD scenarios
commonly encountered in real world. A
straight-forward solution to deal with domain shift is to collect samples from
the target domain to fine-tune a source-domain-trained model. Such a schema
is denoted as domain adaptation (DA) [28] which is infeasible when target sam-
ples are inaccessible or even unknown in advance. To resolve the domain shift
and the absence of target data simultaneously, domain generalization (DG) [4]
is introduced. The goal of DG is to train a DNN model on a single or multiple
source domains such that the trained DNN can still perform well on a previously
unseen OOD target domain. Despite that DG has received increasing attention
in 2D vision tasks [9, 45, 30], few literature [16] focuses on DG (or DA [27]) in
3D vision. The recent work MetaSets [16] aims to train a classification model
on source (synthetic) point clouds such that the trained model can also perfor-
mance well on target (real-scanned) point clouds which are inaccessible during
training. By applying a collection of specifically designed geometric transforma-
tions to source point clouds, the transformed point clouds imitate the real-world
scenarios of occlusions, missing parts, and variations in scanning density, thus
expanding the source domain towards the target domain.

In this work, we explore adversarial training [14, 31], whose main goal in pre-
vious literature is to increase the robustness of neural network models against
fluctuations in the input. Distinct to imperceptible attacks utilized in conven-
tional adversarial training, we instead aim to train DNN models which are robust
to OOD samples which bridge the distribution gap between the source and target
domains. In other word, we generate “fictitious” yet “challenging” point clouds
in an adversarial way to mimic virtual intermediate domains as an expansion
of the source domain, driving the model to learn domain-invariant features to
improve its generalization performance, as illustrated in Fig. 1 conceptually. To
utilize the adversarial samples in intermediate domains to the maximum extent,
we design an adaptive replay-based memory mechanism to select and retain
some more effective adversarial samples, i.e., the ones pushing the intermediate
domains far away from the source domain and moving close towards the target

Manifold Adversarial Learning for Cross-domain 3D Shape Representation 3

domain. Despite that the target domain is inaccessible during training and thus
we cannot directly measure the distance of an adversarial sample to the target
domain, we assume that the adversarial samples which are far from the source
domain could augment the diversity of the source domain, consequently, increas-
ing the overlap shared among the source and the target domains, and potentially
increasing the chance (likelihood) to close the gap between these two domains.
A technical barrier is how to define the distance between domains (induced from
the distance between samples in these domains) as measurement of farness and
closeness. To circumvent this barrier, we unify the geometric transformations
proposed in [16] in a manifold-based framework in which each transformation
and the corresponding transformed point cloud are regard as points on the man-
ifolds and the distance between points (on the manifolds) are well-defined.

Our contributions are: 1). We propose adversarial training to generate adver-
sarial point clouds to form intermediate domains for tackling the DG problem in
3D vision; 2). We introduce a manifold-based framework to unify different geo-
metric transformations and define distance between transformations to facilitate
the construction of intermediate domains; 3). We design an adaptive memory to
fully utilize the adversarial samples in intermediate domains for domain-invariant
3D point cloud feature learning. We validate our method on two Sim-to-Real
benchmarks [16] and observe that our proposed method outperforms previous
approaches for point clouds representation learning under DG settings.

2 Related Work

Cross-domain representation learning (for both DA and DG) has been ex-
tensively studied in 2D visionll tasks [15, 12, 44, 13], but has not yet been fully
explored for 3D models. MetaSets [16] designs several geometric transformations
for data augmentation based on the priors of real-scanned point clouds, aiming
to bridge domain gaps. Our work is built upon [16] but instead we explore ad-
versarial point clouds to construct intermediate domains for generalizable point
cloud representation learning. Adversarial learning [14, 23] aims to increase
the robustness of DNNs to adversarial examples with imperceptible perturba-
tions added to the inputs. Previous works in 2D vision explore to adopt adver-
sarial learning to train models that are robust to significant perturbations, i.e.,
OOD samples [31, 17, 35, 34, 46]. These works show that adversarial domain aug-
mentation (ADA) can effectively improve the generalization performance and
robustness of models However, few work has explored ADA for cross-domain
generalizable point cloud representation learning. To our best knowledge, we are
among the first to extend ADA for point cloud representation learning for DG.
We refer the reader to supplementary material for detailed related work.

3 Method

We first give a brief introduction of some mathematical tools based which we for-
mulate our manifold-based framework to measure point cloud transformations in

4 Huang et al.

Sec. 3.1. Then, we unify different types of transformations under this framework
in Sec. 3.2. Next, we describe our adversarial learning and adaptive memory for
intermediate domains in 3.4. Lastly, we depict the learning scheme to train our
DNN in Sec. 3.5. A schematic illustration of our method is shown in Fig. 2.

3.1 Manifolds of transformation and point cloud

Network

source domain adversarial

move in

move out

intermediate domains

Fig. 2. Point clouds from a source domain
are transformed by T and fed into to a
network. The gradient of loss ∇L(P) are
used to generated adversarial samples on
a manifold. The adversarial samples are
retained in a memory as intermediate do-
mains to close the source and target do-
main gap.

Let T be a Lie group consisting of ge-
ometric transformations and t ∈ T be
a specific transformation. The dimen-
sionality of T equals to the number of
free parameters of t. For instance, T
can be 3D rotation group SO(3) and
t ∈ SO(3) : R3 → R3, parameter-
ized by a vector θt ∈ Θ ⊂ R3 rep-
resenting three rotation angles. We in-
terpret t as a mapping from one point
cloud to another. More specifically, we
define a point cloud P with N points
as a square integrable function P =∑N

i piδpi
: R3×N → R3×N where δp de-

notes a Dirac delta function placed at a
location p = (x, y, z) ∈ R3. The action
of t on P is denoted as Pt, which can
be regarded as a function that maps ele-
ments in the Lie group T to elements in
a space of the transformed point clouds
from P , denoted as Pt : T → L2, where
L2 is the space of square integrable functions.

Given a Lie group T , the function d(t1, t2) : T × T → R defines a metric
to measure the distance between the two transformations t1 and t2. A native
option is to instantiate d(t1, t2) = ∥t1− t2∥L2 . However, this metric is inaccurate
as it fails to consider the point cloud on which these transformations act. For
instance, d(

#»
0×3, [0, 0, 2π]) = 2π, however, rotating any point cloud by 2π along

any axis leaving the point cloud unchanged. Another instantiation d(t1, t2) =
∥Pt1 − Pt2∥L2 considers both the transformations and the point cloud, but it
requires per-point correspondences to make the minus operation well-defined.

Geodesic distance, the length of the shortest path between t1, t2 ∈ T , is a
metric to measure the distance between the two transformations. This metric is
valid only if a Riemannian metric is defined for T . Inspired by [36, 18, 19], we
formulate such a Riemannian metric by mapping T to the set of transformed
point clouds of P : M(P) = {Pt : t ∈ T }. This set forms a manifold and we
name it Point Cloud Appearance Manifold (PCAM). The Riemannian metric
on T can be chosen such that the length of a path on T , γ(t) : [0, 1] → T ,
equals to the length of the mapped path on M(P), Pγ(t) : [0, 1] → M(P). The

Manifold Adversarial Learning for Cross-domain 3D Shape Representation 5

geodesic distance between t1, t2 ∈ T thus equals to the geodesic distance between
Pt1 , Pt2 ∈ M(P). Formally, the distance between t1, t2 ∈ T can be defined as:

dP (t1, t2) = min
γ:[0,1]→M(P)

L(γ) s.t. γ(0) = Pt1 , γ(1) = Pt2 , (1)

where L(γ) is the length of the path γ. This metric depends on both the trans-
formed point cloud P and the characteristics of the transformations t1 and t2.

By varying the parameter θt of a transformation t that controls the appear-
ance of each point cloud, e.g ., location and orientation, we can get different point
clouds transformed from the original one. In DG, we assume point clouds in the
target domain T are transformed from the corresponding ones in the source do-
main S by a collection of unknown transformations TS→T. (Notice that TS→T is
not exactly the same as SO(3), but can be parameterized using SO(3) as formu-
lated in Sec. 3.2.) Given two point clouds P in S and P ′ in T, satisfying P ′ = Pt

where t ∈ TS→T is unknown, we define the distance of t relative to S as dP (e, t)
where e is an identity transformation that keeps any point cloud unchanged, i.e.,
Pe = P . The larger dP (e, t), the further distance of t relative to S.

3.2 Geometric transformation unification

�

�

�

(1,0,0)

Fig. 3. Illustration of the unifica-
tion of all transformations using a
direct product of SO(3) and R.

The distribution shift between source and
target domains is usually caused by (un-
known) geometric transformations. As indi-
cated in [40, 16], occlusions, density changes,
and scanning noises mainly contribute to the
point cloud geometric variations. The work
MetaSets [16] proposes three types of trans-
formations to mimic these geometric varia-
tions in real-scanned point clouds. Similarly,
we train a DNN model on a collection of trans-
formed point clouds that covers a wide range
of feasible variations across the source and the
target domains to enhance the DNN model’s
generalization capability. Distinct from [16]
where each type of transformation is param-
eterized by different transformation-specific
hyper-parameters, we unify all three transfor-
mations by parameterizing them using a di-
rect product of SO(3) and R, i.e., SO(3)× R
which is still a Lie group. Utilizing the tools
defined in Sec. 3.1, we can qualitatively mea-
sure the distance between transformations rel-
ative to the source domain, and thus mine effective adversarial samples based
on the distance as described in Sec. 3.3 and 3.4. For the integrity of the paper,
we cite and briefly review the three transformations formulated in [16] and refer
the reader to [16] for detailed descriptions.

6 Huang et al.

Non-uniform density (p1, g). First, randomly select a point p1 from a unit
sphere outside point cloud P and calculate its distances to each point in P .
Then, the distances are normalized to [0, 1] and multiplied by a multiplier g > 1.
The resultant values are used as dropping rates of each point in P and discard
points according to the dropping rates.
Dropping (p2, x%). First, randomly select a point p2 in point cloud P and then
drop the nearest x% points in P . Broken or missing parts in real-world scanned
objects can be simulated by this type of transformation.
Self-occlusion (#»v ,W). First, a plane outside point cloud P is chosen and all
points in P are projected onto the plane along its normal vector #»v . The minimum
distance between each candidate plane and P is the same for all. Then, equal-
sized grids are drawn on the chosen plane with the size W . Only the nearest
points to the chosen plane along the normal vector are retained in each grid.

For the three types of geometric transformations described above, the geo-
metric shifts of self-occlusions, density changes, and missing assemblies are simu-
lated and controlled by hyper-parameters (p1, g, p2, x%, #»v ,W). Distinct from [16]
which samples discrete values of these hyper-parameters randomly and individ-
ually, we unify all the three transformations using a direct product of SO(3) and
R, and impose a manifold structure on the set of transformations. Specifically,
as illustrated in Fig. 3, we centerize point cloud P and normalize it within a
unit sphere. For non-uniform density (s, r), we fix p1 as an anchor point
p1 = (1, 0, 0) and rotate P by s ∈ SO(3). Then, we calculate the distances be-
tween the anchor point to each point in P . The distances are normalized to [0, 1]
and multiplied by a multiplier r > 1, resulting the dropping rates of each point
in P . For dropping (s, r%), we fix an anchor vector #»e = (1, 0, 0) and rotate
P by s ∈ SO(3). Then, we choose the point p #»e in P with the minimal angle
with the anchor vector and drop the nearest r% points around p #»e in P . For
self-occlusion (s, r), we first fix a plane parallel to yz-plane with the coordi-
nate x > 1. We do not specify the concrete plane’s x coordinate only if x > 1 as
the projection is orthogonal. Then, we rotate P by s ∈ SO(3) and only keep the
point with minimal distance to the plane within each grid with the grid size of r
along its normal vector. In sum, we unify all the three transformations param-
eterized by a direct product of SO(3) and R as T = {(s, r) | s ∈ SO(3), r ∈ R},
which achieves the same transformation effect as in [16]. We overload the no-
tations in Sec. 3.1 and denote the set of unified transformations as T in which
θt = [θs : r] ∈ Θ ⊂ R4 for t ∈ T and the symbol : denotes concatenation.

3.3 Adversarial point cloud generation

We first review the generic additive adversarial point cloud generation under
supervised settings. Let P be a training sample with N points and y be the
corresponding label. A supervised learning model is denoted as fw : P 7→ y
where w parameterizes the model. An adversarial sample P a is the worst-case
example by adding perturbation to each point in P which maximizes the loss of
the given model fw [20, 42, 39]:

P a = P + αsign(∇PL(P, y;w)) s.t. ∥pi − p′i∥L2 ≤ ϵ ∀i ∈ {1, 2, · · · , N} , (2)

Manifold Adversarial Learning for Cross-domain 3D Shape Representation 7

where L is the supervised loss (e.g ., cross-entropy) and the condition term pre-
vents the adversarial sample P a from significantly deteriorating the original P .

Fig. 4. Gradient computed at a given point Pt

on PCAM is first projected to the tangent space.
This projected gradient is then retracted to a
point on the manifold, resulting in an adversar-
ial sample P a

t .

However, the generic additive
adversarial samples generated us-
ing Eq. 2 is purely driven by loss
without considering the transfor-
mations towards shrinking the do-
main gap, thus not applicable to
DG. We propose to search for
the adversarial samples of a given
transformed point cloud Pt maxi-
mizing the loss while still staying
on PCAM. The searching process
consists of two steps: 1) choos-
ing the searching movement direc-
tion, and 2) mapping this move-
ment back onto PCAM [19, 1, 2].
The idea is illustrated in Fig. 4
conceptually. Mathematically, let
L(Pt) represent the loss evaluated at Pt of the model fw, and we choose the direc-
tion maximizing the loss, i.e., the direction of the gradient ∇PtL(Pt). However,
as we need to stay on the manifold M(P), we project the gradient ∇Pt

L(Pt)
onto the tangent space at Pt and such a tangent space is denoted as TPt

M [1,
2]. The projection of ∇Pt

L(Pt) onto TPt
M is evaluated as [19, 6]:

g = J +
Pt
∇Pt

L(Pt) ≈ argmin
x

∥JPt
x−∇Pt

L(Pt)∥ ∈ R4 , (3)

where JPt
∈ R(N×3)×4 is the Jacobian matrix of Pt (described below) whose

columns form a basis of the tangent space at Pt, and J +
Pt

is the pseudo-inverse
of JPt

. Due to the complexity of computing pseudo-inverse, the projection g ∈
TPt

M can be approximated using the least squares method [6] as in Eq. 3.
To numerically define Jacobian matrix JP of a point cloud P in Eq. 3, we

first define the difference field of P relative to another point cloud P ′ as:

∆P→P ′ ≜ {∆p→P ′ | p ∈ P} = {argmin
p′

∥p− p′∥L2 − p | p ∈ P, p′ ∈ P ′} . (4)

That is, for each point p ∈ P , we find the nearest point (under the L2 metric in
Euclidean space) p′ ∈ P ′ and then use the difference vector p′−p to measure the
change of p from P to P ′. Gathering all difference vectors of each point in P , we
form the difference field of P denoting the changes from P to P ′. Equipped with
the difference field defined in Eq. 4, we can define the Jacobian matrix JP . For
a point cloud Pt, we add a small ∆θ to the parameters θt of the transformation
t, and then the (i, j)-th entry of the Jacobian JPt

is defined as:

JPt
[i, j] =

∆pi→P ′
t

∆θ[j]
, (5)

8 Huang et al.

where pi ∈ Pt, P
′
t is the point cloud transformed from P by t◦∆t (i.e., changing

the parameters from θt to θt +∆θ), and ∆θ[j] is the j-th entry of ∆θ.
After generating the searching direction g, we update the parameter θt of the

current transformation t to generate an adversarial transformation ta parame-
terized by θat using gradient ascent:

θat = θt + α · g , (6)

where α ∈ (0,+∞) ⊂ R is ascent rate. Once computing the adversarial trans-
formation parameter θat , the next step is to map θat back onto M(P) using
retraction [19, 1, 2], an operation of mapping a vector in a tangent space of
a manifold back to the manifold. Here we focus on recover sa ∈ SO(3) from
θas = {θat [j] | j = 0, 1, 2} ∈ R3 and leave ra = θat [3] ∈ R unchanged.

Let Gi be the basis of the tangent space TeSO(3) at the identity element
e of the 3D rotation group SO(3) (see supplementary materials), the steps of
retraction are summarized as: 1) mapping θas to a tangent vector in TeSO(3)
using Gi; 2) mapping the resultant tangent vector in TeSO(3) to a rotation
sa ∈ SO(3), and 3) mapping the resultant transformation ta = (sa, ra) ∈ T back
to the manifoldM(P). Formally, retraction RPt

: TPt
M → M(P) at Pt ∈ M(P)

is defined as:

RPt
(α · g) = Pta , s.t. ta = (sa, ra) and sa = exp(

2∑
j=0

θas [j]Gj) , (7)

where θas [j] is the j-th entry of θas , also the coefficient w.r.t. the basis Gj . Thus,
the adversarial sample from Pt can be defined as P a

t = RP (t
a) = Pta as in Eq. 7.

3.4 Adaptive memory for intermediate domains

Fig. 5. Illustration of computing geodesic dis-
tance between P1, P2 ∈ M(P) using direct path
with N = 5 segments.

We describe an adaptive memory
mechanism for determining which
adversarial samples to be retained
in an external memory [38] as in-
termediate domains. Adversarial
samples from different types of
transformations are grouped into
different intermediate domains.
This mechanism jointly consid-
ers the transformation distances
relative to the source domain as
shown in Fig. 1 and the interme-
diate domain sizes. We first es-
timate the probability of a cur-
rent adversarial sample to move
in memory and then choose a sample in memory to move it out simultaneously.
Let Mi denotes the i-th intermediate domains formed by the adversarial sam-
ples transformed by the i-th type of transformation and retained in memory M ;

Manifold Adversarial Learning for Cross-domain 3D Shape Representation 9

ni = |Mi| denotes the number of samples in domain Mi; and n = |M | denotes
the total number of samples in memory, satisfying n =

∑3
i=1 ni.

Algorithm 1 A sketch of training scheme

Input: S = {Dtr
S , Dval

S }, T , M , fw, batch size B
1: while Lval < ϵ do
2: ▷ Training phase
3: Sample {Pi}Bi=1 from Dtr

S , {ti}Bi=1 from T
4: Apply {ti}Bi=1 to {Pi}Bi=1 to get {Pti}Bi=1

5: Sample {P a
i }Bi=1 from M

6: Compute Ltr(P) = fw({Pi}Bi=1 ∪ {P a
i }Bi=1)

7: Compute projected gradient using Eq. 3
8: Generate adversarial {P a

i }Mi=1 using Eq. 7
9: Compute dP (e, ti) using Eq. 13
10: Compute move-in/out prob. as in Sec. 3.4
11: Add some adversarial {P a

i }mi=1 into M
12: ▷ Validation phase
13: Sample {Pi}Bi=1 from Dval

S , {ti}Bi=1 from T
14: Compute Lval(P) = fw({Pi}Bi=1)
15: end while

Probability of new adver-
sarial sample moving into
memory. When a new adver-
sarial sample P a

ti is generated
through transformation ti, the
chance of P a

ti being moved into
memory is estimated, with the
central principle being the fur-
ther distance from P a

ti to the
source domain, the higher prob-
ability of P a

ti being retained.
The probability is positively
correlated to the geodesic dis-
tance dP (e, ti). Furthermore,
to avoid imbalance of samples
among intermediate domains,
we enforce the move-in prob-
ability to be inversely propor-
tional to ni.
Probability of existing ad-
versarial sample moving
out of memory. To move an
existing adversarial sample out of memory, we perform a hierarchical sampling
as proposed in [38] by first selecting an intermediate domain based on a score
and then randomly move out a sample in the selected domain. The score for
each domain is negatively correlated to the average geodesic distance of all sam-
ples in the domain. For the same reason as above, we enforce the score to be
proportional to ni. Formally, the score for the i-th intermediate domain is:

Si =
exp(−ni

n d̄i)∑
j exp(−

nj

n d̄j)
, s.t. d̄i =

1

ni

ni∑
k=1

dP (e, tk) , (8)

and then we use Si as the probability to sample intermediate domain Mi for
moving out adversarial samples.
Theoretical justification. Given a source domain S and a target domain T,
the error of a classifier h on the target domain ϵT(h) can be bounded by the sum
of the source domain error ϵS(h), the divergence between the distributions DS
and DT, and a constant C which is independent of h [3, 27]:

ϵT(h) < ϵS(h) + d1(DS,DT) + C , (9)

where d1(DS,DT) is the total variation divergence (or L1 distance when each set
is countable) for distributions. In previous literature [3, 27, 8, 29], H∆H-distance
dH∆H(·, ·), an upper bound of d1(·, ·), is adopted in place of the total variation

10 Huang et al.

divergence in Eq. 9 for analysis. However, as indicated in [33], there exists a
connection between the total variation divergence and transportation theory:

d1(DS,DT) =
1

2
∥DS −DT∥L1 = inf

π
Eπ[c(x, y)] , (10)

where x ∼ DS, y ∼ DT, c(x, y) is a cost function, and the expectation is taken
w.r.t. the probability measure π on the space where (x, y) lives. In transportation
theory, the cost function c(x, y) is proportional to the distance between x and y.
In our setting, we choose the cost function to be the geodesic distance between
two point clouds, i.e., c(Pt1 , Pt2) = dP (t1, t2). Denoting intermediate domains
as M, to minimize the right-hand side of Eq. 9, we have:

min d1(DS,DT) ⇒ min d1(DS∪M,DT) ▷ M is an expansion of S
⇒ min inf

π
Eπ[c(Pt1 ∈ S ∪M, Pt2 ∈ T)]

⇒ min inf
π

Eπ[c(Pt1 ∈ M, Pt2 ∈ T)] ▷ S is given and fixed

⇒ min inf
π

Eπ[dP (tS→M, tS→T)] ▷ t1 := tS→M and t2 := tS→T

⇒ min inf
π

Eπ[dP (e, tS→T)− dP (e, tS→M)] ▷ dP (e, tS→T) = dP (e, tS→M) + dP (tS→M, tS→T)

⇒ max inf
π

Eπ[dP (e, tS→M)] ▷ tS→T is unknown and assumed fixed

(11)

The fourth comment assumes dP (e, tS→M) = d1 and dP (tS→M, tS→T) = d2, as
shown in Fig. 1. We select the adversarial sample with the maximum geodesic
distance of dP (e, tS→M) and store it into the corresponding intermediate domain.

We now describe how to calculate the geodesic distance dP (t1, t2). Assuming
Pt1 , Pt2 ∈ M(P), we adopt the direct path method [19] to approximately measure
the geodesic distance between these two points as follows. First, map Pt2 to the
tangent space at Pt1 as vector v = θt2 − θt1 , dividing v into smaller vector
segments and re-map these segments back onto the manifold. Then, dP (t1, t2)
is computed as the sum of distances between these interval points on M(P).
Mathematically, the direct path from Pt1 to Pt2 can be estimated using retraction
as:

γ(τ) = RPt1
(τv) = Ptτ ∈ M(P), s.t. θtτ = θt1 + τv and τ ∈ [0, 1] . (12)

For a pre-defined number of steps N , v can be divided into segments as v̂ = v
N ,

the geodesic distance can be measured as:

dP (t1, t2) = d(Pt1 , Pt2) =

N∑
i=1

∥RPt1
(iv̂)−RPt1

((i−1)v̂))∥d =

N∑
i=1

∥Pti −Pti−1
∥d ,

(13)
where θti = θt1 + iv̂. In our case, we estimate dP (t1, t2) as d(Pt1 , Pt2), since from
Eq. 1, the distance between two transformations on T is defined as the distance
between their transformed point clouds on PCAM M(P). Using the difference
vectors defined in Eq. 4, we can induce a metric on M(P) defined as:

∥P − P ′∥d =
1

N

∑
p∈P

∥∆p→P ′∥L2 , (14)

Manifold Adversarial Learning for Cross-domain 3D Shape Representation 11

where N is number of points in P . ∥P −P ′∥d = 0 if and only if P and P ′ are the
same. Plugging Eq. 14 into the right-hand side of Eq. 13, we can approximate
the geodesic distance between t1 and t2.

3.5 Training scheme

We sketch key steps of our training scheme in Algorithm 1. We split data in
the source domain into training and validation sets, and apply transformations
to a batch of sampled data in each iteration. The loss is applied to generate
adversarial samples as in Sec. 3.3. We compute move-in/out probabilities of the
adversarial samples based on geodesic distances as in Sec. 3.4 and move some
samples into and/or out of the memory. We refer the reader to supplementary
materials for a detailed training scheme.

4 Experiment

Dataset and implementation. We evaluate our model on the two Sim-to-Real
benchmarks proposed in [16] in which two synthetic datasets, ModelNet [41]
and ShapeNet [7], and a real-scanned dataset ScanObjectNN [32] are calibrated
to serve as three domains. We use the common categories shared across each
dataset. We refer the reader to supplementary materials and [16] for detailed
description about the Sim-to-Real benchmarks. We split each source domain
into training and validation sets with a ratio of 5 : 1 as in [11, 16]. We implement
fw using a meta-learning algorithm [10, 17] with first-order approximation. The
parameter θs ∈ R3 for s ∈ SO(3) are optimized in adversarial learning without
bounds, while the parameter r ∈ R are constrained using upper and lower bounds
to avoid significantly deteriorating point clouds as suggested in [16].

4.1 Visualization of adversarial point clouds

Fig. 6 shows several adversarial samples that are generated for three types of
transformations in experiments. We notice that compared to the clean and intact
point clouds in synthetic ModelNet40 and ShapeNet datasets, real-scanned point
clouds in ScanObjectNN are partial and noisy, raising the distribution shift issue
that a model trained only using naive initial data from ModelNet40 or ShapeNet
cannot perform well on ScanObjectNN as the target domain. By generating
adversarial samples diverting away from synthetic clean data and towards partial
and noisy data, the distributions of point clouds in the source and the target
domains could gradually align. For instance, the sofa in ScanObjectNN contains
a missing part (a hole) on its back, the transformed sofa also produces a hole on
the back, making the training data geometrically closer to the testing one.

4.2 ModelNet40 to ScanObjectNN

We select 11 shared categories across ModelNet40 and ScanObjectNN datasets.
We train the networks on ModelNet40 and evaluate the performance on ScanOb-
jectNN. Our method is compared against the following classification models:

12 Huang et al.

Fig. 6. Blue boxes: point clouds from ModelNet40 as the source domain. Orange boxes:
point clouds from ShapeNet as the source domain. Black boxes: adversarial samples
generated from the corresponding source domain point clouds (above). Green boxes:
point clouds from ScanobjectNN as the target domain. The adversarially transformed
point clouds form the intermediate domains closing the geometric gap between intact
point clouds in the source domain and incomplete point clouds in the target domain.

PointNet [25], PointNet++ [26], DGCNN [37], ConvPoint [5], LDGCNN [43],
PointCNN [22], PointDAN [27] and MetaSets [16]. Note that PointDAN is a DA
method which utilizes unlabeled point clouds from the target domain during
training. From Tab. 1, our approach outperforms all the compared methods for
cross-domain point cloud classification in DG settings. Our superior performance
over previous single-domain approaches (line 1 ∼ 6) is attributed to the inter-
mediate domain expanding the source domain and aligning data distribution
with the target domain. Compare with DA and DG approaches (line 7 ∼ 9), we
still achieve optimal performance. Distinct from [16] which generates data for
augmentation using random transformation parameters, our method produces
adversarial transformations in a principle manner, i.e., the transformed samples
are more challenging w.r.t. the network and have further distances relative to the
source domain. Moreover, the adaptive memory retains some adversarial sam-
ples during training to alleviate the potential forgetting problem in the network.
We have to mention that superiority of adversarial learning could be partially
countered, however, if massive amounts of data are transformed arbitrarily and
encompass a broad spectrum of transformation possibilities.

4.3 ShapeNet to ScanObjectNN

Similar to Sec. 4.2, we select 9 categories shared across ShapeNet and ScanOb-
jectNN, and train our model on ShapeNet and evaluate on ScanObjectNN. We
compare our method with the same state-of-the-art approaches as foremen-
tioned and the results are listed in Tab. 2. Our method still outperforms all

Manifold Adversarial Learning for Cross-domain 3D Shape Representation 13

Table 1. Accuracy (%) on the benchmark: ModelNet40 → ScanObjectNN.

Method Object Object & Background

PointNet [25] 55.90 ± 1.47 49.48 ± 2.28
PointNet++ [26] 47.30 ± 0.53 40.42 ± 1.17
ConvPoint [5] 57.40 ± 0.44 55.44 ± 0.32
DGCNN [21] 61.68 ± 1.26 57.61 ± 0.44
PointCNN [22] 50.32 ± 0.43 46.11 ± 0.43
LDGCNN [21] 62.29 ± 0.22 58.83 ± 0.43
PointDAN [27] with PointNet 63.32 ± 0.85 55.13 ± 0.97
MetaSets [16] with PointNet 68.28 ± 0.79 57.19 ± 1.23
MetaSets [16] with DGCNN 72.42 ± 0.21 65.66 ± 1.06

Ours with PointNet 69.84 ± 0.56 58.36 ± 0.94
Ours with DGCNN 73.83 ± 0.48 66.71 ± 0.97

the compared approaches, including the single-domain approaches and DA/DG
approaches. More importantly, we provide a systematic way to quantitatively
measure geometric transformations built on which we can explore adversarial
samples and such a scheme is lacked in all previous approaches.

5 Ablation Study

We conduct ablative studies on our proposed method using PointNet as our
backbone and evaluate on the benchmark from ModelNet40 to ScanObjectNN.

Effect of adaptive memory. To verify the effectiveness of the adaptive mem-
ory, we vary the total size of the memory and the results are listed in Tab. 3.
With the increase of the memory size, the accuracy increases accordingly while
the variance decreases.

Table 2. Accuracy (%) on the benchmark: ShapeNet → ScanObjectNN.

Method Object Object & Background

PointNet [25] 54.00 ± 0.32 45.50 ± 0.99
PointNet++ [26] 45.50 ± 0.64 43.25 ± 1.23
ConvPoint [5] 52.58 ± 0.58 50.67 ± 0.88
DGCNN [21] 57.42 ± 1.01 54.42 ± 0.80
PointCNN [22] 49.42 ± 0.29 43.92 ± 0.63
LDGCNN [21] 57.92 ± 0.63 52.50 ± 0.25
PointDAN [27] with PointNet 54.95 ± 0.87 43.00 ± 0.95
MetaSets [16] with PointNet 55.25 ± 0.35 49.50 ± 0.43
MetaSets [16] with DGCNN 60.92 ± 0.76 59.08 ± 1.01

Ours with PointNet 57.03 ± 0.47 51.35 ± 0.46
Ours with DGCNN 62.21 ± 0.49 61.13 ± 0.86

14 Huang et al.

Table 3. Effect of the memory size on the benchmark: ModelNet40 → ScanObjectNN.

Method Object Object & Background

PointNet (n = 100) 69.22 ± 0.74 57.94 ± 1.15
PointNet (n = 300) 69.51 ± 0.69 58.17 ± 1.08
PointNet (n = 500) 69.84 ± 0.56 58.36 ± 0.94

Effect of manifold-based adversarial samples. We validate our manifold-
based adversarial samples against the additive adversarial samples generated
using Eq. 2 and the results are listed in Tab. 4. By varying ϵ, we control the
adversarialness. Note that when the adversarialness increases, the performance
even drops, as the per-point adversarial acts as noise and fails to bridge domain
gaps as our proposed adversarial samples.

Table 4. Effect of additive adversarial on benchmark: ModelNet40 → ScanObjectNN.

Method Ours ϵ = 0.1 ϵ = 0.25 ϵ = 0.5

PointNet on Object 69.84 ± 0.56 68.31 ± 0.46 64.29 ± 0.51 58.37 ± 0.74

6 Conclusions

This work presents a 3D point cloud representation learning method for do-
main generation. We construct a point cloud appearance manifold on which
different types of geometric transformations can be unified and quantitatively
measured using geodesic distance. The geodesic distance is then utilized to gen-
erate and select adversarial samples which are retained in an adaptive memory
as intermediate domains to reduce domain shift. We evaluate our method on two
Sim-to-Real benchmarks and achieve superior performance. The manifold-based
framework can be extended to domain adaption by measuring the distance from
the source to the target domains, which is left for future work.

Acknowledgments The authors appreciate the generous support provided
by Inception Institute of Artificial Intelligence (IIAI) in the form of NYUAD
Global Ph.D. Student Fellowship. This work was also partially supported by
the NYUAD Center for Artificial Intelligence and Robotics (CAIR), funded by
Tamkeen under the NYUAD Research Institute Award CG010.

Manifold Adversarial Learning for Cross-domain 3D Shape Representation 15

References

1. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization algorithms on matrix mani-
folds. Princeton University Press (2009)

2. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization on manifolds: Methods and
applications. In: Recent Advances in Optimization and Its Applications in Engi-
neering, pp. 125–144. Springer (2010)

3. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.:
A theory of learning from different domains. Machine Learning 79(1), 151–175
(2010)

4. Blanchard, G., Lee, G., Scott, C.: Generalizing from several related classification
tasks to a new unlabeled sample. Advances in Neural Information Processing Sys-
tems 24 (2011)

5. Boulch, A.: Convpoint: Continuous convolutions for point cloud processing. Com-
puters & Graphics 88, 24–34 (2020)

6. Buss, S.R.: Introduction to inverse kinematics with jacobian transpose, pseudoin-
verse and damped least squares methods. Journal of Robotics and Automation
17(1-19), 16 (2004)

7. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,
Savarese, S., Savva, M., Song, S., Su, H., et al.: Shapenet: An information-rich
3d model repository. arXiv preprint arXiv:1512.03012 (2015)

8. Chen, Y., Li, W., Sakaridis, C., Dai, D., Van Gool, L.: Domain adaptive faster r-cnn
for object detection in the wild. In: Proceedings of the Conference on Computer
Vision and Pattern Recognition. pp. 3339–3348 (2018)

9. Fan, X., Wang, Q., Ke, J., Yang, F., Gong, B., Zhou, M.: Adversarially adaptive
normalization for single domain generalization. In: Proceedings of the Conference
on Computer Vision and Pattern Recognition. pp. 8208–8217 (2021)

10. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In: International Conference on Machine Learning. pp. 1126–
1135. PMLR (2017)

11. Ghifary, M., Kleijn, W.B., Zhang, M., Balduzzi, D.: Domain generalization for ob-
ject recognition with multi-task autoencoders. In: Proceedings of the International
Conference on Computer Vision. pp. 2551–2559 (2015)

12. Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised
domain adaptation. In: Proceedings of the Conference on Computer Vision and
Pattern Recognition. pp. 2066–2073. IEEE (2012)

13. Gong, R., Li, W., Chen, Y., Gool, L.V.: Dlow: Domain flow for adaptation and
generalization. In: Proceedings of the Conference on Computer Vision and Pattern
Recognition. pp. 2477–2486 (2019)

14. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: International Conference on Learning Representations (2015)

15. Gopalan, R., Li, R., Chellappa, R.: Domain adaptation for object recognition:
An unsupervised approach. In: Proceedings of the International Conference on
Computer Vision. pp. 999–1006. IEEE (2011)

16. Huang, C., Cao, Z., Wang, Y., Wang, J., Long, M.: Metasets: Meta-learning on
point sets for generalizable representations. In: Proceedings of the Conference on
Computer Vision and Pattern Recognition. pp. 8863–8872 (2021)

17. Huang, Z., Wang, H., Xing, E.P., Huang, D.: Self-challenging improves cross-
domain generalization. In: European Conference on Computer Vision. pp. 124–140.
Springer (2020)

16 Huang et al.

18. Jacques, L., De Vleeschouwer, C.: A geometrical study of matching pursuit
parametrization. Transactions on Signal Processing 56(7), 2835–2848 (2008)

19. Kanbak, C., Moosavi-Dezfooli, S.M., Frossard, P.: Geometric robustness of deep
networks: analysis and improvement. In: Proceedings of the Conference on Com-
puter Vision and Pattern Recognition. pp. 4441–4449 (2018)

20. Kim, M., Tack, J., Hwang, S.J.: Adversarial self-supervised contrastive learning.
Advances in Neural Information Processing Systems 33, 2983–2994 (2020)

21. Li, G., Muller, M., Thabet, A., Ghanem, B.: Deepgcns: Can gcns go as deep as
cnns? In: Proceedings of the International Conference on Computer Vision. pp.
9267–9276 (2019)

22. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: Pointcnn: Convolution on x-
transformed points. Advances in Neural Information Processing Systems 31 (2018)

23. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. In: International Conference on Learning
Representations (2018)

24. Moreno-Torres, J.G., Raeder, T., Alaiz-Rodŕıguez, R., Chawla, N.V., Herrera, F.:
A unifying view on dataset shift in classification. Pattern Recognition 45(1), 521–
530 (2012)

25. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d
classification and segmentation. In: Proceedings of the Conference on Computer
Vision and Pattern Recognition (2017)

26. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learn-
ing on point sets in a metric space. Advances in Neural Information Processing
Systems (2017)

27. Qin, C., You, H., Wang, L., Kuo, C.C.J., Fu, Y.: Pointdan: A multi-scale 3d domain
adaption network for point cloud representation. Advances in Neural Information
Processing Systems 32 (2019)

28. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to
new domains. In: European Conference on Computer Vision. pp. 213–226. Springer
(2010)

29. Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy
for unsupervised domain adaptation. In: Proceedings of the Conference on Com-
puter Vision and Pattern Recognition. pp. 3723–3732 (2018)

30. Shu, Y., Cao, Z., Wang, C., Wang, J., Long, M.: Open domain generalization with
domain-augmented meta-learning. In: Proceedings of the Conference on Computer
Vision and Pattern Recognition. pp. 9624–9633 (2021)

31. Sinha, A., Namkoong, H., Duchi, J.: Certifiable distributional robustness with prin-
cipled adversarial training. In: International Conference on Learning Representa-
tions (2018)

32. Uy, M.A., Pham, Q.H., Hua, B.S., Nguyen, T., Yeung, S.K.: Revisiting point cloud
classification: A new benchmark dataset and classification model on real-world
data. In: Proceedings of the International Conference on Computer Vision. pp.
1588–1597 (2019)

33. Villani, C.: Optimal transport: old and new, vol. 338. Springer (2009)
34. Volpi, R., Murino, V.: Addressing model vulnerability to distributional shifts over

image transformation sets. In: Proceedings of the International Conference on Com-
puter Vision. pp. 7980–7989 (2019)

35. Volpi, R., Namkoong, H., Sener, O., Duchi, J.C., Murino, V., Savarese, S.: Gener-
alizing to unseen domains via adversarial data augmentation. Advances in Neural
Information Processing Systems 31 (2018)

Manifold Adversarial Learning for Cross-domain 3D Shape Representation 17

36. Wakin, M.B., Donoho, D.L., Choi, H., Baraniuk, R.G.: The multiscale structure of
non-differentiable image manifolds. In: Optics & Photonics. vol. 5914, p. 59141B.
International Society for Optics and Photonics (2005)

37. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic
graph cnn for learning on point clouds. Transactions On Graphics 38(5), 1–12
(2019)

38. Wang, Z., Duan, T., Fang, L., Suo, Q., Gao, M.: Meta learning on a sequence of
imbalanced domains with difficulty awareness. In: Proceedings of the International
Conference on Computer Vision. pp. 8947–8957 (2021)

39. Wen, Y., Lin, J., Chen, K., Chen, C.P., Jia, K.: Geometry-aware generation of ad-
versarial point clouds. Transactions on Pattern Analysis and Machine Intelligence
(2020)

40. Wu, B., Zhou, X., Zhao, S., Yue, X., Keutzer, K.: Squeezesegv2: Improved model
structure and unsupervised domain adaptation for road-object segmentation from
a lidar point cloud. In: International Conference on Robotics and Automation. pp.
4376–4382. IEEE (2019)

41. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets:
A deep representation for volumetric shapes. In: Proceedings of the Conference on
Computer Vision and Pattern Recognition. pp. 1912–1920 (2015)

42. Xiang, C., Qi, C.R., Li, B.: Generating 3d adversarial point clouds. In: Proceedings
of the Conference on Computer Vision and Pattern Recognition. pp. 9136–9144
(2019)

43. Zhang, K., Hao, M., Wang, J., de Silva, C.W., Fu, C.: Linked dynamic graph
cnn: Learning on point cloud via linking hierarchical features. arXiv preprint
arXiv:1904.10014 (2019)

44. Zhang, L., Wang, S., Huang, G.B., Zuo, W., Yang, J., Zhang, D.: Manifold crite-
rion guided transfer learning via intermediate domain generation. Transactions on
Neural Networks and Learning Systems 30(12), 3759–3773 (2019)

45. Zhang, X., Cui, P., Xu, R., Zhou, L., He, Y., Shen, Z.: Deep stable learning for
out-of-distribution generalization. In: Proceedings of the Conference on Computer
Vision and Pattern Recognition. pp. 5372–5382 (2021)

46. Zhao, L., Liu, T., Peng, X., Metaxas, D.: Maximum-entropy adversarial data aug-
mentation for improved generalization and robustness. Advances in Neural Infor-
mation Processing Systems 33, 14435–14447 (2020)

47. Zhou, K., Liu, Z., Qiao, Y., Xiang, T., Loy, C.C.: Domain generalization in vision:
A survey. arXiv preprint arXiv:2103.02503 (2021)

