
Fast-MoCo: Boost Momentum-based Contrastive
Learning with Combinatorial Patches

Supplementary Material

A Algorithm

Algorithm 1 Pytorch-style Pseudocode for Fast-MoCo

f_o: online branch networks [encoder, projector, predictor]

f_t: target branch networks [encoder, projector]

a: exponential moving average momentum \alpha, t: temperature \tau

combine: generate all possible 2-combinations between patch embeddings

for x in loader: # load a minibatch

x1, x2 = aug(x), aug(x) # augemtation, NxCxHxW

x1_d, x2_d = divide(x1), divide(x2) # Divide step, 4NxCx(H/2)x(W/2)

v1, v2 = f_o[0](x1_d), f_o[0](x2_d) # online branch encode

c1, c2 = combine(v1), combine(v2) # Combine step

z1_c, z2_c = f_o[1:](c1), f_o[1:](c2) # project & predict

z1, z2 = f_t(x1), f_t(x2) # target branch encode & project

loss = ctr(z1_c, z2) + ctr(z2_c, z1)

loss.backward()

weight update

update(f_o.params)

f_t.params = a * f_t.params + (1-a) * f_o[:2].params

def ctr(z_c, z)

z_c, z = normalize(z_c, dim=1), normalize(z, dim=1) # l2-normalize

z_c = z_c.split(z.size(0))

calculate loss for each of the 6 combined samples

loss = 0

for _z in z_c:

logits = mm(_z, z.t())

loss += CorssEntropyLoss(logits/t, labels)

positive pairs are sourced from the same instance

return loss /= len(z_c)

2 Y. Ci et al.

B Additional Implementation Details

B.1 Self-Supervised Pretraining

Here in Table 1, we show the detailed configurations for self-supervised pre-
training. For ablation study experiments that are only trained for 20 epochs, we
multiply the learning rate by 1.5 compared to default setting.

Config Values

Epochs {100, 200, 400} 20

Optimizer SGD
Optimizer momentum 0.9
Weight decay 1e-4
Gradient clipping 1.0

Learning rate schedule Cosine
Initial Learning rate 0.1 0.15
Final Learning rate 0.0
Warmup epochs 1
Warmup initial learning rate 0.025 0.0375

Batch size 512
Temperature τ 1.0
Exponential moving average momentum α 0.99
Augmentation As in [4]

Table 1: Self-supervised pretraining setup.

B.2 Linear Evaluation

Here in Table 2, we show the detailed configurations for linear evaluation. For
ablation study experiments that only trained for 20 epochs, we have a shorter
training schedule with doubled learning rate.

Config Values

Pre-trainig epochs {100, 200, 400} 20
Fine-tuning epochs 90 10

Optimizer LARS
Optimizer momentum 0.9

Learning rate schedule Cosine
Initial Learning rate 0.8 1.6
Final Learning rate 0.0

Batch size 4096
Augmentation As in [5]

Table 2: Linear evaluation setup.

Fast-MoCo: Boost Momentum-based Contrastive Learning 3

B.3 Semi-Supervised Training

We follow the evaluation protocol as in [2,9,15] and apply the same augmenta-
tions as used in the linear evaluation. For both 1% and 10% settings, we adopt
the same dataset split as in [2]. We use a SGD optimizer with Nesterov momen-
tum of 0.9 and a batch size of 256. We do not apply any regularization such as
weight decay and gradient clipping. The learning rate is scaled by a factor of 0.2
at 60% and 80% of the training schedule. For the 1% setting, we fine-tune for
60 epochs with a learning rate of 5e2 and 0 for the linear layer and backbone,
respectively. For the 10% setting, we fine-tune for 20 epochs with a learning rate
of 5e2 and 1e-6 for the linear layer and backbone, respectively.

B.4 Transfer Learning

For object detection and segmentation, we follow the evaluation protocol as
in [10,3,4,15] and conduct experiments on detectron2 [14] codebase with the
R50-C4 backbone variant [8]. The detailed configurations are as follows:

PASCAL-VOC For object detection on PASCAL-VOC [7] with Faster R-
CNN [13], we have all weights finetuned on the trainval07+12 dataset and
evaluated on the test07 dataset. We fine-tune for 24K iterations with batchsize
16. The learning rate is 1e-2 and 1e-3 for the heads and backbone, respectively,
and is scaled by 0.1 at 18K and 22K iterations.

COCO For detection and instance segmentation on COCO [12], we finetune
our weights with Mask R-CNN [11] on the train set and report results on the
val split. We use the 1× schedule in detectron2 [14]. The learning rate is 1e-2
and 1e-3 for the heads and backbone, respectively.

B.5 Fast-MoCo w/ mulit-crop

Multi-crop is a technique proposed in SwAV [1]. In addition to two 224× 224
crops, multi-crop additionally adds six 96× 96 patches as samples so that the
encoder is trained with samples that have multiple resolutions and hard samples.
For fair comparison, we add an additional 224×224 crop as sample (which adds
approximately the same computational cost as six 96 × 96 patch samples) for
Fast-MoCo w/ mulit-crop.

C Additional Results

C.1 Combinatorial Patches on Other SSL Frameworks.

We further evaluate our method by directly applying it to NNCLR (neighborhood-
replaced target embedding), BYOL (non-contrastive), and SimSiam (momentum-
free); results in Table 3 show that the proposed combinatorial patches can gen-
eralize well to different SSL frameworks. Please note, while the proposed com-
binatorial patches can be applied to MoCoV3, NNCLR, and BYOL seamlessly,

4 Y. Ci et al.

integrating it to SimSiam will increase the computation cost since we need to
forward the same view twice to get the symmetrized loss while SimSiam only
needs one forward pass. Nevertheless, combinatorial patches can still boost Sim-
Siam significantly, e.g., achieving 71.7% top-1 linear evaluation accuracy with
only 100 epochs, which is higher than the original SimSiam running 800 epochs
(71.3%).

Method Top-1 (e100)

NNCLR [6] 69.4
NNCLR + combinatorial patches 72.5 (+3.1)

BYOL [9] 66.5
BYOL + combinatorial patches 73.6 (+7.1)

SimSiam [4] 68.1
SimSiam + combinatorial patches 71.7 (+3.6)

Table 3: ImageNet linear evaluation performance of our method on other frame-
works with ResNet-50. Results of compared methods w/o combinatorial patches
are from their original paper.

C.2 Downstream Results with Different Pretrain Epochs

The faster convergence of our method also stand for the low-data regime and
transfer learning as shown in Figure 1. Fast-MoCo achieves better or similar
performance with only 100 or 200 epochs than other methods trained with 800 or
1000 epochs on semi-supervised classification with 1% labeled data (Figure 1(a))
and 10% labeled data (Figure 1(b)), COCO detection (Figure 1(c)), and COCO
segmentation (Figure 1(d)).

C.3 Robustness to the Selection of Batch Size

In Table 4, we show the comparison of robustness to batch size varying among
{1024, 512, 256} with the reported values in SimSiam, BYOL and Barlow Twins.
As observed, Fast-MoCo has similar robustness as BYOL and Barlow Twins.

C.4 AdamW Optimizer

When using AdamW as optimizer and pretrain for 100 epochs based on MoCo
v3 (69.3% w/ AdamW, result run by us) under the same setting, our Fast-MoCo
can achieve 71.7% (+2.4%) Top-1 accuracy for ImageNet linear evaluation, which
demonstrates that our approach also works well with AdamW.

Fast-MoCo: Boost Momentum-based Contrastive Learning 5

100 200 400 800 1000

50

55

To
p-

1

(a) Semi-supervised 1%

100 200 400 800 1000

66

68

70

To
p-

1

(b) Semi-supervised 10%

100 200 400 800 1000
Pretrained Epochs

39.2

39.4

AP
_b

b_
al

l

(c) COCO Detection

100 200 400 800 1000
Pretrained Epochs

34.0

34.5

AP
_m

k_
al

l

(d) COCO Segmentation

SimCLR
BYOL

NNCLR
MoCo v2

SimSiam
Barlow-Twins

SwAV
Fast-MoCo

Fig. 1: Downstream task results in different epochs.

Method
Top-1

b1024 b512 b256

SimSiam [4] (100 ep.) 68.0 68.1 68.1
BYOL [9] (300 ep.) 72.3 72.2 71.9
Barlow Twins [15] (300 ep.) 71.7 71.4 70.7
Fast-MoCo (100 ep.) 73.6 73.5 72.5

Table 4: Comparison of robustness to batch size from 1024 to 256. Result of the
compared methods are from their original paper.

C.5 Combine Stage Selection

In Figure 2 of this supplementary, we provide additional results on different
choices of Combine stage. We have two target-sample pairs per image when
number of patch combined n = 2. When the combine stage is before “final”,
we stitch the feature map (for stage 1 ∼ 3) or patch image (for stage “input”)
vertically and horizontally with respect to their original position. Here we can
see the performance drops significantly when the Combine step is conducted
after the projection layer or prediction layer.

D Patch Encode Approaches

In Figure 3, we illustrate every patch encoding approach compared in Section 5.2.

6 Y. Ci et al.

input 1 2 3 final proj pred
Stage

68

70

72

To
p-

1

Combine Stage for 2x2 splits (100 epochs)

n=2

Fig. 2: ImageNet linear evaluation accuracy (Y-axis) when Combine step is con-
ducted at different stages (X-axis) for combining n = 2 divided patches. Here
“input” denotes the patches are combined at image level, 1 ∼ 3 denotes patches
are combined at feature map level after ResNet stage 1 ∼ 3. “final”, “proj” and
“pred” denotes patches are combined at embedding level after encoder, projec-
tor, and predictor, respectively.

Fast-MoCo: Boost Momentum-based Contrastive Learning 7

Divide

Combine

𝒄𝒄

Patch Encoding Approach

Momentum
update

Grad.𝑞𝑞𝑔𝑔

𝑔𝑔encoder 𝑓𝑓Target
Branch

Online
Branch

Momentum
update

Fast-MoCo

Contrastive
Loss

encoder 𝑓𝑓

224x224

Montage
𝒄𝒄

Montage-Encode-Divide-Combine

encoder 𝑓𝑓
Divide

224x224

Combine𝑣𝑣1 𝑣𝑣2
𝑣𝑣3 𝑣𝑣4

Combine

𝒄𝒄

Sample-Encode-Combine

encoder 𝑓𝑓

112x112

𝒄𝒄

Encode Only

encoder 𝑓𝑓

158x158

Divide-Combine-Encode

Divide &
Combine

224x224

𝒄𝒄encoder 𝑓𝑓 𝒄𝒄

Sample-Combine-Encode

encoder 𝑓𝑓

224x112

Fig. 3: Illustration of patch encoding approaches compared in Section 5.2.

8 Y. Ci et al.

References

1. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised
learning of visual features by contrasting cluster assignments. Advances in Neural
Information Processing Systems 33, 9912–9924 (2020)

2. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for con-
trastive learning of visual representations. In: International conference on machine
learning. pp. 1597–1607. PMLR (2020)

3. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum con-
trastive learning. arXiv preprint arXiv:2003.04297 (2020)

4. Chen, X., He, K.: Exploring simple siamese representation learning. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
15750–15758 (2021)

5. Chen, X., Xie, S., He, K.: An empirical study of training self-supervised vision
transformers. In: Proceedings of the IEEE/CVF International Conference on Com-
puter Vision. pp. 9640–9649 (2021)

6. Dwibedi, D., Aytar, Y., Tompson, J., Sermanet, P., Zisserman, A.: With a little
help from my friends: Nearest-neighbor contrastive learning of visual representa-
tions. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. pp. 9588–9597 (2021)

7. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The
pascal visual object classes (voc) challenge. International journal of computer vision
88(2), 303–338 (2010)

8. Girshick, R., Radosavovic, I., Gkioxari, G., Dollár, P., He, K.: Detectron (2018)
9. Grill, J.B., Strub, F., Altché, F., Tallec, C., Richemond, P., Buchatskaya, E., Doer-

sch, C., Avila Pires, B., Guo, Z., Gheshlaghi Azar, M., et al.: Bootstrap your own
latent-a new approach to self-supervised learning. Advances in Neural Information
Processing Systems 33, 21271–21284 (2020)

10. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised
visual representation learning. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. pp. 9729–9738 (2020)

11. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the
IEEE international conference on computer vision. pp. 2961–2969 (2017)

12. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: European conference
on computer vision. pp. 740–755. Springer (2014)

13. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object de-
tection with region proposal networks. Advances in neural information processing
systems 28 (2015)

14. Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2. https://
github.com/facebookresearch/detectron2 (2019)

15. Zbontar, J., Jing, L., Misra, I., LeCun, Y., Deny, S.: Barlow twins: Self-supervised
learning via redundancy reduction. In: International Conference on Machine Learn-
ing. pp. 12310–12320. PMLR (2021)

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

	Fast-MoCo: Boost Momentum-based Contrastive Learning with Combinatorial Patches **Supplementary Material**

