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In this supplementary material, we provide implementation details, addi-
tional experimental results, visualization of the surface deformation within a
local part, additional qualitative results, and discussions about limitations and
future work of our approach.

1 Implementation Details

1.1 Network Architecture

Motion model We adapt the architecture of the IMNet [1] for our motion
model. As shown in Fig. 1 (a), the input is the concatenation of: the motion
code cm ∈ R128, 3D query point x ∈ R3 and normalized time value T ∈ R1. The
network is based on multi-layer perceptrons with the skip connection to copy
the input to concatenate with the output feature of the first 4 layers, each layer
has the nonlinear activation of LeakyReLU (α = 0.2) [8] except the last layer.
We follow LIG [4] to reduce the feature dimension of each hidden layer by 4
fold to obtain an efficient motion model. The output of our motion model is a
deformation vector x∗ ∈ R3 that transforms the given point to its position in
the space of the canonical frame, i.e. T = 0.
Canonical shape model The canonical shape model uses the auto-decoder
network proposed in DeepSDF [13], which is shown in Fig. 1 (b). The input is
the concatenation of the canonical shape code cs ∈ R128 and 3D query point
x ∈ R3, and the network predicts a signed distance value s ∈ R1 for the given
point. We reduce the number of hidden layers from 8 to 6 and the feature channels
from 512 to 256 for the efficiency. And following IGR [2], the softplus activation
(β = 100) and geometric initialization are also used.
Texture model The texture model is used to produce the colored results in
Fig. 1 and 5 of the main paper. We modify the decoder architecture proposed in
Texture Fields [11] for our 4D texture inference, and the architecture is shown
in Fig. 1 (c). The texture model is fed with the texture code ct ∈ R128 and the
concatenation of a 3D point x ∈ R3 and a normalized time value T ∈ R1, and
predicts the RGB values c ∈ R3 for the given point. There are five residual blocks
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in the texture model network, each of which consists of two fully connected layers
with a skip connection from the input to the second layer. The input of each
block is summed up with the feature encoded from the texture code ct ∈ R128.

Fig. 1. Detailed network architectures in our framework.

1.2 Local Part Coordinates

In this section, we introduce how to select part centers on SMPL meshes and
define the local coordinate system for each part.
Part center sampling Start from a template mesh of SMPL topology in the
rest-pose, we first uniformly sample a point set P (|P | = 100K) on its surface,
and then perform the following steps recurrently to maintain a set of the selected
part centers C: 1) randomly choose a point x from P ; 2) remove all the points
whose Euclidean distance from x is less than or equal to 0.5r from P , where
r = 5cm is the part radius we pre-defined; 3) add x to C. The loop terminates
when |P | = 0, and we finally obtain 2127 part centers.
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Local coordinate frame Given a point ck on a triangle face as the part center,
we use the face normal as the up-axis a⃗k1

, the direction vector from point ck to a
vertex of the triangle as another axis a⃗k2 , and finally the last axis a⃗k3 = a⃗k1×a⃗k2 .
The rotation matrix of part k is then define as Rk = [⃗ak1 , a⃗k2 , a⃗k3 ]. Now, a 3D
point Pglo in the world coordinate frame can be transformed to P k

loc in the local
coordinate frame of part k with P k

loc = RT
k (Pglo − ck).

1.3 Other Details

Point sampling The query points used for training and test-time optimization
come from three sources: 1) surface; 2) near surface space; 3) free space in the
bounding box. During training, we sample M = 10000 surface points on the
ground truth mesh, while at the test time, the points are randomly chosen from
the input point cloud. Given the on-surface points, we obtain the near surface
points by adding a displacement vector sampled from a Gaussian distribution
N (0, 0.01) to each on-surface point. And M/8 free space points are uniformly
sampled within the human bounding box. We compute the initial bounding box
with the inner body mesh, and pad 10cm on each axis as the sampling region.
Auto-decoding During the test time, we use the trained model to fit complete
or partial point clouds via the auto-decoding manner [13] (main paper Sec. 3.4).
Specifically, we fix the parameters of the local implicit network and optimize
the latent codes with back-propagation by minimizing the objective function
introduced in Sec. 3.3 of the main paper. We initialize the latent codes for
each local part with the random vectors sampled from a Gaussian distribution
N(0, 0.01) and use the Adam optimizer [6] with learning rate 1e−3 to perform
backward optimization for 3000 iterations. We use the same objective function
and loss weights as training (Sec. 3.3 of the main paper). The optimization
process takes around 15min for each sequence of L = 17 frames on a single
GeForce RTX 2080Ti GPU card.
Mesh postprocessing As mentioned in the main paper (Sec. 3.4), the original
extracted mesh of our method contains interior back-faces and some tiny floating
components in the outside. This possibly because that for the off-surface points,
the Eikonal term [2] only constrains the L2-norm of their gradients rather than
specific SDF values, which may confuse the prediction of gradient direction on
the points that far from the part centers. We remove these artifacts by using the
post-processing algorithm introduced in LIG [4]. Specifically, we first compute
the centroid and surface normal for each face of the original mesh reconstructed
by the network, and find its k nearest points on the input point cloud to calculate
the mean normal consistency as the normal alignment score. Then a Laplacian
kernel is used to smooth the normal alignment score, all faces with the score
below a certain normal alignment threshold n and disconnected components
with area below a are discarded. We used the same postprocessing parameters
as LIG, except that we only preserve the most biggest connected component
rather than use the area threshold a as we focus on reconstructing single object.
Mesh surface extraction Different from LIG [4], which only evaluates the
occupied grid cells and assumes all empty ones to be “exterior” space to extract
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the isosurface, we construct a SDF volume and evaluate every grid point with our
local implicit function, ensuring to reconstruct the outer surface not covered by
any local parts defined on the inner body mesh. Similar to the strategy illustrated
in the main paper Sec. 3.3, we evaluate a given point with n parts that covered
it (n = 32 in the surface extraction process), and get the final prediction via
average-pooling. And if not covered by any parts, n nearest parts are used. To
make the inference more efficient, instead of cubic volume used in previous work
[9,13], we resort to a rectangular volume that defined as the bounding box of
inner body mesh with 10cm padding on each axis. It takes around 15s to extract
a mesh of resolution 256.

2 Additional Experimental Results

2.1 Non-Rigid Fusion

Real-world performance To further demonstrate the value of our method
in the actual application scenario, we perform extended evaluation on the real
data. Specifically, we capture a human motion depth sequence with a static
Azure Kinect sensor, and use our model pre-trained on 100 sequences to conduct
non-rigid reconstruction based on the point cloud from raw depth images (note
that the background is filtered out). The qualitative results are shown in Fig.
2, DynamicFusion produces fine-grained surface details on cloth but contains
noisy (body edge) and incomplete (face, arms and legs) areas. In contrast, our
model recovers smoother and more complete geometry with plausible temporal
deformation thanks to the local 4D formulation. We use part radius r = 10cm for
more stable results. Note that the experiments in here and Sec. 4.3 of the main
paper, we only reconstruct the partial surface observed by the static camera in
the time span, which cannot be quantitatively evaluated, thus we only show the
qualitative comparisons.
Comparisons with DoubleFusion Qualitative results are shown in Fig. 3.
We add the same SMPL body mesh used in LoRD into DoubleFusion as body
prior, which generally makes the fusion reliable, but it still struggles with aligning
finer motion. Also, there are some missing parts, e.g. arm or leg, caused by fitting
error. In contrast, LoRD employs a temporal model to provide global geometry
consistency between frames, which is more robust to fitting error.
Moving monocular camera In addition to the static camera, we also conduct
non-rigid depth fusion in the setting of a moving monocular camera, that is, a
person performing some motions during a time span with a depth camera rotat-
ing around him concurrently. In this case, the observation of each time step is
still partial, but almost every body part can be observed during the time span.
Our goal is to compensate each frame based on the geometry information ob-
served in other frames. Specifically, given a dynamic mesh sequence of L = 17
frames, we make the camera rotates around the up-axis (Y-axis in our setup)
and render a 512×512 depth image every 360/17 degrees. In this experiment, we
assume the camera poses are known, and use the same 10 novel sequences chosen
in the generalizable 4D reconstruction task for evaluation. We choose PTF [15],
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Fig. 2. Monocular depth fusion on the real-world depth captures. The depth images
are captured with a static Azure Kinect sensor. The first row shows the point cloud
from raw depth captures. Our method is capable to recover the plausible geometry
with detailed surface deformation, e.g. clothing wrinkles in the zoomed in part, in such
challenging scenario.

NPMs [12] and CAPE [7] as our baseline. For PTF, we input the partial point
cloud to the pretrained single-view model, and obtain the reconstructions with
feed-forward fashoin. And for NPMs and CAPE, we use the auto-decoding man-
ner to optimize the latent codes in their formulation based on each frame partial
observation. Note that we provide the ground truth SMPL pose to CAPE, and
only optimize the cloth latent code. All these methods are working in the frame-
wise manner to produce the sequence results. The quantitative results in Tab.
1 show that our LoRD representation outperforms all the baseline methods by
a large margin. The qualitative comparisons are shown in Fig. 8. Thanks to the
local 4D representation, the proposed method achieves high-quality completion
results, and produces the detailed geometry and plausible temporal deformation
in the invisible areas, while PTF and NPMs fail to hallucinate accurate geom-
etry from partial observations as they do not utilize the temporal information,
and CAPE cannot model the high-fidelity surface details.

2.2 Interpolation of Latent Codes

Like many other local implicit representations, our model does not have a com-
pact global latent space to sample from, so the representation ability is often
measured by the capability of fitting observations, validated in Sec 4.1 of main
paper. Nevertheless, we can still interpolate between two human sequences by
interpolating representation between the corresponding local parts (as shown
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Fig. 3. Qualitative comparisons with DoubleFusion. We choose two examples and uni-
formly sample 5 out of 17 frames for visualization.

Table 1. Quantitative comparisons on monocular depth fusion with a moving camera.
Our method outperforms all the baseline methods by a large margin.

Ch.-L2 ↓ Normal ↓ F-Score ↑

PTF [15] 37.936 0.810 0.145
NPMs [12] 0.981 1.933 0.429
CAPE [7] 1.010 0.356 0.377
Ours 0.395 0.226 0.750
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in Fig. 4). We first linearly interpolating cs and SMPL poses showing smooth
change between two subjects. Then we interpolate cm, cs and per frame SMPL
pose jointly to show the representation ability of motion space, since the local
deformation is related to global motion. Note that the texture model is optimized
per sequence without continuous latent space.

2.3 Ablation Study

Effect of sequence length L The key novel capability of our model is to rep-
resent the temporal deformation of 3D shape, so that setting L = 1 makes this
infeasible, and our model degenerates to framewise method LIG [4] and thus
achieves similar performance. Additionally, we test different L on instance-level
reconstruction from sparse points task and show the results in Tab. 2. Note
that longer sequence demands stronger network capacity while more geometry
information can be exchanged between frames through our motion model. The
results show that LoRD is able to work with different sequence lengths. We
choose L = 17 following 4D-CR [3] during training to learn our 4D represen-
tation. For longer sequence during test-time, we can utilize the sliding window
strategy similar to HMMR [5] to recurrently recover the whole sequence.

Table 2. Evaluations of LoRD on different sequence lengths.

L Ch.-L2 ↓ Normal ↓ F-Score ↑

5 0.175 0.160 0.914
10 0.207 0.176 0.880
17 0.192 0.158 0.945
20 0.159 0.173 0.875
30 0.389 0.221 0.718

Generalization Besides the results shown in Sec. 4.2 of the main paper, we
also choose 10 sequences from our training set, and get the performance (Ch.-
L2=0.317, Normal=0.170, F-Score=0.926) on 4D reconstruction task. The re-
sults are in general comparable with the performance on testing set (last row of
Fig. 6 (a, II) in the main paper), which reflects that thanks to the local part
formulation, our model has strong generalization ability with the prior of lo-
cal surface deformation learned from the training sequences. We further verify
this by training our model on even 1 motion sequence of 17 frames, which also
can produce the high-quality reconstructions on novel sequences. We show the
qualitative results in Sec. 4.2 of Supp. Mat.
Comparison with only test-time training In Fig. 5, we show the loss curves
of optimization w/ and w/o pretraining. It can be seen that the pretraining
helps optimization converge faster and more stable. By taking about 50 mins
per sequence, optimizing from scratch obtains slightly better performance than
optimizing with pretraining.
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Fig. 4. We choose two sequences (Source and Target) to perform interpolation of latent
codes. “Shape Interp.” means we interpolate latent shape codes and SMPL poses of
the first frames to show the evolution of shape. “Joint Interp.” indicates we interpolate
shape code, motion code and per frame pose jointly. The decimal values denote the
interpolation coefficients
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Fig. 5. Loss curves during optimization w/ and w/o pretraining.

3 Local Surface Visualization

Our LoRD representation aims to use a local part-level network to model the
detailed temporal deformation of surface patches. To show this, we visualize
the temporal deformation of a local patch in Fig. 6. Specifically, we choose a
point cloud sequence of 17 frames, each of which has 10K points, and perform
auto-decoding to optimize the latent codes of each local part. After that, we
select a part and extract the surface patch with the local implicit network (main
paper Sec. 3.2) conditioned on its latent codes. We show the temporal deforma-
tion of this local patch under the global (above) and local (below) coordinate
frames respectively. It can be seen that the temporal changing within the local
part is smooth and coherent, and our method successfully models the detailed
deformation, e.g. changing of the clothing wrinkle.

4 Qualitative Results

4.1 4D Reconstruction

Shape quality Fig. 9, 10 and 12 are the extended figures of Fig. 5 in the
main paper, which show more qualitative comparisons with the SoTA methods
on 4D reconstruction from sparse points. And Fig. 13 shows some additional
reconstruction results of our model trained on 100 sequences.
Textured results We show more textured results in Fig. 7. We choose raw scan
mesh sequences from CAPE dataset (containing holes and noises) and use our
pretrained LoRD model in this experiment. The results above are obtained with
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Fig. 6. We select a local part and visualize the surface patch within it. The results
above show the temporal deformation of this patch (green) under the global coordinate
frame, while below under the local coordinate frame.

colored sparse point clouds sampled from the scan meshes as input. And the
results below are obtained from the rendered RGB-D sequences.

4.2 Ablation study

Imperfect body tracking Fig. 11 (before refining) shows some challenging
cases that LoRD produces artifacts with inaccurate body tracking. We provide
the reconstructions after refining that demonstrate the effectiveness of our inner
body refining method. For each example, we stack the ground truth clothed
mesh (green) together with the initialized inner body mesh (gray) on the left
to reflect the inaccurate estimation, and show the reconstructions on the right.
The results show our refining process successfully corrects the noisy inner body,
which facilitates the reconstruction.

Local part size Fig. 14 shows the reconstruction results of different part radii.
We can observe that the part size slightly affects the quality of reconstructions,
the over-small (r = 3cm) part produces some artifacts around body and hands
and the reconstructed surface is under-smooth, whereas the larger parts (r =
8cm&r = 10cm) tend to recover overly smooth results for some frequency details
such as clothing wrinkles and fingers.

Generalization As mentioned in the main paper Sec. 3.3, the training of our
LoRD representation is very data-efficient. We show the results of our model
trained on 100 sequences (Fig. 5, 6 (b) in the main paper and Fig. 12, 13 in the
Supp. Mat). Additionally, we train our model on one motion sequence of length
L = 17 from the training set, then test on the novel sequences, and show the
qualitative results in Fig. 15. As shown, our model trained on even one sequence
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still gains generalization ability and produces the high-fidelity reconstructions,
which demonstrates the generalization power of our local 4D representation.

5 Limitations and Future work

The proposed LoRD representation shows the powerful capability and achieves
the state-of-the-art performance on various tasks. Now we discuss a few limita-
tions of our method which also points to the future directions.

First, we now rely on the SMPL body model to temporally track local parts,
though existing methods can produce accurate body in many cases, it is still
challenging to work in the complex real scenario. Extending our representation
to cooperate with more general tracking methods such as scene flow, deformation
graph, would make our method stronger and capable of modeling non-human
objects, e.g. animals.

Second, the current experiments mainly focus on 4D reconstruction from
2.5/3D data, e.g. sparse point clouds, RGB-D. Combining the recent neural
rendering techniques [10,14,16] with our LoRD representation to support 4D
reconstruction from pure RGB videos would be a promising future direction.

Third, we currently use a unified part radius in our formulation. However,
different body parts contain various levels of detail, which may be suitable to
model by different sizes of parts. Defining the part radii according to the body
part label would be one solution.

We believe that the proposed representation could potentially be a building
block for various applications, e.g. Metaverse, Robotics, animation, and provides
some insights for future research directions.
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Fig. 7. More textured results achieved by our method. Note that the results below are
obtained from RGB-D inputs, we only show color images for visualization.
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Fig. 8. Qualitative results on monocular depth fusion with a moving camera. The
reconstructed sequences have L = 17 frames, and we uniformly choose 5 frame for
visualization. We assume a moving camera that rotates around the performer, and
render a depth image every 360/17 degrees. The partial point clouds are obtained by
back-projecting the depth images with the camera intrinsics, and rotate according to
the known camera extrinsics.
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Fig. 9. 4D reconstruction from sparse points (instance-level) (1).
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Fig. 10. 4D reconstruction from sparse points (instance-level) (2). The reconstructed
sequences have L = 17 frames, and we uniformly choose 5 frame for visualization. We
zoom in the first frame to show the surface details clearer.

Fig. 11. Effectiveness of the inner body refining. We show the inner body and the re-
constructed meshes before (left) and after (right) our inner body refining process. Note
that we stack the ground truth clothed mesh (green) with the inner body estimation
(gray) to show the inaccurate parts.
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Fig. 12. 4D reconstruction from sparse points (generalization). The reconstructed se-
quences have L = 17 frames, and we uniformly choose 5 frame for visualization.
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Fig. 13. 4D reconstruction from sparse points (generalization). Here we show more
qualitative results achieved by our model trained on 100 sequences. The reconstructed
sequences have L = 17 frames, and we uniformly choose 5 frame for visualization.
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Fig. 14. Effect of the part radius. Different sizes of local parts affect the reconstruction
performance but not very heavily. We choose part radius r = 5cm in our experiments
as it in general produces better results.
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Fig. 15. Qualitative results from our model trained on only 1 motion sequence of length
L = 17, which show that our LoRD representation can learn local deformation prior
from very few data and generalize to novel sequences with high-quality geometry and
temporal deformation.
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