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1 Technical Analysis Using Block Stochastic Gradient

In this section, we describe results (which were briefly mentioned in the main
paper) showing the viability of a stochastic scheme for using distance correlation
within the loss when training our neural network models.

In the paper, we noted the existence of an algorithm where the convergence
rate of the stochastic version of distance correlation in the deep neural network
setting is O( 1√

T
). Here, we will describe it more formally.

We note that SGD works well for the distance correlation objective – and so
a majority of users will revert to such mature implementations anyway. Despite
desirable practical behavior, its theoretical analysis of the form included here is
more involved. Therefore, the analysis shown below, a modified version of [5], is
reassuring in the sense that we know that stochastic updates (carried out in a
specific way) can provably optimize our loss.

1.1 Notation in the Proof

We use ΘX , ΘY to denote the parameters of neural networks, and X,Y as features
extracted by the respective neural networks. Let the minibatch size be m, and
the dataset D = (DX ,DY) be of size n. Let, X ∈ Rm×p, Y ∈ Rm×q, with p, q be
the dimension of features. We use (xt, yt)

T
t=1, xt ⊂ DX , yt ⊂ DY to represent the

data samples at step t, T is the total number of training steps. The distance
matrices At, Bt are computed when given Xt, Yt using (1), which is of dimension
m×m for each minibatch. Further, we use (Xt)k to represent the kth element in
Xt. Also, (At)k,l is the kth row and lth column element in the matrix At. The
inner-product between two matrices A,B is defined as ⟨A,B⟩ =

∑m
i,j(A)i,j(B)i,j .

ak,l = ∥Xk −Xl∥, āk,· =
1

n

n∑
l=1

ak,l, ā·,l =
1

n
ak,l,

ā·,· =
1

n2

n∑
k,l=1

ak,l, Ak,l = ak,l − āk,· − ā·,l + ā·,· (1)
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1.2 Objective Function

Consider the case where we minimize DC between two networks ΘX , ΘY . Since
the parameters between ΘX , ΘY are separable, we can use block stochastic
gradient iteration in [5] with some modification.

To minimize the distance correlation, we need to solve the following problem

min
ΘX ,ΘY

⟨A(ΘX ;x), B(ΘY ; y)⟩√
⟨A(ΘX ;x), A(ΘX ;x)⟩⟨B(ΘY ; y), B(ΘY ; y)⟩

(2)

s.t. (A)k,l = ||(X)k − (X)l||2, X = ΘX(x) (3)

(B)k,l = ||(Y )k − (Y )l||2, Y = ΘY (y)

We slightly abuse the notation of ΘX(x) to correspond to applying the network
ΘX on the data x, and reuse A to simplify the notation A(ΘX ;x) and the distance
matrix. We can rewrite the expression (with A, B defined above) using:

min
ΘX ,ΘY

⟨A,B⟩ s.t. max
x⊂DX

⟨A,A⟩ ≤ m; max
y⊂DY

⟨B,B⟩ ≤ m (4)

where (x, y) are the minibatch of samples from the data space (DX ,DY).

We can rewrite as the following expression similar to Eq. (1) in [5].

min
ΘX ,ΘY

Φ(ΘX , ΘY ) = Ex,yf(ΘX , ΘY ;x, y) + γ(ΘX) + γ(ΘY ) (5)

where f(ΘX , ΘY ;x, y) is ⟨A,B⟩ and γ(ΘX) encodes the convex constraint on the
networkΘX , i.e., maxx⊂DX ⟨A,A⟩ ≤ m. Similarly, γ(ΘY ) encodes maxy⊂DY ⟨B,B⟩ ≤
m. Further, Φ(ΘX , ΘY ) is the constrained objective function to be optimized.

1.3 Block Stochastic Gradient Iteration

We adapt Alg. 1 from [5] to our case in Alg. 1. Since we will need the entire
minibatch (xt, yt) to compute the objective function, there will be no mean term
when computing the sample gradient g̃t

X . Further, since both blocks (ΘX , ΘY )
are constrained, line 3, 5 will use (5) from [5]. The detailed algorithm is presented
in Alg. 1.

Proposition 1. After T iterations of Algorithm 1 with step size ηX = ηY =
η√
T

< 1
L , for some positive constant η < 1

L , where L is the Lipschitz constant

of the partial gradient of f , by Theorem. 6 in [5], we know there exists an index
subsequence T such that:

lim
t→∞,t∈T

E[dist(0,∇Φ(Θt
X , Θt

Y ))] = 0 (6)

where dist(y,X ) = minx∈X ∥x− y∥.
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Algorithm 1 Block Stochastic Gradient for Updating Distance Correlation

Input: Two neural network with starting point Θ1
X , Θ1

Y . Training data {(xt, yt)}Tt=1,
step size ηX , ηY , and batch size m.

Output: Θ̃T
X , Θ̃T

Y

1: for t = 1, · · · , T do
2: Compute sample gradient for ΘX

g̃t
X = ∇ΘX f(Θt

X , Θt
Y ;xt, yt)

3: Θt+1
X = argminΘX

⟨g̃t
X + ∇̃γX(Θt

X), ΘX −Θt
X⟩+ 1

2ηX
∥ΘX −Θt

X∥2
4: Compute sample gradient for ΘY

g̃t
Y = ∇ΘY f(Θt+1

X , Θt
Y ;xt, yt)

5: Θt+1
Y = argminΘY

⟨g̃t
Y + ∇̃γY (Θt

Y ), ΘY −Θt
Y ⟩+ 1

2ηY
∥ΘY −Θt

Y ∥2
6: end for
7: Θ̃T

X = 1
T

∑T
t=1 Θ

t
X

8: Θ̃T
Y = 1

T

∑T
t=1 Θ

t
Y

Further, in the special case where Ex,yf(ΘX , ΘY ;x, y) is convex, by Theorem.
1 in [5], the following statement holds:

E[Φ(Θ̃T
X , Θ̃T

Y )− Φ(Θ∗
X , Θ∗

Y )] ≤ Dη
1 + log T√

1 + T
+

∥ΘX −Θ1
X∥2 + ∥ΘY −Θ1

Y ∥2

2η
√
1 + T

(7)

where Θ̃X , Θ̃Y is computed in Algorithm 1, Θ∗
X , Θ∗

Y are the optimum of the
desired function, and D is a constant depending on ∥(Θ∗

X ;Θ∗
Y )∥.

1.4 Modification from BSG [5] to DC

The statement of Prop. 1 is similar to the statement of Theorem 1 and 6 in [5].
So, we can use the statement in [5] with some modification of our setup. We
define

F (ΘX , ΘY ) = Ex,yf(ΘX , ΘY ;x, y), Γ (ΘX , ΘY ) = γ(ΘX) + γ(ΘY )

Then, for the gradient w.r.t. X, we have the following expression (similar for
Y ):

g̃t
X = ∇ΘX

f(Θt
X , Θt

Y ;xt, yt)

gt
X = ∇ΘX

F (Θt
X , Θt

Y )

δtX = g̃t
X − gt

X

We first restate four assumptions from [5].

Assumption 1. There exist a constant c and a sequence {σk} such that for any
t,

∥E[δtX |xt, yt]∥ ≤ c ·max(ηX , ηY ),

E∥δtX∥2 ≤ σ2
t
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Assumption 2. The objective function is lower bounded, i.e., Φ(ΘX , ΘY ) > −∞.
And there is a uniform Lipschitz constant L > 0 such that:

∥∇XF (ΘX , ΘY )−∇XF (Θ′
X , Θ′

Y )∥ ≤ L∥(ΘX ;ΘY )− (Θ′
X ;Θ′

Y )∥,
∀(ΘX , ΘY ), (Θ

′
X , Θ′

Y )

Assumption 3. There exists a constant ρ such that E∥(Θt
X ;Θt

Y )∥2 ≤ ρ2 for all
t.

Assumption 4. The constraint function γ is Lipschitz continuous. There is a
constant Lγ , such that:

∥γ(ΘX)− γ(Θ′
X)∥ ≤ Lγ∥ΘX −Θ′

X∥,∀ΘX , Θ′
X

Theorem 6. (from [5]) Let {Θt} be generated from Algorithm 1 with ηtX , ηtY ,
being constained as,

0 < inf
t
ηtX ≤ sup

t
ηtX <

1

L

0 < inf
t
ηtY ≤ sup

t
ηtY <

1

L

Under Assumptions 1 through 4, if either X = RnX ,Y = RnY or γ = 0, and

∞∑
t=1

σ2
t < ∞

then there exists an index subsequence T such that

lim
t→∞,t∈T

E[dist(0,∇Φ(Θt
X , Θt

Y ))] = 0,

where dist(y,X ) = minx∈X ∥x− y∥.

Remark 1. In our case, we have that ΘX , ΘY are the parameters of neural
networks. During training, we have no constraint on the weights and biases,
so the space of ΘX , which is X , is the Euclidean space. Also, we can have
ηtX = ηtY = η√

t
< 1

L . All the other assumptions are similar to [5]. Thus, we have

the same result in Prop. 1.

In the convex case, we use the Theorem 1 from [5].
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Theorem 1. [5] (Ergodic convergence for non-smooth convex case). Let {Θt} be
generated from Algorithm 1 with ηtX = ηtY = ηt =

η√
t
< 1

L ,∀t, for some positive

constant η < 1
L . Under Assumptions 1 through 4, if F and γ are both convex,

Θ∗
X , Θ∗

Y is a solution of (5), and σ = supt σt < ∞, then

E[Φ(Θt
X , Θt

Y )− Φ(Θ∗
X , Θ∗

Y )] ≤ Dη
1 + log T√

1 + T
+

∥(Θ∗
X ;Θ∗

Y )− (Θ1
X ;Θ1

Y )∥2

2η
√
1 + T

where Θ̃T
X =

ηtΘ
t+1
X∑T

t=1 ηt
, Θ̃T

Y =
ηtΘ

t+1
Y∑T

t=1 ηt
, and

D =
s(σ2 + 4L2

γ)

1− Lη
+
√
s(∥(Θ∗

X ;Θ∗
Y )∥+ ρ)(c+ L

√
8M2

ρ + 8σ2
t + 4L2

γ)

where Mρ =
√
4L2ρ2 + 2max(∥∇ΘX

F (0)∥2, ∥∇ΘY
F (0)∥2)

Remark 2. Our case is a special case of the Block Stochastic Gradient problem
with s = 2 (s is the number of blocks). So the above theorem can be directly
applied to our analysis when F, γ are both convex. However, this may not be
true in most deep neural networks, we obtain the O(T 1/2) convergence rate using
Algorithm 1.

2 Experimental Details in Section 4: Independent Features
Help Robustness

When we train f1 using cross entropy loss and f2 using cross entropy loss plus
our distance correlation loss (to learn independent features with f1), we first
train f1 for one epoch, and then train f2 for one epoch given the current f1, and
we repeat this process for the total number of epochs (200 for CIFAR10 and 40
for ImageNet). Our hyperparameter α controls the tradeoff between the cross
entropy loss and the distance correlation loss. In practice, we could increase α to
emphasize (or weight) learning independent features more, and decrease α if we
want to keep the classification accuracy of f2 in standard setting (non adversarial)
even closer to that of f1. During training, we do not utilize data augmentation
for all experiments. The training is done on Nvidia A100 GPUs. Our distance
correlation adds approximtely 20% cost to the training time compared with
training only using cross entropy loss.

We also include some more visualization of feature spaces in addition to those
shown in our main paper in Fig. 1. Our method shows more independence than
the baseline model. This implies training with Distance Correlation (DC) can
help independence, thus improve robustness to transferred samples.

3 Experimental Details in Section 5: Informative
Comparison Between Networks

3.1 Measure similarity between neural networks

We take the pretrained neural network from [4]. The features are reshaped to
a 1D vector and we compute the Euclidean distance between samples from the
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Fig. 1: Picasso visualization of features space and the correlation between different
models for all three models. (a) Feature space distribution. (b) Cross-correlation
between the feature space of f1 and f2 trained with/without DC. We get better
independence.

official validation set of ImageNet [2]. No finetuning was used in this experiment.
The results are shown in the main paper.

3.2 What remains when “taking out” (aka controlling for) Y from X

We will first discuss the details of the heatmap that we plotted using Grad-CAM
[3]. In the original implementation of Grad-CAM, the model uses one layer as
the target and uses both gradients (from the loss function) and the activation in
that layer for the visualization.

In the original Grad-CAM, the loss is extracted as the intensity before the
softmax layer of one given class. For example, assume “dog” is the 6th class in
the dataset. If we want to see which location in the image is related to “dog”, we
will use f(x)[6] as the loss function, where Softmax(f(x)) is the final output of
the model when given image x.

In our case, the activation remains the same. But the loss function is different.
We use the distance correlation between the features extracted by the neural
network and the ground truth linguistics embedding, i.e., Loss = R2(X,GT ),
where X is the feature of input image extracted by the neural network.



On the Versatile Uses of Partial Distance Correlation in Deep Learning 7

After showing the Grad-CAM results for each individual network, we want to
check if the partial distance correlation can help the network focus on a different
location. Thus, we finetune the network X with an extra loss term LossPDC.

We take ViT-B/16 as our model X and Resnet 18 as our model Y . We first
load the pretrained weights from [4] and finetune model X with model Y being
fixed. α in our case is set as 1 in the loss term

LossCE(f1(x), y)− α · LossPDC ((g1(x)|g2(x)), gt)

Learning rate is set as 1e−5 and batch size is set as 64. We train 15 epochs in
total. The finetuning on two RTX 2080Ti takes 2 days.

3.3 Extra Results

We show several additional heat maps using Grad-CAM in addition to those in
our main paper in Fig. 2 and 3.

Fig. 2: Extra Grad-CAM results on ImageNet using ViT, Resnet18 and VGG16. After
using Partial DC to remove the information learned by another network, ViT can focus
on detail places and Resnet can only look in major spots. Similar issue happens to
VGG.
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Fig. 3: Extra Grad-CAM results on ImageNet using ViT, Resnet18 and VGG16. After
using Partial DC to remove the information learned by another network, ViT can focus
on detail places and Resnet can only look in major spots. Similar issue happens to
VGG.

4 Experimental Details in Section 6: Disentanglement

We follow the setup in [1] where the dataset contains both labeled and unlabeled
data. The provided labels are indicated by the function ℓ:

ℓ(i, j) =

{
1, f j

i exists (attribute j of image i is labeled)
0, otherwise

For each attributes, we train k classifiers of the form Cj : X → [mj ] where mj

denotes the number of values of attribute j. The gender attribute here contains
male and female, and age attribute contains kid, teenage, adult, and old person.
Details are shown in in Table. 1

Table 1: Values that we use in the disentangle experiment on FFHQ dataset.
Attribute Values

age kid, teenage, adult, old person
gender male, female
ethnicity African person, white person, Asian person

hair brunette, blond, red, white, black, bald
beard beard, mustache, goatee, shaved
glasses glasses, shades, without glasses
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For the classifiers when given the true label, we use the cross-entropy loss

Lcls =

n∑
i=1

n∑
j=1

ℓ(i, j) ·H(Softmax(Cj(xi)), f
j
i ) (8)

For the classifiers without the true label, we use the entropy so that the
information is not leaking

Lent =

n∑
i=1

n∑
j=1

(1− ℓ(i, j)) ·H(Softmax(Cj(xi))) (9)

For the residual, we use the distance correlation loss in our paper

Lres = dCor([f1; f2; ...; fk], r) (10)

Let the value for each of the attributes of interest j to be f̃ j
i

f̃ j
i =

{
f j
i , ℓ(i, j) = 1
Softmax(Cj(xi)) , otherwise

Also, we include the reconstruction loss to generate the target image

Lrec =

n∑
i=1

ϕ(G(f̃1
i , ..., f̃

k
i , r

′
i), xi) (11)

The final loss will be the linear combination of all the loss above.

Ldisentangle = Lrec + λclsLcls + λentLent + λresLres (12)

In our implementation, λcls = 0.1, λent = 0.01, λres = 1e−5.

4.1 Additional examples of generated images

Some more generated images of the same individual are shown in Fig. 4, 5, 6, 7,
8, and 9. We can see that our model can maintain most features in the image
(keeps unchanged) and changes the attributes of interest separately. The results
here are mostly qualitative.

4.2 Quantitative results

We also performed quantitative checks to assess if our model can disentangle the
attributes of interest and the remaining attributes well. As shown in Tab. 2 below,
we measure the distance correlation (as it can handle mismatched dimensions
easily) between the residual attributes (R) and the attributes of interest. For
the supervised label (using the pretrained CLIP model), we use BERT to embed
label descriptions into vector space d = 768. For the unsupervised samples, we
use the in-model classifiers to embed to d = 32 space.
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Fig. 4: Generated images pertaining to the different ages for the same individual. While
the results are qualitative, perceptually the generated results appear meaningful.

age vs R. gender vs R. ethnicity vs R. hair color vs R. beard vs R. glasses vs R.

0.0329 0.0180 0.0222 0.0242 0.0219 0.0255

age vs R. gender vs R. ethnicity vs R. hair color vs R. beard vs R. glasses vs R.

0.0430 0.0124 0.0376 0.0259 0.0490 0.0188

Table 2: DC between residual attributes (R) and attributes of interest. (Top)
We use the ground truth CLIP labeled data to measure the attribute of interest.
(Bottom) We use in-model classifier to classify the attribute of interest (smaller
is better).



On the Versatile Uses of Partial Distance Correlation in Deep Learning 11

Fig. 5: Generated images pertaining to different beard levels for the same individual.
The first two rows appear perceptually meaningful.
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Fig. 6: Generated images pertaining to different ethnicity for the same individual.
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Fig. 7: Generated images pertaining to different gender for the same individual.
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Fig. 8: Generated images pertaining to different level of “glasses” attribute for the same
individual.
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Fig. 9: Generated images pertaining to different hair color for the same individual.
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