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Abstract Knowledge distillation conditioned on intermediate feature rep-
resentations always leads to significant performance improvements. Con-
ventional feature distillation framework demands extra selecting/training
budgets of teachers and complex transformations to align the features
between teacher-student models. To address the problem, we analyze
teacher roles in feature distillation and have an intriguing observation: ad-
ditional teacher architectures are not always necessary. Then we propose
Tf -FD, a simple yet effective Teacher-free Feature Distillation frame-
work, reusing channel-wise and layer-wise meaningful features within the
student to provide teacher-like knowledge without an additional model.
In particular, our framework is subdivided into intra-layer and inter-layer
distillation. The intra-layer Tf -FD performs feature salience ranking and
transfers the knowledge from salient feature to redundant feature within
the same layer. For inter-layer Tf -FD, we deal with distilling high-level
semantic knowledge embedded in the deeper layer representations to guide
the training of shallow layers. Benefiting from the small gap between
these self-features, Tf -FD simply needs to optimize extra feature mim-
icking losses without complex transformations. Furthermore, we provide
insightful discussions to shed light on Tf -FD from feature regularization
perspectives. Our experiments conducted on classification and object
detection tasks demonstrate that our technique achieves state-of-the-art
results on different models with fast training speeds. Code is available at
https://lilujunai.github.io/Teacher-free-Distillation/.
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1 Introduction

Despite the tremendous success of deep learning in various tasks [2,11,24,53], it is
still difficult to employ deep neural networks to solve real-world problems because
of the limitations of calculation and memory assets. To alleviate this issue, there
have been several efforts [13,28,65,66] to drive down the computational cost of
deep neural networks, and Knowledge Distillation (KD) [16] is one of the examples.
KD is an effective training process that achieves a higher precision-efficiency
trade-off at runtime by transferring the knowledge learnt by a high-capacity
teacher model to a low-capacity student model.
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Figure 1: Comparison of teacher-based distillation (a), self-knowledge distilla-
tion (b), our intra-layer Tf -FD (c) and inter-layer Tf -FD (d). We use ResNet-20
as a student model on CIFAR-100. Different teacher architectures, pre-trained
ResNet-110/ResNet-20, online ResNet-110/ResNet-20 in (a) and auxiliary branch
of ResNet-20 in (b) improve baseline by 1.66%, 1.36%, 1.88%, 1.42% and 0.98%
gains for top-1 accuracy, respectively. Our intra-layer and inter-layer Tf -FD
obtain 1.42% and 1.25% gains.

The original KD [16] uses the logit outcomes of the teacher network as knowl-
edge. For further exploiting the knowledge, the feature distillation methods [44,61]
enable student to imitate the intermediate feature of the teacher in order to fur-
ther utilize its knowledge. Subsequent works [1,15,20,22,52,61] focus on extracting
and matching informative knowledge conditioned on the feature representations
of a pre-defined teacher model. However, the pipeline of these traditional teacher-
student learning suffers from three critical problems: (a) It requires substantial
efforts and experiments to find proper teacher models, especially for large student
models. (b) Training teacher model needs extra training resources, which brings
heavy burdens for applications. (c) Teacher-based distillation methods always
employ complex feature transformations (e.g., encoder-decoder [22]) or matching
strategies [5] to perform better semantic alignment due to the feature gap. These
issues limit the extensive application of feature distillation.

A question naturally arises: is an extra teacher model necessary for feature
distillation? To make it clear, we investigate behaviours of teacher models in
distillation works, including teacher-based distillation methods [16,34] and self-
knowledge distillation (self-KD) methods [21, 25, 31, 41, 62]. As demonstrated
in Figure 1, for the teacher-based techniques, another high-capability model is
typically selected as the teacher model. Meanwhile, self-KD methods obtain the
teacher model by constructing auxiliary branches, which share the shallow layer
with the student model. Therefore, in these two frameworks, the teacher-student
model can be regarded as a super-network [8, 18] with a teacher branch and a
student branch. We evaluate different types of models as a teacher branch to
investigate their effect for feature distillation. The results (see the captions in
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Figure 1) indicate that all these various teacher modules can bring considerable
distillation gains. That is to say, for the super-network, features located in
different branches can play the role of the teacher model for other sub-networks.
This observation encourages us to explore whether features from sub-networks
in other dimensions (e.g., depth and width) can similarly produce distillation
boosts. Consequently, we discard the teacher branch and employ the features
located in different layers and channels for distillation (see Figure 1 (c) and (d)).
Magically, such a completely teacher-free feature distillation approach also yields
significant performance gains.

Inspired by the above observations, we present a simple yet effective Teacher-
free Feature Distillation (Tf -FD) framework. Different from the current teacher-
student framework, our approach takes supervision from the intermediate features
within the student network itself to perform distillation without additional teacher
models. Specially, intra-layer Tf -FD and inter-layer Tf -FD are developed in
our framework, respectively. For intra-layer Tf -FD, we first reorganize intra-
layer features depending on their salience, which is calculated based on the
lp-norm of each feature. These larger lp-norm features contain more meaningful
knowledge [28]. Then, intra-layer Tf -FD allows salient features to distill redundant
ones. The inter-layer Tf -FD leverages the fact that deeper layers contain rich
contextual information [6] and achieves the knowledge distillation chain from
deep to shallow layers by minimizing self-training losses. The merits of Tf -
FD lie in three-fold. First, it proposes a simple distillation pipeline that can
successfully broaden the usage of distillations without additional teacher seeking
and training costs. Second, Tf -FD only needs to employ simple l2 distances
for the feature mimicking loss, which benefits from fast training speed. Third,
self-feature knowledge mined by Tf -FD is orthogonal to knowledge from other
models and self-logits. Thus, Tf -FD could naturally combine with teacher-based
KD, and logit regularizes to obtain additional gains. We further shed light on
the Tf -FD from a regularization perspective. In principle, our Tf -FD plays the
role of a new regularizer via self-features, which provide semantic disturbance to
obtain significant performance gains. Thus, Tf -FD outperforms other regularizers
in terms of enhancing the feature consistency of the lightweight model.

Comprehensive experiments are implemented on a variety of deep models and
datasets. For performance improvement, our approach surpasses previous regular-
ization techniques with 0.75% ∼ 0.99% obvious margins and yields 1.07% ∼ 1.56%
gains than baseline on CIFAR-100. On the large-scale ImageNet dataset, our
approach still achieves 0.71% gains, which outperforms other training techniques.
For training efficiency, Tf -FD achieves at least 3× faster training speed than
teacher-based KDs. Moreover, Tf -FD with orthogonal logits KD on the outputs
surpasses the recent contrastive training distillation (e.g., CRD [50]). On down-
stream tasks, Tf -FD improves the AP by 0.99 on the Faster R-CNN detector on
the MS-COCO dataset, demonstrating the generality of our approach.

In conclusion, we make the following major contributions in this paper:

• By analyzing and exploring teacher models in feature distillation, we point
out that the distillation process on intermediate features does not rely on
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additional teacher architectures. This motivates us to propose a novel Teacher-
free Feature Distillation (Tf -FD) framework.

• Tf -FD explores new distillation schemas where the student learns from the
salient feature maps in the same layer (intra-layer Tf -FD) and the deeper
layers representations (inter-layer Tf -FD) without any additional teacher
model and complex transformations. As a result, Tf -FD merits faster training
speeds, superior accuracy gains, and extensive generalizability.

• We further discuss the relationship between Tf -FD and feature regulariza-
tion. Tf -FD implicitly utilizes self-features as regularization distortion by
optimizing the distillation loss. We hope this discussion could facilitate future
research for feature distillation works to some extent.

2 Related Work

We summarize the current distillation and regularization works in this part.
Feature distillation vs feature regularization. Knowledge distillation use
logits [3, 16] or feature knowledge [44] from a high-capacity teacher to drive the
student’s training. The intermediate features of a network contain extensive spatial
and structural information regarding image content [7]. Accordingly, feature
distillation methods [7, 44, 57, 61] are emphasized in designed to convince the
student model to simulate the teacher model’s feature representations. As feature
maps from different layers of the student and teacher networks typically have
non-matching dimensions (e.g., widths, heights, and channels), existing feature
distillation methods adopt various transformations to match their dimensions
and different distance metrics to measure differences. FitNets [44], for instance,
uses l2-loss to emulate the middle features of teacher-student networks, and
AT [61] applies feature distillation on the attention map. However, choosing a
suitable teacher model for feature distillation is not easy. In sharp contrast to
these methods, Tf -FD is a complete teacher-free feature distillation without any
extra structure. It opens up a new avenue for distillation design conditioned
on the intermediate representations. Feature regularization methods [10,37,49]
can effectively prevent neural network overfitting by injecting noise into feature
space. For instance, DropBlock [10] randomly removes some consecutive portions
of a feature map, while SpatialDropout [51] randomly abandons the entire
channels. However, these methods depend on some unique strategies to avoid
severe semantic damage, which will be detrimental to the performance of the
CNNs [49]. Our Tf -FD can be regarded as a feature regularization method and
uses self-features as a noise, which contains more semantic information than
random masks. Tf -FD develops the connections between feature regularization
and distillation from this point.
Self-knowledge distillation vs teacher-free distillation. Some self-
knowledge distillation frameworks [21, 25, 41, 62] generate extra auxiliary
branches [25, 29, 47], classifiers [41] and FPN [21] to present online logits dis-
tillation. Nevertheless, these methods are not teacher-free distillation methods.
They necessitate careful designing and training of auxiliary structures, which
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may enable student network optimization challenging [19]. Also, these methods
are teacher-based and mainly work on the outputted logits, not the intermediate
features. Other Self-KDs [27, 59] use additional data views as teachers/peers
but may lose helpful information in the augmentation process on some tasks
(e.g., object detection). Our Tf -FD does not require any additional teacher
structures or additional forward and backward passes. SAD [17] adds attention
supervision based on the nature of the feature map on specific lane line detection
task. However, it also introduces additional parameters on feature alignment
and is not present as a general approach for classification and object detection.
Our inter-layer Tf -FD performs dense cross-layer distillation, but only residual
supervision exists with SAD [17]. Recent methods [58, 63] let the student model
learn from the manually designed smooth distribution on the outputted logits
like label smoothing [48]. Tf -FD mainly acts on the intermediate features, not
the outputs, and can be well combined with these methods, further expanding
the family of teacher-free distillations.

3 Teacher-free Feature Distillation

In this section, we first review feature distillation methods with a general formu-
lation in § 3.1. Then, the formulation and insights of our Teacher-free Feature
Distillation (Tf -FD) are presented in § 3.2. Finally, we discuss the relationship
between Tf -FD and feature regularization in § 3.3.

3.1 Revisiting Conventional Feature Distillation

We first briefly review the fundamental concept of knowledge distillation within
the feature level to further comprehend our methodology. Conventional feature
distillation methods [44,61], which explicitly optimize the feature distillation loss,
promote the student model to learn the feature spaces of the teacher. Given that
x stands for the training data and H for a collection of layer location pairs for
feature distillation. The generic objective function for a target student model S
with features ψS and its teacher model T with features ψT is defined as:

LS = LCE

(
θS , x

)
+ µ

∑
h∈H

Df

(
Th
s (ψS), T

h
t (ψT )

)
, (1)

where θS denotes the parameters of the student model. The student and teacher
transformations, Ts and Tt are used to align the feature channel and spatial
dimensions. The distance function quantifying the difference of intermediate
features is Df (·). The weighting factor called µ is used to balance loss terms.

3.2 Formulation of Teacher-free Feature Distillation

Our Tf -FD aims to realize feature distillation via optimizing self-training losses
to make the design as general as possible. As illustrated in Figure 2, merely given
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Figure 2: An illustration of our Tf -FD, including intra-layer and inter-layer parts.
In the training phase, for intra-layer Tf -FD, we first rank the features on the
same layer according to the feature salience. Then the top half of salient features
are leveraged to distill the remaining features. And inter-layer Tf -FD capitalizes
on features in deeper layers to supervise shallow ones. In the inference phase, the
model can be inferred separately.

a student network and training data, Tf -FD achieves such a goal by learning
from the salient feature maps in the same layer (intra-layer distillation) and the
deeper layers representations (inter-layer distillation).

Intra-layer teacher-free feature distillation. Over-parameterized models
tend to produce redundant features that contain poor visual concepts [28]. We
present intra Tf -FD that uses salient features to supervise redundant features to
address this problem. Specifically, we first sort the features of the same channel
according to the lp-norm [35,64] (p = 2) and then use the top half features to
distill the bottom half ones. We reduce shallow features to the same resolution as
deep ones for feature alignment via average pooling. For channel alignment, we
crop the wider deep features into multiple groups, each having the same number
of features as the shallow ones. Then, the intra-layer Tf -FD can directly calculate
l2 loss for Df (·), which can be formulated as:

Lintra =
1

δ

δ∑
i=1

Df

(
ψSi , ψ̃Si

)
=

1

δ

δ∑
i=1

||ψSi − ψ̃Si ||2, (2)

where δ denotes the number of total layers, ψSi is the bottom half redundant

features and ψ̃Si is the top half salient features. Different from other channel-wise
architecture designs (e.g., GhostNet [12]) with extra inference costs, intra-layer
Tf -FD is cost-free in inference by optimizing loss rather than changing the model.

Inter-layer teacher-free feature distillation. There are extensive computer
vision applications [9, 17, 30] and information-bottleneck theory [9, 17, 55] demon-
strating a solid fact: the features of the deep layer contain more task-relevant
semantic visual concepts. Thus, deep features always obtain significant gains in
the distillation framework [5]. Our inter-layer Tf -FD uses self-features in the
deep layer of the student network to supervise shallow ones, which are updated
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by the l2 sum loss during back propagation. The loss of inter-layer Tf -FD can
be written as:

Linter =
1

γ

L−1∑
i=1

L∑
j>i

Df

(
Tsi(ψSi), Tsj (ψSj )

)
=

1

γ

L−1∑
i=1

L∑
j>i

||Tsi(ψSi)− Tsj (ψSj )||2,

(3)
where γ denotes the number of pair loss, L is the number of layers of selected
features, we use l2 distance as Df , and Ts represents feature alignment. In
particular, we use a pooling operation and channel cropping to align features
in spatial and channel dimensions without complex transformation. To reduce
computation and semantic conflicts in dense cross-layer distillation in Tf -FD, we
also propose simple inter-layer Tf -FD for the residual feature pairs in i and i+ 1
layers as 1

γ

∑L−1
i=1

∑L
j=i+1 ||Tsi(ψSi)−Tsj (ψSj )||2. Note that ψSj in Equation (3)

is frozen when updating losses.

Comparison between inter-layer Tf-FD with residual connection and
BYOT. (a) Residual connections alleviate vanishing gradients in deep networks
via summation of block-wise cross-layer features. It is adopted in CNN architecture
engineering (e.g., ResNet) and cannot be removed in inference. While inter-layer
Tf -FD does not exist in inference. (b) The BYOT uses the auxiliary classifier
in Deep Supervision [26] to change the original student model into a new multi-
exit architecture like ONE [25] and transfers knowledge between these branches.
Similar to Deep Supervision, BYOT prevents models from the vanishing gradient
problem in terms of optimization. However, shallow classifiers with fewer layers in
BYOT have much weaker performance than the student model (41.26% vs 68.12%
for ResNet-18 on ImageNet as BYOT reported), and its different optimization
properties would affect the optimization of the student network [19]. In sharp
contrast, inter-layer Tf -FD improves feature consistency by directly optimizing
the cross-layer feature loss without extra parameters.

Overall optimization objectives of Tf-FD. In the vanilla Tf -FD method,
we train the student network with three losses (α and β are weighting factors):

LTf-FD = LCE

(
θS , x

)
+ βLintra + αLinter, (4)

Augmenting Tf-FD with logits teacher-based distillations. Being a
generic feature regularizer framework, Tf -FD itself provides a new teacher-free
feature KD framework when selecting/training extra teachers are difficult. When
pre-trained teachers are available, since different sources of knowledge (other
models and self logits), our Tf -FD could naturally combine with teacher-based
KD losses LKD to train student models. To explore this potential, we apply
distillation on the outputted logits from the two heads of the student network to
promote the performance of our Tf -FD. We call the resulting method Tf -FD†.
Specifically, Tf -FD† performs logits distillation with KL divergence Dkl

(
θS∥θT

)
,

and the total training objective can be expressed as:

LTf-FD† = LCE

(
θS , x

)
+Dkl

(
θT , θS

)
+ βLintra + αLinter, (5)
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3.3 Discussion of the Relationships with Feature Regularization

...

...

Figure 3: Illustra-
tion of feature
updating.

Decoupled from the additional teacher model, our Tf -FD
extends the feature distillation to a more generic training
method. Tf -FD improves the generalization of the model
by supervision of self-features, which can also be considered
as feature noise. Therefore, we discuss why Tf -FD works
from the perspective of feature regularization. To make the
analysis process as clear as possible, we select the inter-
layer Tf -FD as the distillation function alone. For the ith

layer of network, its features ψSi are supervised by deeper
features {ψSj |j ∈ {i + 1, i + 2, · · · , L}}. Thus, updated
loss function for ith layer can be defined as Lith−layer =

LCE + α× 1
γ

∑L
j>i ||Tsi(ψSi)− Tsj (ψSj )||2. Similar to the

error update formula of the parameters, the ψSi is updated
as following:

ψ̂Si = ψSi − η∇
(
LCE

(
θS , x

)
+ α× 1

γ

L∑
j>i

||Tsi(ψSi)− Tsj (ψSj )||2
)
. (6)

where η is the learning rate, and ψ̂Si is the updated ψSi . As mentioned above,
we adopt the simple feature alignment for Ts. Therefore, we simplify its role in
the following analysis.

(a) (b) (c) (d)

Figure 4: Schematic diagram of Tf -FD (c) and Dropblock [10] (d) for feature of
Conv2 x (a) and Conv3 x (b) of ResNet-18 on ImageNet. Tf -FD implicitly em-
ploys Conv3 x features as noises for Conv2 x features when explicitly optimizing
this pair of inter Tf -FD loss. Moreover, Dropblock applies a random mask for
feature regularization on the Conv2 x features.

As shown in Figure 3, during the training process, the ψSi needs to be
updated in the direction of ψSj so that feature distillation loss is reduced to make
Equation (6) converge. This illustrates that Tf -FD implicitly applies a feature
distortion of ψSj to ψSi by optimizing the distillation loss. The regularization
effect of Tf -FD depends on the feature knowledge contained in ψSj and the
weighting factor α. Therefore, Tf -FD seeks to leverage privileged within the
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network itself to maximize regularization gains. As shown in Figure 4, while
Dropblock [10] utilizes random masks that often cause semantic damage, Tf -FD
preserves more semantic information. Furthermore, when ψSj is features ψT

from other teacher models, the Equation (6) reveals the feature regularization
role played by general feature distillation. From this perspective, different teacher
models in the previous exploration experiments provide feature regularization
disturbances and thus all achieve performance gains. This explains why feature
distillation could work without additional teacher modules.

Table 1: Top-1 accuracies (%) of teacher-free methods, self-knowledge distilla-
tions (self-KD) and teacher-based distillation (Tb-KD) reported in CRD [50]
under the same training setting of 240 epochs. Note that teacher models are only
for teacher-based distillations, and Tf -FD is completely free of teacher models.

Method Student
ResNet-20 ResNet-32 WRN-16-2 ResNet-8×4 VGG-8
69.06 71.14 73.26 72.50 70.36

Tf method

Dropout [24] 69.22 71.31 73.31 72.68 70.52
DropBlock [10] 69.65 71.56 73.42 72.87 70.76
SAD [17] 69.76 71.48 73.68 72.71 70.72
LS [48] 69.87 71.86 73.65 72.91 70.87
Tf-KD [58] 70.02 72.06 73.88 73.05 71.05
Tf-FD (ours) 70.62 72.55 74.33 73.62 71.62

Self-KD

CS-KD [59] 70.12 72.26 73.98 73.10 71.26
BYOT [62] 70.37 72.46 73.70 72.98 70.88
ONE [25] 70.77 72.78 74.68 73.51 72.01

Teacher
ResNet-110 ResNet-110 WRN-40-2 ResNet-32×4 VGG-13
74.31 74.31 75.61 79.42 74.64

Tb-KD

FitNets [44] 68.99 71.06 73.58 73.50 71.02
AT [53] 70.22 72.31 74.08 73.44 71.43
SP [52] 70.04 72.69 73.83 72.94 72.68
PKT [38] 70.25 72.61 74.54 73.64 72.88
AB [15] 69.53 70.98 72.50 73.17 70.94
NST [20] 69.53 71.96 73.68 73.30 71.53
KD [16] 70.67 73.08 74.92 73.33 72.98
CRD [50] 71.46 73.48 75.64 75.51 73.94
Tf-FD† (ours) 71.56 73.68 75.68 75.65 74.08

4 Experiments

In this section, we first evaluate our Tf -FD/Tf -FD† on CIFAR-100 in § 4.1 and
ImageNet in § 4.2. Apart from image classification, Tf -FD is also effective for
downstream tasks, such as object detection in § 4.3. Comprehensive ablation
experiments are performed to analyze the key design in § 4.4.
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4.1 Experiments on CIFAR-100

Implementation. The CIFAR-100 dataset [23] is used for the trials without extra
strong data augmentation. We conduct experiments on ResNets [14], WRNs [60]
and VGG [46] with CRD’s settings [50], whose training epochs are 240. The weight
decay is 5× 10−4, and the optimizer is SGD. Initialized at 0.1, the multi-step
learning rate increases by 0.1 every 150, 180, and 210 epochs.

Figure 5: (Left) The total training parameters and (Right) training time of teacher-
based KD [61], BYOT [62], CS-KD [59] and our Tf -FD, which are measured
on a single NVIDIA 2080Ti. Number of Y-axis represents the improved ratios
compared to baseline.

Comparison results. In Table 1, we report the results of various regularization,
self-KDs, and teacher-based methods on CIFAR-100. For ResNet-like models,
Tf -FD obtains 1.12% ∼ 1.56% absolute accuracy gains, which shows its practical
value for different depth and width networks. Besides, on WRN and VGG, Tf -
FD outperforms baselines with 1.07% ∼ 1.26% margins. Compared to feature
regularizers, Tf -FD outperforms DropBlock [10] with 0.75% ∼ 0.99% margins.
This proves that more semantic feature distortions of Tf -FD can obtain significant
performance gains. Furthermore, Tf -FD achieves superior performance than these
typical self-distillation methods (e.g., BYOT [62] and CS-KD [59]). Compared
to feature distillation methods with a strong pre-trained teacher model, Tf -
FD achieves competitive performance gains, indicating that our framework
without the teacher model can still effectively boost performance. Tf -FD’s basic
performance is already better than SOTA teacher-free logits KDs/ regularizers
and can be further improved with advanced loss functions, demonstrating its
effectiveness. Extra teachers contain richer knowledge than students themselves.
Thus, teacher-based KDs usually have superior accuracy than teacher-free KDs
(including Tf -FD). In particular, the combination (Tf -FD†) of Tf -FD with
logits KD [16] obtains 0.60% ∼ 1.22% gains than KD, which illustrate their
orthogonality. Compared to recent SOTA teacher-based KDs with contrastive
training with pair-wise augmentations (e.g., CRD [50]), Tf -FD† achieves superior
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accuracy and training efficiency. In summary, our Tf -FD can noticeably improve
the performance of the student network without additional overhead, which
effectively expands the application of feature distillation.

Training efficiency. Furthermore, we compare the training cost between Tf -FD
and teacher-based feature distillation under the same settings. As shown in
Figure 5, Tf -FD does not introduce additional parameters and achieves 3× ∼ 5×
training acceleration than BYOT, CS-KD, and teacher-based KD.

Table 2: Top-1/Top-5 accuracies (%) of teacher-free methods, self-knowledge dis-
tillations (self-KD) and teacher-based knowledge distillations (KDs) on ImageNet
dataset. Most results of other methods are references to the original paper report.
N/A means no published result is available.

Model ResNet-18 [Student] Model ResNet-34 [Teacher]

Type
Method Top-1 Top-5

Type
Method Top-1 Top-5

Student 69.75 89.07 Teacher 73.31 91.42

Tf-method

Dropout [24] 69.79 89.16

Tb-KD

KD [16] 70.66 89.88
DropBlock [10] 69.88 89.32 AT [53] 70.70 90.00
SAD [17] 69.82 89.24 AFD [7] 70.39 N/A
LS [48] 69.93 N/A SP [52] 70.62 89.88
Tf-KD [58] 70.15 N/A CC [39] 69.96 89.17
Tf-FD (ours) 70.46 89.72 VID [1] 70.30 N/A

Self-KD

BYOT [62] 69.84 N/A FitNets [44] 70.31 N/A
FRSKD [21] 70.17 N/A SemCKD [36] 70.87 N/A
ONE [25] 70.55 N/A Tf-FD† (ours) 71.00 90.22

4.2 Experiments on ImageNet

Detailed implementation. The experiments on ImageNet [45] are carried out
via ResNet-18 [14]. We use the same training configurations (e.g., 100 training
epochs) with most distillation techniques. Warm-up and early-decay schedules
are performed for loss weight of Tf -FD.

Comparison results. Table 2 reports the performance of our approach on
ImageNet. Tf -FD improves baseline models of ResNet-18 by 0.71% gains and
outperforms regularization approaches and self-KDs methods with 0.29% ∼ 0.61%
margins, which supports its superiority on the large-scale dataset. Despite the fact
that traditional teacher-based distillation methods use the pre-trained ResNet-
34 as a teacher, Tf -FD produces very competitive performance in teacher-free
configurations. Equipped with knowledge distillation for outputted logits, Tf -FD†
obtains 1.25% gain than baseline and surpasses other teacher-based approaches.
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Table 3: Results on object detection [40]. R50 represents using ResNet-50 as
backbone. Note that teacher models are only for other feature distillation methods,
and Tf -FD is completely free of teacher models.

Detector Model AP AP50 AP75 APL APM APS

Faster R-CNN (R101-FPN) Teacher baseline 42.04 62.48 45.88 54.60 45.55 25.22
Faster R-CNN (R50-FPN) Student baseline 37.93 58.84 41.05 49.10 41.14 22.44

KD [16] 38.35 59.41 41.71 49.48 41.80 22.73
FitNets [44] 38.76 59.62 41.80 50.70 42.20 22.32
FGFI [54] 39.44 60.27 43.04 51.97 42.51 22.89

Tf-FD† (ours) 38.92 59.71 41.93 50.88 41.92 21.96
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Figure 6: Visualization of bounding-box detection outputs of Faster R-CNN via
ResNet-50 backbone on the MS-COCO2017. The two figures on the left illustrate
that Tf -FD is more effective in capturing small objects than baseline. The two
figures on the right indicate that fewer false positives occur in Tf -FD.

4.3 Extension to Object Detection

Implementation. We evaluate Tf -FD on MS-COCO2017 dataset [32] , which
includes more than 120K images encompassing 80 categories. We apply Tf -FD
to Faster R-CNN [43] and employ Detectron2 as the baseline. Note that the
Tf -FD distillation is carried out at the detection fine-tuning stage with advanced
feature losses [54,56]. All models are trained using a 2× learning schedule, and
their performance is evaluated on the MS-COCO2017 validation set.
Comparison results. Table 3 demonstrate that Tf -FD improves the AP 0.99
on Faster R-CNN. Compared with other distillation methods with strong teacher
models, Tf -FD outperforms KD [16] and FitNets [44] and obtains competitive
gains with FGFI [54], which is particularly designed for object detection. As shown
in Figure 6, visualization results demonstrate the effectiveness of Tf -FD in small
object detection and reducing false positives. The success of challenging object
detection tasks demonstrates the generality and effectiveness of our approach.
Besides this simple extension, we are also designing and investigating specially
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Table 4: Ablation study of each loss added to different blocks of ResNet-20
on CIFAR-100. S2, S3, and S4 refer to Conv2 x features, Conv3 x features,
and Conv4 x features, respectively. S3 → S2 means that Conv3 x features are
employed to distill Conv2 x features. ↑ refers to the performance gain.

Linter

S3 → S2 ✓ × × ✓ × × × × ✓
S4 → S3 × ✓ × ✓ × × × × ✓
S4 → S2 × × ✓ ✓ × × × × ✓

Lintra

S2 × × × × ✓ × × ✓ ✓
S3 × × × × × ✓ × ✓ ✓
S4 × × × × × × ✓ ✓ ✓

ResNet-20 Top-1 (%) 69.84 (0.78↑) 70.29 (1.23↑) 70.18 (1.12↑) 70.31 (1.25↑) 70.26 (1.20↑) 70.29 (1.23↑) 70.41 (1.35↑) 70.51 (1.45↑) 70.62 (1.56↑)

designed feature regularizers for object detection and semantic segmentation [42]
following our Tf -FD idea.

4.4 Ablation Study

We concentrate on the effect of each element of our approach in this section.

Design of each loss. The ablation research on CIFAR-100 with ResNet-20 is
conducted in Table 4 to illustrate the individual efficacy of various components
in Tf -FD. It is observed that (a) A single loss of Tf -FD can also obtain 0.78% ∼
1.23% accuracy gains. (b) The intra-layer Tf -FD in the deep layer obtains more
obvious performance improvement. This is consistent with the fact that some
feature regularization methods [10, 49] work well on the final stage of the neural
network.

Advanced feature mimicking loss for Tf-FD. In Figure 7 (b), we explore
different feature mimicking losses for Tf -FD for ResNet-20 on CIFAR-100. The
AT [61], SP [52] and ICKD [33] achieve more obvious performance than the
simple l2 loss, indicating that the specially designed mimicking loss can further
improve the performance of Tf -FD. The AB [15] use complex feature mapping,
resulting in the loss of valuable feature knowledge. We adopt the simple l2 loss
for Tf -FD for all previous analyses and experiments.

Sensitivity study for hyper-parameters α and β. α and β are loss weights
of Linter and Lintra. As shown in Figure 7, experiments on CIFAR-100 and
ResNet-20 are conducted to study their sensitivity. The results demonstrate that
(α, β) = (0.0005, 0.0008) is the best solution for the hyper-parameter setting.
Even in the worst situation when α = 0.01 and β = 0.0001, Tf -FD still achieves
0.71% accuracy improvements than the baseline and outperforms some KDs (e.g.,
FitNets [44] and AB [15]) in Table 1.

Attention map visualization. Our Tf -FD would help the network pay atten-
tion to important information. Figure 8 illustrates that the gradient activation
map of Tf -FD is more concerned with the correct region than Dropblock.
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Figure 7: (Left) Comparison results of different feature mimicking loss for Tf -FD.
(Right) Hyper-parameter analysis: the top-1 accuracy (%) of Tf -FD with various
α (Y-axis) and β (X-axis) for ResNet-20 trained on CIFAR-100.

Input             DropBlock Tf-FDInput              DropBlock Tf-FD

Figure 8: Comparison on the Grad-CAM++ ( [4]) visualization results between
the features of the Dropblock, and Tf -FD on ImageNet.

5 Conclusion

In this Tf -FD work, we develop a novel paradigm for performing feature dis-
tillation efficiently without teacher models. Based on our insight that feature
distillation does not depend on additional modules, Tf -FD achieves this goal by
capitalizing on channel-wise and layer-wise salient self-features without setting
complicated feature alignment and assuming additional teacher modules to be
available. From the perspective of regularization, Tf -FD exerts meaningful
feature perturbations by optimizing the loss. This insight opens new doors for the
community to trade technical routes for both feature regularization and distilla-
tion. In future work, we will make an effort to analyze Tf -FD from a theoretical
perspective and explore its application with unique designs on downstream tasks
such as FPN-free detectors, VGG-like model optimization, and weakly supervised
semantic segmentation [42], etc. We hope this elegant and practical approach will
inspire more investigation into the interpretability and widespread applications
of knowledge distillation for feature representations.
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