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Abstract. In this supplementary, we provide more details, analyses and
discussions about our proposed method and also other comparison meth-
ods for the incremental subpopulation learning (ISL). As mentioned in
our main paper’s Fig. 2, we first provide more concrete examples to il-
lustrate the difference between our proposed ISL and the Incremental
Domain Learning (IDL) in Section A. Then in Section B, we discuss
the potential limitations of our proposed method and also provide corre-
sponding empirical exploration. In Section C, we provide more empirical
analyses under different network structures and also the smallest dataset
from the BREEDS datasets [34] to explore how our method behaves un-
der different scenarios. We also provide the statistical analysis between
our proposed proxy of forgetting estimation and the actual forgetting
in Section C.3. In Section D, we provide more discussions about our
two-stage method. In Section E, we include more discussions about the
existing methods. In Section F, we provide the complete dataset descrip-
tion and statistics for constructing our ISL benchmark. In Section G,
we report all the experimental details for benchmarking all compared
methods in ISL. Finally, in Section H, we include more discussions of the
related works about the related incremental learning settings like con-
tinual domain adaptation (CDA) [40] and Incremental Implicitly-Refined
Classification (IIRC) [1], and also the generalized boosting theory [32,31].
The variance of Tab. 1 and 2 in our main paper are reported in Tab. 4
and 5, and the corresponding discussions are in Section E.3.

A More concrete examples about the difference between
ISL and IDL.

In this section, we provide the detailed illustration of our proposed ISL and the
IDL (includes New Instance and Continual Domain Adaptation settings) based
on the datasets used in each setting.

Continual Domain Adaptation (CDA). As shown in Fig. 1 (A), in CDA,
the new data distribution introduced in the new visual domains (e.g., paintings
and cartoons styles) are only the manipulation of the existing subpopulations’
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Fig. 1. Concrete Example of Incremental Subpopulation Learning (ISL) and Incre-
mental Domain Learning (includes New Instance setting and Continual Domain Adap-
tation). (A) illustrates what the new distribution is introduced in Continual Domain
Adaptation, and the illustration images come from [40]. (B) illustrates what exactly
the new instances are introduced in the NI setting when the classification is performed
at object level, and we provide the illustration of the NI setting at category level in
Fig. 2 (A). (C) illustrates what unseen subpoopulations are introduced in ISL.

distribution within a category (e.g., changing the same subpopulation of “dog”
like “Terriers” from photo-style to cartoon-style), but no new unseen subpopu-
lations (e.g., new dog breeds) are introduced. The images come from the digit
datasets [16,6,27] and PACS [17] dataset, and all these datasets are the bench-
marks for CDA in [40].

New Instance (NI). The NI setting is first introduced in [21] for continual
object recognition. The author also proposed a dataset called CORe50, which
has 50 domestic objects with respect to 10 categories and each category has
5 distinct objects. As stated in Section 3 in [21], in the NI setting, we can
perform the classification at object level, where each object is a category. And
the classification can also be performed at category level, where each category
contains 5 distinct objects in CORe50. Thus we explicitly show the NI setting
at object level and category level in Fig 1 (B) and 2 (A) respectively, based on
[21] and the official code3 for the NI setting using the CORe50.

From the Fig. 1 (B), for the NI setting at object level, we can see that the
new instances of the category (object) “Plug Adapters” still contain the same
object seen before, while only the new pose or new environmental conditions of
this seen object are introduced. In such a NI setting, we can not even create
the subpopulation as defined in Fig. 1 in our main paper, and no unseen sub-
populations are introduced. When the NI setting is at category level, then the
category “Plug Adapters” is now comprised of 5 distinct objects (as shown in
Fig. 2 (A)), and NI introduces new poses or new conditions for each seen object
within this category. Again, all the objects in the new instances for a category

3 https://github.com/vlomonaco/core50
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Fig. 2. Concrete Example of Incremental Subpopulation Learning (ISL) and New In-
stance setting (at category level). As stated in [21], for the New Instance (NI) setting,
the classification can also be performed at category level, thus we introduce the con-
crete example of NI at the category level, as shown in (A). And we again compare it
concretely with our proposed ISL, as shown in (B).

are still seen before and no unseen subpopulations are introduced. Thus, the NI
setting at both levels do not introduce any new unseen subpopulations.

Our proposed ISL. As shown in Fig. 1 (C) and 2 (B), in ISL, we introduce
new subpopulations that are strictly unseen before. This can not be satisfied in
CDA or NI as described above. Each subpopulation in ISL is a distribution
with sufficient variation, e.g., covers thousands of distinct objects in the nature
world. Such a large variation in each subpopulation, and the large inter-subclass
variance between each subpopulation, make the ISL much more challenging than
CDA and NI, which also has been demonstrated in our main paper Section 4.1
based on the observations of our empirical results. Note that in ISL, all the
subpopulations are under the same visual domain, i.e., the natural image.

B Discussions of Limitations

B.1 Feature Extractor Sharing

The first potential limitation comes from the feature extractor sharing. In our
proposed method, we explore the possibility of sharing the feature extractor for
ISL. As the feature extractor is learned in the base step and then is fixed and
sharing during the incremental steps, one potential concern is that the model’s
performance may be limited and influenced by the base step training. For exam-
ple, the size of the training dataset of the base step and also the size of network
structure may potentially influence the capacity of the learned feature extractor.
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Thus as mentioned in our main paper’s Section 4.2, in Section C.1, with re-
spect to the dataset size, we empirically explore our method under the smallest
dataset of the BREEDS datasets [34], i.e., Living-17, using the same network
structure as in our main paper, i.e., the ResNet-18 [9], to provide comparisons
between existing methods. Then for the network structure, in Section C.2, we
provide the results on the Entity-13 and Entity-30 under the ResNet-50 [9],
which is much larger than the ResNet-18 used in our main paper. We observe
that our method can still consistently perform well under smaller
dataset, smaller incremental steps, and also under larger network
structure compared to existing methods. These empirical analyses
relieve our potential concerns of feature extractor sharing, and also
inspire our discussion of the stability and plasticity trade-off for ISL
in Section E.2. We believe that our proposed method could be a good baseline
tailored to ISL based on the empirical results from both our main paper and the
supplementary. We call our method a baseline since there will be much better
approaches proposed for ISL where they can handle the stability and plasticity
trade-off better than ours in the future, e.g., without feature extractor sharing.
And our exploration will also be beneficial to the future study in ISL.

B.2 Prototype Storage

The second potential limitation may come from the prototype storage. Although
the mean feature prototypes do not introduce privacy concern, the storage of
them should still be discussed. Note that we have the same cost of prototype
storage as the state-of-the-art (SOTA) non-exemplar-based (NEB) method, the
PASS [48], as mentioned in our main paper Section 3.2. Formally, for both our
method and the PASS, given the size of label space C, suppose in the t-th
incremental step we introduce unseen subclasses to kt classes and kt ≤ C, then
we need to store kt prototypes after training of the t-th step. This implies the
worse case of the storage cost after t incremental steps is t ∗ C.

Now we confirm the exact size of the mean feature prototype by saving them
on the hard disk and also by observing the actual GPU memory usage of them.
We find that: (1) The storage of the prototypes in the hard disk is much smaller
than saving the previous images. For instance, we and the PASS use less than
250 MB to store all the prototypes after 13 incremental steps for the Entity-13,
while for the common exemplar-based method [30,44,11], they needs more than
3 GB to store the exemplars from the previous training images of the learned
subpopulations (i.e., 260 subclasses). (2) The PASS will need increasingly larger
GPU memory than ours when the incremental step is increasing. As mentioned
in our main paper Section 3.2, in our Stage-2 we do not need to do any back-
propagation, thus we can search αt directly in the CPU to avoid increasing GPU
memory. However, for the PASS [48], it needs to load the prototypes to GPU to
train on each incremental step since they need the prototypes to calculate the
training objective function and then do error backpropagation.

Therefore, the cost of storage and GPU memory is mostly acceptable for our
method in ISL. Compared to the SOTA NEB method, the PASS [48], our method
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Table 1. Results on Living-17 dataset under ResNet-18. Smaller Fi and larger Un-
seen/All is better. Before incremental learning, “Unseen” is 60.00 for all the methods.

2 Steps (Even Update)

Method Unseen All F2

Oracle 94.53 94.32 -

Finetune All 50.06 42.53 71.56
Finetune Last 46.94 44.29 63.23
EWC [15] 57.29 50.62 58.09
LwF [18] 71.82 70.94 30.26
LwF-MC [30] 75.59 72.44 28.18
MUC [20] 74.17 74.41 24.79
LwM [4] 73.06 73.32 24.26
PASS [48] 72.35 74.32 28.32

Ours 76.29 80.47 4.5

will be more beneficial to the edge-device where the GPU computation memory
is limited, since we can avoid increasing GPU memory while the PASS can not.
Moreover, in the future, we will explore the possibility of integrating different
mean prototypes of the same class obtained from different incremental steps into
only one class mean prototype, e.g., the moving average of those prototypes, such
that the storage of our proposed method can be a fixed size C. The reason we
did not explore this alternative in present paper is that as an initial attempt
for ISL, we want to explore the complete power of our proposed method. The
naive moving average of different mean feature prototypes of the same class may
provide inaccurate estimation of the distance distortion in our Stage-2, and it
will further lead to wrong estimation of the forgetting in the long run.

C More Analyses of Our Proposed Method

As mentioned in our main paper’s Section 4.2, here we explore different factors
that may influence our method and provide analyses of our forgetting estimation.

C.1 Base Step Training under Smaller Dataset

Now we investigate how the training in the base step may influence our proposed
method. As the feature extractor is learned in the base step, and in our main
paper and the BREEDS [34], the Entity-30 and Entity-13 have large amounts
of training data in the base step, hence we may concern whether our method
can perform consistently when the training data is small in the base step. So we
use the smallest dataset, Living-17, in the BREEDS datasets for experiments.
The Living-17 has 17 classes and each class has 4 subclasses. Again we follow
the same dataset split in the BREEDS benchmark [34], where we randomly split
the Living-17 into two splits. In the first split, it contains 2 subclasses with only
1300 images for each class, and we use this split for training the base step such
that we can simulate the scenario where each class only comprises limited data
in the base step. Then for the second split, since there are only 2 subclasses left
for each class, thus we create a 2 Steps ISL protocol: in each incremental step,
we introduce each class with 1 unseen subclass. This is an even update.

From Tab. 1, we observe that the conclusion is consistent with the ones in
large datasets, i.e., the Entity-30 and Entity-13 in our main paper. Thus we
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Table 2. Results on Entity-30 benchmark under ResNet-50. Smaller Fi and larger Un-
seen/All is better. Before incremental learning, “Unseen” is 51.40 for all the methods.

4 Steps (Even Update) 8 Steps (Uneven Update) 15 Steps (Uneven Update)

Method Unseen All F4 Unseen All F8 Unseen All F15

Oracle 89.55 89.43 - 89.55 89.43 - 89.55 89.43 -

Finetune All 54.12 48.82 48.39 27.87 24.11 73.64 14.93 13.73 84.77
Finetune Last 55.52 60.58 29.28 29.80 32.72 59.51 19.68 21.96 71.32
EWC [15] 58.92 56.24 39.47 31.40 29.21 68.26 20.52 19.98 78.36
LwF [18] 62.88 56.95 35.39 34.88 29.65 64.98 33.58 31.25 61.83
LwF-MC [30] 68.12 66.15 27.69 48.45 45.10 49.92 35.87 34.93 61.77
MUC [20] 63.75 59.66 30.44 38.23 32.90 60.67 37.35 35.26 57.23
LwM [4] 62.33 57.75 35.58 34.92 29.97 60.19 33.50 30.71 61.89
PASS [48] 66.83 70.95 20.31 47.38 51.46 44.46 41.73 36.27 60.89

Ours 64.25 73.95 3.39 58.07 72.46 3.68 56.23 71.62 4.99

Fig. 3. Average top-1 test accuracy of each step under 3 protocols of Entity-30 using
ResNet-50.

believe that our method may consistently perform well under different size of
training data in the base step. We conjecture that the reason why the feature
extractor is so powerful is that: the heavy data augmentation we used as in the
BREEDS [34] may prevent the overfitting on the small size of data and encourage
the feature extractor to learn to extract discriminative features for each class.

C.2 Network Structure

We choose a larger network structure, i.e., the ResNet-50, and conduct exper-
iments under the same protocols on the Entity-30 and Entity-13, as shown in
Tab. 2 and 3 and also Fig. 3 and 4. We observe the same conclusions under
the ResNet-50 as under the ResNet-18 in our main paper: our method can con-
sistently and significantly outperform the existing NEB methods for ISL under
challenging and sufficiently long protocols. Thus we further believe that our pro-
posed method can be a good baseline for ISL to alleviate the subpopulation
shifting problem under different network structure.

C.3 Statistical Analysis between the Proposed Proxy of Forgetting
Estimation and the Actual Forgetting

We are also curious about whether the proposed proxy of forgetting estimation
ldist (αt) (Eqn. 9 in our main paper) is statistically related to the actual forgetting
on the seen population. ldist (αt) is defined as the relative distance distortion of
the class representative prototype between the last step’s classifier Gϕt−1

and
new classifier Gϕ′

t
under different αt. The actual forgetting AF (αt) on the seen
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Table 3. Results on Entity-13 benchmark under ResNet-50. Smaller Fi and larger Un-
seen/All is better. Before incremental learning, “Unseen” is 63.65 for all the methods.

5 Steps (Even Update) 10 Steps (Even Update) 13 Steps (Uneven Update)

Method Unseen All F5 Unseen All F10 Unseen All F13

Oracle 91.63 91.54 - 91.63 91.54 - 91.63 91.54 -

Finetune All 60.41 60.25 38.02 52.45 53.06 46.33 43.49 44.79 55.83
Finetune Last 68.45 75.20 14.56 65.00 72.03 20.42 53.01 59.01 36.22
EWC [15] 63.20 63.03 34.02 57.03 58.40 40.64 46.97 48.58 51.21
LwF [18] 66.94 65.53 31.43 59.54 58.91 37.58 51.18 51.11 46.61
LwF-MC [30] 69.94 68.61 28.35 56.75 57.47 41.19 59.98 60.93 37.05
MUC [20] 65.92 65.42 32.06 61.37 61.07 33.67 53.18 52.68 44.56
LwM [4] 68.55 66.92 30.15 62.69 61.88 32.14 54.54 53.34 41.81
PASS [48] 74.66 76.76 15.62 67.48 69.98 24.66 51.46 54.11 43.63

Ours 73.08 79.93 2.94 71.08 78.54 2.00 70.34 79.22 3.28

Fig. 4. Average top-1 test accuracy of each step under 3 protocols of Entity-13 using
ResNet-50.

population is measured by the held-out test set of all the previous incremental
step using the classifier Gϕt = Gϕt−1 + αt ·Gϕ′

t
under different αt.

We leverage the Spearman’s rank correlation coefficient4 [22] (Spearman Cor-
relation) to assess the relationship between the proxy estimation and the actual
forgetting. Spearman Correlation is a nonparametric measure of rank correlation
between two variables. Here we take 13 Steps Entity-13 as an example and we
calculate the Spearman score of the ldist (αt) and AF (αt) after each incremental
step. For 13 Steps Entity-13, we obtain the average Spearman correlation score
ρ = 0.9525 over 13 incremental steps, which implies that the proposed proxy of
the forgetting has a strong statistical correlation with the actual forgetting. The
same observations can also be obtained from different datasets and protocols.

D More Discussions of Our Two-Stage Method

D.1 Illustration of the Relationship between ldist (αt) and lval (αt)

To better illustrate the relationship between the ldist (αt) and lval (αt) in Eqn. 10
in our main paper, we give some representative samples shown in Fig. 5 with de-
tailed descriptions. We can observe that when the αt becomes larger as shown by
the blue points from the left to the right in each image, the relative improvement
of the current step’s validation accuracy lval (αt) for the unseen subpopulation
is increasing, while the relative distance distortion ldist (αt) is also increasing to
reflect the increasingly large forgetting on the seen population approximately.

4 https://en.wikipedia.org/wiki/Spearman%27s rank correlation coefficient
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Fig. 5. Representative examples to demonstrate the relationship between ldist (αt) and
lval (αt). From the left to the right, each image represents the relationship between
ldist (αt) and lval (αt) on four steps randomly sampled from the 13 Steps Entity-13. In
each image, the blue point from the left to the right represents that the αt increases from
0 to 1 with the interval of 0.05. When the αt is increasing, the relative improvement
of the current step’s validation accuracy lval (αt) may also increase since the classifier
Gϕt = Gϕt−1 + αt · Gϕ′

t
is now dominated by the new classifier Gϕ′

t
; Meanwhile, the

relative distance distortion ldist (αt) may also become larger since the classifier Gϕt is
biasing to the unseen subpopulation, which approximately implies the larger forgetting
on the seen population. The same phenomenon can be observed in all the experimental
protocols under the Entity-13, Entity-30 and Living-17 datasets.

Both of them empirically show the challenge of balancing acquisition and forget-
ting in ISL. These empirical observations further verify our design of ldist (αt)
and lval (αt) in that they can approximately model the balance between the ac-
quisition and forgetting in ISL. Note that we also observe the same phenomenon
in different protocols under different datasets.

D.2 Empirical Comparison between the Cross Entropy Loss and
Our Proposed Stage-1

Now we further empirically analyze the difference between the cross entropy
loss with softmax, and our proposed Stage-1 where the softmax layer is also
incorporated. To better illustrate the difference, we randomly choose 1 class in
the Living-17 dataset over 17 classes, and we only learn 1 unseen subclass for
this specific class in an incremental step. After training for one incremental step,
we compare the L1-norm of the weight difference of the last linear layer, i.e., the
classifier, before and after training based on the cross entropy loss with softmax
and our proposed Stage-1 incorporated with softmax layer, respectively.

The result is shown in Fig. 6 with detailed descriptions. We observe that
due to the two reweighting mechanisms in our proposed Stage-1, we can much
better avoid largely changing other class classifiers in this extreme uneven up-
date for ISL, shown in the second-left figure in Fig. 6. This also leads to much
smaller forgetting of the seen population than the cross entropy loss, shown in
the rightmost figure in Fig. 6. Therefore, the empirical results further verify the
formal discussion in Section 3.2 in our main paper that the reweighting mech-
anism may alleviate unnecessary updating for the classifier, such that we can
efficiently acquire the unseen subpopulation and also alleviate the unnecessary
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Fig. 6. Representative examples to demonstrate how the classifier’s behavior is related
to the balance between the acquisition of unseen subpopulationes and the forgetting of
the seen population. In general, we expect the model can use only the small but
necessary update to learn the unseen subpopulation to avoid bringing much
more forgetting on the seen population. When we only introduce one unseen
subpopulation to a specific class, i.e., the target class, both the cross entropy loss and
our proposed Stage-1 can have a sufficient update for the target class’s classifier to learn
its unseen subpopulation, shown in the leftmost and second-right figures. However, the
cross entropy loss updates all other class classifiers with a much larger scale than ours,
i.e., 4x of ours, shown in the second-left figure. This leads to more than 12% of
test accuracy drop on the seen population than ours, shown in the rightmost
figure. When the incremental step increases, the forgetting of the seen population may
further aggravate under the cross entropy loss.

forgetting on the seen population, with the same spirit as the Occam’s Razor5.
Note that in this experiment, our Stage-1 is also incorporated with the softmax
layer after the last classifier layer to obtain the model prediction and then we
optimize the Eqn. 7 in our main paper. Therefore, our proposed Stage-1 can
also further alleviate the adverse effect brought by the softmax layer compared
to the cross entropy. Thus we also incorporate the softmax layer after the last
classifier layer in our Stage-1 for all of our experiments in our main paper and
supplementary so that we can provide consistent comparison to the cross entropy
loss. The softmax layer does not change the prediction from the linear classifier
since the softmax function only normalizes the prediction to probability, thus
our method’s prediction is still the same and consistent after the softmax.

D.3 Implementation Details about the Stage-2

Here we provide the implementation details of the Stage-2 in Section 3.2 of our
main paper. As we mentioned in our main paper’s line 431-432, the αt can be
searched by the simple line search on the objective function lα as the Eqn. 10 in
our main paper. In practice, we empirically observe that the proper αt mostly
lays in the range of (0, 2], and thus to speed up the searching procedure, we
discretize the above range with the interval of 0.05 to readily find the proper αt

for all the experiments. In most cases, lval (αt) and ldist (αt) are under the same
scale, as shown in Fig. 5. And when their scales are mismatched, we will rescale
the smaller term such that both of them are under the same scale to have the

5 https://en.wikipedia.org/wiki/Occam%27s razor
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same importance in Eqn. 10. The re-scaling is: before optimizing the lα, we first
sample several αt from the range of (0, 2] with an interval of 0.05, then we obtain
a list of ratios by the division of lval (αt) and ldist (αt) under different αt. We
rescale the smaller term with the largest ratio to avoid scale mismatch and then
optimize the lα. For more details, please refer to our official code6. This works
smoothly in all of our experiments and provides robust scaling of lval (αt) and
ldist (αt) to ensure that the solution of lα can properly balance the forgetting
and acquisition. For the held-out validation set Dval

t , we randomly sample 10%
of the current step’s training data Dtrain

t as the Dval
t .

E More Discussions of the Existing Methods

E.1 About the Objective Function for Acquisition in ISL

LwF-MC [30] use the binary cross entropy loss with sigmoid instead of the cross
entropy loss with softmax for other existing methods. The sigmoid operator
treats each class’s prediction to be separated in the last linear layer but without
decoupling the feature representation learning as described in [30], and the up-
date of each class classifier may also be separated. This may be beneficial when
we have uneven update in ISL. For example, we can observe from Tab. 1 and
2 in our main paper that LwF-MC mostly outperforms other compared method
under uneven update (e.g., 13 Steps Entity-13).

However, completely separate each class may also bring other adverse effects
since we can also observe that in some of the protocols with even update in
Tab. 1 and 2 in our main paper and the Tab. 2 and 3 in the supplementary, the
LwF-MC can not achieve the best overall performance over other existing NEB
methods. Our proposed method is better than LwF-MC since without separating
each class, the reweighting mechanism in our Stage-1 can explicitly emphasize
the hard sample and class to effectively learn the new unseen subpopulation
while also intrinsically defy the forgetting.

E.2 About the Stability and Plasticity Trade-off in ISL

In our proposed incremental subpopulation learning (ISL) setting, given our
specific target of the subpopulation shifting problem, if we can have a proper
design to achieve a better stability and plasticity trade-off, e.g., our proposed
two-stage model, then freezing and sharing the feature extractor of the CNN
may be reasonable and beneficial to ISL. Firstly, Santurkar et al. [34] found that
only finetuning the last layer, i.e., the classifier, can largely reduce the perfor-
mance drop on the unseen subpopulation compared to other methods (see lines
703-709 in Section H.1). This inspires us to conjecture the reason of the sub-
population shifting problem: the feature extractor learned on seen population
can extract discriminative features for each class, but the classifier may have

6 https://github.com/wuyujack/ISL
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Table 4. Results on Entity-30 benchmark under ResNet-18 with standard deviation
under shuffling of the incremental steps’ order. Smaller Fi and larger Unseen/All is
better. Before incremental learning, “Unseen” is 50.18±1.06 for all the methods.

4-Steps (Even Update) 8 Steps (Uneven Update) 15 Steps (Uneven Update)
Method Unseen All F4 Unseen All F8 Unseen All F15

Finetune All 53.72±0.50 48.08±1.19 47.75±2.50 26.45±0.63 23.08±0.47 73.86±5.87 14.68±5.44 13.77±5.71 84.49±6.72
Finetune Last 55.25±0.20 58.30±0.27 32.43±1.19 30.85±4.32 32.50±0.26 60.82±4.19 19.98±5.59 21.56±4.35 72.40±6.55
EWC [15] 56.17±0.40 54.10±0.18 40.69±0.16 30.50±2.52 29.00±2.50 66.94±3.87 22.20±4.71 23.68±5.03 74.03±5.37
LwF [18] 62.67±0.05 58.85±1.11 32.32±0.72 34.52±0.10 29.69±1.06 64.38±2.79 32.62±6.43 31.17±4.97 62.51±6.16
LwF-MC [30] 68.28±1.08 64.43±1.34 28.20±0.68 46.93±2.25 43.69±2.50 50.88±0.92 34.53±5.97 33.79±5.52 62.36±5.18
MUC [20] 62.98±0.24 59.59±0.22 29.45±0.75 36.17±3.21 31.83±3.05 61.49±1.09 34.15±4.47 32.54±4.48 60.65±6.19
LwM [4] 63.32±0.18 59.20±0.92 33.13±0.88 42.47±5.15 38.90±4.87 55.59±0.45 33.43±5.20 30.78±5.47 61.23±5.26
PASS [48] 64.50±0.52 69.37±0.40 21.79±0.71 48.85±1.70 54.99±2.56 40.50±5.57 32.13±5.92 39.75±4.12 58.27±3.72
Ours 64.73±2.21 72.88±0.11 4.16±0.22 58.63±0.92 72.14±0.39 2.30±0.13 56.87±0.27 71.69±0.41 3.48±0.28

biased to the seen subpopulations and emphasize the features that are less dis-
criminative for the unseen subpopulations. Thus the model may misclassify the
unseen subpopulations. This is reasonable since the CNN can learn the generic
and discriminative feature extractor [45,47,36,5] to readily perform the transfer
learning [45,5], while the CNN can also be easily biased by the learning data.
However, only finetuning the last layer can not achieve the balance
between the acquisition of unseen subpopulation and the forgetting
of seen population in the long run in ISL, as demonstrated in our main
paper. Thus we need a better design to exploit the benefits from the feature ex-
tractor, while we also need to balance the forgetting and acquisition in ISL. This
is exactly the motivation to design our method: in Stage-1 we enforce the model
to reduce the prediction error progressively such that we can effectively learn the
unseen subpopulation to alleviate the stability concern; in Stage-2 we explicitly
disentangle the forgetting and acquisition to achieve a better balance of them.
Note that our method is tailored to ISL since in other IL settings like CIL, the
unseen new classes can be totally different from the old ones and the old feature
extractor may not be able to extract the discriminative features for the new
classes without training on them.

E.3 More discussions of our empirical results

As shown in Tab. 4 and 5, we observe that given each protocol, our proposed
method can consistently perform well under different orders of the incremental
steps for learning the unseen subpopulation with small variance. Note that in
present paper we shuffle the incremental step’s index to provide the analysis
of order shuffling since we only have limited GPU resources to conduct the
experiments. In the future we will further explore shuffling all the subclasses
order in each incremental step and provide more comprehensive analysis.

E.4 Discussion of LwF-like methods

The superiority of the LwF-like methods can not be consistently maintained in
the long run for ISL. From Fig. 4 and 5 in our main paper, we observe that both
the LwF [18] and its variants (LwM [4] and MUC [20]) may have higher average
accuracy than other methods in the early steps. However, their performance
degrades significantly in longer steps and uneven update (e.g., 8 and 15 Steps
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Table 5. Results on Entity-13 benchmark under ResNet-18 with standard deviation
under shuffling of the incremental steps’ order. Smaller Fi and larger Unseen/All is
better. Before incremental learning, “Unseen” is 62.03±1.32 for all the methods.

5 Steps (Even Update) 10 Steps (Even Update) 13 Steps (Uneven Update)

Method Unseen All F5 Unseen All F10 Unseen All F13

Finetune All 61.54±2.71 59.16±1.89 37.79±3.91 51.55±3.31 50.88±1.38 46.76±3.32 41.98±0.11 41.72±0.57 56.97±0.10
Finetune Last 65.52±1.94 71.15±0.36 18.89±2.60 61.52±0.11 67.37±3.17 25.47±1.29 49.89±2.42 55.23±2.79 40.31±0.60
EWC [15] 63.85±3.44 63.48±2.23 32.99±3.67 55.63±0.17 57.31±3.46 36.53±2.86 47.51±0.75 48.54±0.82 50.49±2.14
LwF [18] 66.91±2.34 64.82±2.06 31.47±3.69 59.97±1.05 59.17±1.76 36.26±1.06 51.14±0.57 51.05±0.81 46.31±3.90
LwF-MC [30] 67.57±2.24 65.96±2.52 30.64±5.41 59.58±3.55 59.22±0.24 38.42±1.93 59.45±1.40 59.70±0.84 37.02±2.54
MUC [20] 67.51±2.01 65.88±2.91 30.00±5.70 62.17±3.21 61.98±0.52 31.45±1.25 53.58±2.24 52.89±2.57 43.74±4.70
LwM [4] 69.69±1.05 67.61±1.20 28.22±3.50 63.49±1.03 62.25±0.31 31.72±0.61 51.05±0.15 50.80±0.70 46.31±4.51
PASS [48] 73.12±1.05 75.44±1.03 16.73±2.75 65.63±0.14 68.51±1.53 26.55±1.35 50.48±3.26 52.49±3.63 43.76±4.83

Ours 72.02±1.08 78.92±0.20 3.29±0.50 68.31±0.72 77.53±0.16 3.35±0.38 69.69±1.14 78.75±0.26 3.35±0.41

Entity-30). This shows that the LwF-like method can not consistently strike a
great balance between acquisition and forgetting in the long run in ISL, as also
demonstrated in our main paper.

F Dataset Description and Statistics

Here we describe our dataset choice and statistics in details. Our dataset choice is
based on the BREEDS datasets proposed in [34] recently. The BREEDS datasets
are designed to precisely simulate the real-world subpopulation shifting and they
are constructed based on the ImageNet [3]. The creation of BREEDS is first
roughly splitting the classes and their subclasses in the ImageNet [3] based on the
WordNet semantic hierarchy. Then the author recruited a large amount of human
annotators to precisely examine whether these subclasses images are visually
coherent to their corresponding classes and sharing similar visual characteristics.
They also largely edit the ImageNet dataset to fulfill the requirement. This is
essential to synthesize subpopulation shifting since we can not expect a model
to generalize well on arbitrary subpopulations.

The BREEDS datasets comprise 4 datasets, i.e., Entity-13, Entity-30, Living-
17, Non-Living-26, with a total of 0.86 millions (M) of images. We leverage the
Entity-13 and Entity-30 in our main paper and Living-17 in our supplementary.
The dataset statistics are shown in Tab. 6. We follow the same dataset splitting
as BREEDS that we randomly separate the Entity-13, Entity-30 and Living-
17 into two splits respectively, i.e., the source and target splits, where each
split has equal number of subclasses for each class. The source split is used for
the base step training. Then we further separate the target split into different
incremental steps based on the number of subclasses to create our ISL protocols.
The protocols’ details are stated in our main paper’s Section 4. Note that all
the splits are generated by the same random seed used in the BREEDS. For the
Entity-13, the association between the classes and their subclasses is presented
in Tab. 9; For the Entity-30, the association is presented in Tab. 10 and 11.
Note that in different ISL protocols of the Entity-13 and Entity-30, we split
the “Unseen Subclasses in Incremental Steps” (shown in Tab. 9, 10 and 11) as
mentioned in the Section 4 of our main paper for each incremental step. For the
Living-17 used in our supplementary, we also provide the details in Tab. 12.
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Table 6. Dataset statistics for each dataset used in our paper. For the Incremental
Steps, we report the total number of images over all the incremental steps.

Base Step Incremental Steps

Dataset Train Test Train Test

Entity-30 154263 6000 153565 6000

Entity-13 167120 6500 167592 6500

Living-17 44200 1700 44200 1700

G Experimental Details

In this section we provide the complete experimental details that we use to create
the ISL benchmark. As mentioned in our main paper, we leverage the recent
proposed Continual Hyperparameter Framework (CHF) in [2] as a standard
to choose the general training hyperparameters for all the methods, and also
the specific model hyperparameters for the comparison methods. The general
training hyperparameters include training epoch of each incremental steps, initial
learning rate, weight decay and momentum for all the methods. The specific
model hyperparameters for the comparison methods are used to balance the
forgetting and acquisition, and we will describe these hyperparameters for each
comparison method later. For our method, since the proper αt is searched by
optimizing the Eqn. 10 in our main paper, thus we do not need to introduce
extra specific model hyperparameters to control the forgetting and acquisition.

G.1 Continual Hyperparameter Framework (CHF)

The CHF uses only the training data of each incremental step to determine the
hyperparameters for general incremental learning since in real-world application
we can not access even the hold-out test set in each previous incremental step.
CHF can avoid being over-optimistic of a method’s performance and also provide
a fair comparison to all compared methods. CHF has also been used in a recent
large-scale empirical survey for class incremental learning (CIL) in [24].

G.2 Workflow of the CHF

The workflow of the CHF [2] comprises two phases in each incremental step: (1)
we first finetune a copy of the last step’s model on the unseen subpopulation data.
The learning rate is obtained by a coarse grid search that aims for high accuracy
on the held-out validation set of the current step’s training data. (2) Then in the
second stage, the model begins to train with the searched learning rate on the
current step’s training data. We first set the specific model hyperparameters to be
maximum such that the forgetting of the seen population should be minimum.
We also define a threshold p to indicate the maximum drop of the current step’s
validation accuracy compared to the accuracy we obtained by finetuning in the
first phase. If the model can not achieve the validation accuracy higher than 1−p
of the finetuning accuracy, then we decrease the specific model hyperparameters
with a decay ratio β until the model can meet our goal.
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Table 7. Base step’s training details for each dataset under ResNet-18 and ResNet-50
in our paper for all the comparison methods and our method.

Base Step’s Training Details Entity-13 Entity-30 Living-17

Learning Rate (LR) 0.1 0.1 0.1

Training Epoch 300 300 450

Batch Size 128 128 128

Weight Decay 1e-4 1e-4 1e-4

10-fold LR Drop Every 100 epoch Every 100 epoch Every 150 epoch

Data Augmentation The same as the BREEDS [34] benchmark

G.3 Training details of the base step.

As mentioned in Section F, the BREEDS benchmark simulates the subpopula-
tion shifting by splitting each dataset into the source and target splits, and we
choose the source split for the base step training. We follow the same training
details in BREEDS [34] based on their official GitHub repository7 such that
the empirical results of the incremental subpopulation learning (ISL) in our pa-
per can be directly compared with the results in [34] without ISL. And we can
also explore whether the ISL may alleviate the subpopulation shifting problem.
The training details are reported in Tab. 7. The data augmentation comprises
random resize crop (224x224), random horizontal flip, lighting, and color jitter,
etc. All of them are the same as the BREEDS [34]. We reproduce the BREEDS
benchmark [34] based on the ImageNet training code from [19,14], where we
obtain a very close or even the same results under ResNet-18 and ResNet-50 [9],
and observe the same subpopulation shifting problem as in [34].

G.4 Training details of the incremental steps.

All the methods (i.e., all the comparison methods and our method) are initial-
ized with the same base step’s model and then start incremental learning for a
fair comparison. We follow the CHF [2] and a recent systematic empirical bench-
mark [24] to search the learning rate in range of {0.1, 0.05, 0.01, 0.005} given
that the initial learning rate of the base step is 0.1. The threshold p is set to 0.2
and the decay ratio β is 0.5 as the common usage in CHF [2,24]. The training
epoch for each incremental step is 20 for all the methods, as it is enough for fine-
tuning a previous model on the unseen subpopulation to achieve around 95%
top-1 accuracy on the current step’s validation set (held out from the training
set). The batch size and data augmentation in the incremental step are the same
as the ones in the base step for all the methods. We use SGD with the momen-
tum as 0.9, the weight decay as 1e-4 and the constant learning rate scheduler for
all the method given that the incremental training epoch is relatively small. All
the code is implemented in PyTorch [28]. The existing methods are implemented
based on their official implementation and also based on the large and public
GitHub repository8 proposed by [24] and the code for our proposed method is

7 https://github.com/MadryLab/BREEDS-Benchmarks
8 https://github.com/mmasana/FACIL
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release in our official GitHub repository9. Based on the CHF, the searched initial
learning rate is 0.005 for each incremental step of the Entity-30 and the Entity-
13 for the compared method, and 0.01 for the Living-17. For our method, the
CHF searched result is 0.05, 0.01, 0.005 for 4, 8 and 15 Steps Entity-30 respec-
tively and 0.1, 0.05, 0.05 for 5, 10, 13 Steps Entity-13. We can see that under
some protocols the CHF searched initial learning rate appears relatively large
for our proposed method. This is due to the methodology difference between the
compared methods and our proposed two-stage method that disentangles the
acquisition and forgetting into two stages separately: For the compared meth-
ods, they couple the acquisition and forgetting in a single objective function
and optimize them simultaneously, and thus the choice of the learning rate will
both influence the acquisition of unseen subpopulation and forgetting on seen
population. Therefore, the CHF will search for relatively small learning rate for
the compared methods to avoid aggravating the forgetting such that they have
a better balance between acquisition and forgetting. While for our method, the
learning rate is only used in the “gain-acquisition” stage, i.e., Stage-1, to pro-
gressively acquire the new subpopulation, and in our Stage-2 we do not perform
any learning for the unseen subpopulation, as stated in our main paper Section
3.2. Since in Stage-1 our ultimate goal is to progressively acquire the unseen
subpopulations, thus the CHF will search for relatively large learning rate to en-
sure that the unseen subpopulation can be acquire as good as possible in Stage-1
without concerning any forgetting on the seen population. However, we also need
to note that although our method seems to be able to be trained with relatively
large learning rate in our Stage-1 training to acquire the unseen subpopulation,
this does not mean that our final performance on the unseen subpopulation
will always be better than the compared methods. This is because our final
performance on the unseen subpopulation is further controlled on our
Stage-2 and if in Stage-2 the searched αt prefers to maintain more on
the seen population’s performance, then the full acquisition of the un-
seen subpopulation from Stage-1 will not be preserved after the linear
combination in Stage-2. We could also exactly observe that under some pro-
tocols, i.e., 4 Steps Entity-30 and 5 Steps Entity-13, our method does not have
the largest acquisition (“Unseen”) on the unseen subpopulation compared to
other methods, although our “All” performance is better only because we could
achieve a better balance between forgetting and acquisition than other compared
methods. This implies that although our Stage-2 can achieve a better balance
between the acquisition and forgetting, this balance may still be sacrificing some
of the acquisition on the unseen subpopulation achieved in our Stage-1 training.
This further shows that there is still a large room for us to improve
our Stage-2 to achieve much better balance between forgetting and
acquisition, and thus we view our method as only a baseline method
instead of a good-enough method for the ISL.

Now we describe the maximum of the specific model hyperparameters for each
comparison method to be decreased in the CHF, which is mostly based on [2,24]:

9 https://github.com/wuyujack/ISL
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EWC [15]: We follow the [24] to fuse the old and new importance weights
by 0.5 to avoid the storage of the importance weights for each incremental steps.
The loss function is combined with the cross entropy loss with softmax and
the EWC loss for regularizing the forgetting based on the Fisher Information
Matrix, where the balance between the cross entropy loss and the EWC loss is
by a hyperparameter on the EWC loss, starting from 1000.

LwF [18]: The loss function of LwF comprises the cross entropy loss with
softmax and the knowledge distillation loss with a temperature scaling parame-
ter. The knowledge distillation loss is for the forgetting regularization. We follow
the same implementation from [24,2] to implement the LwF and we fixed the
temperature scaling parameters to 2 as proposed in [18] and used in most of the
literature. The balancing of the acquisition and forgetting is also controlled by
a hyperparameter on the distillation loss, starting from 40.

LwF-MC [30]: The LwF-MC is proposed in [30] as an alternative of the
iCaRL [30] but without storing the previous training images. The loss function of
LwF-MC comprises the binary cross entropy loss with sigmoid and a distillation
loss [30] for the forgetting regularization. The hyperparameter of the distillation
loss starts from 10.

MUC [20]: We follow the official implementation of the MUC [20] 10. Based
on the existing literature [20,48], we use the strong version of MUC, i.e., with
the LwF. MUC is a variant of the LwF by adding multiple classifiers during
each incremental step’s training and encouraging those classifiers to have a large
discrepancy such that the LwF can perform better. The discrepancy is enforced
based on another unlabeled out-of-distribution (OOD) dataset [20] which is dif-
ferent from the training data of each incremental step. Thus the loss function
comprises the cross entropy loss, the distillation loss and a discrepancy loss. We
follow the default usage of the SVHN [20] dataset as the unlabeled OOD dataset
and the same training details as the official implementation of the discrepancy
loss. Then the model specific hyperparameter is on the knowledge distillation
loss, which starts from 40.

LwM [4]: We follow the same implementation from [24] as there does not
exist official implementation for LwM. LwM is also a variant of LwF and its
loss function consists of the cross entropy loss, distillation loss from LwF and
the LwM loss, where the LwM loss is a forgetting regularization based on the
intermediate feature visualization of the old and new models. Thus we have two
hyperparameters on the distillation loss and LwM loss respectively, where the
former starts from 40 and the latter starts from 2 as the default usage in [24].

PASS [48]: PASS is the recent SOTA non-exampler-based (NEB) method
for the CIL proposed in [48]. We follow the official implementation from the au-
thor11. The loss function of PASS consists of the cross entropy loss, the knowledge
distillation loss and the prototype augmentation loss, where the last two term is
for the forgetting regularization and they both start from 40 such that we can
also cover the default choice in the official implementation.

10 https://github.com/liuyudut/MUC
11 https://github.com/Impression2805/CVPR21 PASS
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Table 8. Difference between our ISL and other IL settings.

Training Supervision Needs New Data in Incremental Learning with

IL Settings category label subpopulation label New Category New Subpopulation

ISL Yes No No Yes (Strictly)
IDL [39,21,40] Yes No No No
CIL [2] Yes No Yes No
IIRC [1] Yes Yes Yes Yes (Not Strictly, with also seen subpopulation)

Note that all these comparison methods are general for incremental learning
and they can be readily used for the ISL without bells and whistles. For the naive
baselines, i.e., the “Finetune Last” and “Finetune All”, they do not introduce any
specific model hyperparameters to balance the forgetting and acquisition. Both
the “Finetune Last” and “Finetune All” are optimized with the cross entropy
loss with softmax. For our proposed method, as the proper αt is searched by
optimizing the Eqn. 10 in our main paper, thus we do not need to introduce
extra specific model hyperparameters to control the forgetting and acquisition.

H More Discussions of Related Works

H.1 Related Incremental Learning Settings

Here we provide more discussions about the related IL settings like the contin-
ual domain adaptation (CDA) [40] and Incremental Implicitly-Refined Classifi-
cation (IIRC) [1]. Tab. 8 provides the concrete difference between our ISL and
other IL settings discussed in our main paper’s Section 2.

More Comparisons to the CDA [40]. The existing state-of-the-art method [40]
for the CDA proposes using diverse and heavy data augmentation for random-
izing the domain distribution to make the model inherently robust against for-
getting and generalize to new domain. However, this strategy can not alleviate
the subpopulation shifting problem and the forgetting issue in the ISL, which
coincides with the empirical finding in [34]. In the BREEDS benchmarks, San-
turkar et. al. [34] found that the subpopulation shifting can not be alleviated by
using strong data augmentation [46] (like Gaussian and Erase noise), adversarial
training [23] or even training with a stylized version of ImageNet to encourage
the model to rely more on shape rather than texture [7]. However, these robust
interventions techniques are commonly used to effectively perform the domain
adaptation [38,10] (DA) and domain generalization [41] (DR).

The reason why those effective techniques in DA and DR can not alleviate
the subpopulation shifting is due to the difference between the CDA and ISL:
The unseen subpopulation is both semantically and visually coherent with the
seen population under the same visual domain (i.e., natural image), thus they
may have a similar form of representations in the feature space. However, for
the CDA, there are different visual domains (e.g., photo and cartoon styles)
introduced in each incremental step, and the representations in each domain
are intrinsically different and they need to be appropriately aligned to perform
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the domain adaptation [37,43,33]. Moreover, the distribution of the unseen sub-
population can not be explicitly simulated by neither strong and diverse data
augmentation nor the adversarial training used in both CDA and domain adap-
tation and generalization. Thus, those effective methods in CDA and domain
adaptation may not alleviate the subpopulation shifting problem.

Therefore, the different sources of shifting, i.e., the domain shifting and the
subpopulation shifting, differentiate the CDA and ISL.

More Comparisons to the IIRC [1] In IIRC’s [1] original paper, the author
did not introduce a specific method for the IIRC setting to explicitly learn the
association of different label hierarchies, i.e., the coarse and fine labels, during
the IIRC. During the IIRC, the model needs to do multi-label prediction for each
image, and even with specific adaptation, the existing exemplar-based method,
e.g., the iCaRL [30] and LUCIR [11], can still not perform well in the IIRC.

Differently, in our work we further propose a new method as the first and a
good baseline tailored to the ISL. We also believe that studying this well-defined
and isolated shifting, i.e., the subpopulation shifting, in incremental learning can
facilitate clean analysis and provide much more insights for our specific concern.

H.2 General Boosting Theory [32,31]

Here we provide more discussions about the general boosting theory [32,31]. The
general aspect of the boosting with respect to the gradient descent was first pro-
posed in [25]. The gradient descent view of the boosting is general [35] and can
theoretically unify the existing boosting algorithms by the functional gradient
techniques [35]. Saberian et al. [32,31] further established the multi-class boost-
ing theory under the general gradient descent aspect of the boosting. Besides the
theoretical development of the boosting theory, the general idea of boosting or
ensembling are largely leveraged in existing works [42,12,13] in computer vision,
but few of them explicitly built their methods based on the general boosting
theory. Moghimi et al. [26] first proposed to leverage the multi-class boosting
theory to learn many different CNNs, e.g., VGG-16, for the image classification
task and achieved better result than a single CNN. Han et. al. [8] proposed to
incrementally boost the CNN for facial action unit recognition, but they are
not doing the incremental learning since in [8] they train the model with all
the data and thus there is no forgetting. Pentina et. al. [29] theoretically studied
the lifelong learning with weighted majority votes of different learned predictors,
which has similar spirit with the boosting mechanism of model selection. How-
ever, Pentina et. al. [29] did not provide any practical algorithm to implement
their theoretical analysis. To the best of our knowledge, we are the first work to
connect the generalized boosting theory with the incremental learning and also
show that it is desirable tailored to the incremental subpopulaiton learning (ISL)
given that in the ISL, we do not need to extend the classifier and thus we can
incrementally learning a new classifier to replace the old one by the functional
gradient techniques of boosting, without adding many new CNNs. We also pro-
pose a new mechanism, i.e., the Stage-2, to achieve the balance between the
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acquisition of the unseen population and the forgetting of the seen population
tailored to the ISL.
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Table 9. The class and their corresponding subclasses split for incremental subpopu-
lation learning on Entity-13. In the base step, each class training data comprises the
data from the subclasses in the middle column accordingly. For the incremental step,
we split the unseen subclasses in the rightmost column based on different protocols.

Class Subclasses in Base Step Unseen Subclasses in Incremental
Steps

garment trench coat, abaya, gown, poncho, military
uniform, jersey, cloak, bikini,
miniskirt, swimming trunks

lab coat, brassiere, hoopskirt, cardi-
gan,
pajama, academic gown, apron, dia-
per,
sweatshirt, sarong

bird African grey, bee eater, coucal, American
coot, indigo bunting, king penguin,
spoonbill, limpkin, quail, kite

prairie chicken, red-breasted mer-
ganser, albatross, water ouzel, goose,
oystercatcher, American egret, hen,
lorikeet, ruffed grouse

reptile Gila monster, agama, triceratops,
African chameleon, thunder snake, Indian
cobra, green snake, mud turtle,
water snake, loggerhead

sidewinder, leatherback turtle, boa
constrictor, garter snake, terrapin,
box
turtle, ringneck snake, rock python,
American chameleon, green lizard

arthropod rock crab, black and gold garden spider,
tiger beetle, black widow, barn spider,
leafhopper, ground beetle, fiddler
crab, bee, walking stick

cabbage butterfly, admiral, lacewing,
trilobite, sulphur butterfly, cicada,
garden spider, leaf beetle, long-horned
beetle, fly

mammal Siamese cat, ibex, tiger, hippopotamus,
Norwegian elkhound, dugong,
colobus, Samoyed, Persian cat, Irish
wolfhound

English setter, llama, lesser panda, ar-
madillo, indri, giant schnauzer, pug,
Doberman, American Staffordshire
terrier, beagle

accessory bib, feather boa, stole, plastic bag,
bathing cap, cowboy boot, necklace,
crash helmet, gasmask, maillot

hair slide, umbrella, pickelhaube, mit-
ten, sombrero, shower cap, sock, run-
ning shoe, mortarboard, handkerchief

craft catamaran, speedboat, fireboat, yawl,
airliner, container ship, liner, trimaran,
space shuttle, aircraft carrier

schooner, gondola, canoe, wreck, war-
plane, balloon, submarine, pirate,
lifeboat, airship

equipment volleyball, notebook, basketball, handheld
computer, tripod, projector, barbell, moni-
tor, croquet ball, balance
beam

cassette player, snorkel, horizontal
bar,
soccer ball, racket, baseball, joystick,
microphone, tape player, reflex cam-
era

furniture wardrobe, toilet seat, file, mosquito
net, four-poster, bassinet, chiffonier,
folding chair, fire screen, shoji

studio couch, throne, crib, rocking
chair, dining table, park bench, chest,
window screen, medicine chest, barber
chair

instrument upright, padlock, lighter, steel drum,
parking meter, cleaver, syringe, abacus,
scale, corkscrew

maraca, saltshaker, magnetic com-
pass,
accordion, digital clock, screw, can
opener, odometer, organ, screwdriver

man-made structure castle, bell cote, fountain, planetarium,
traffic light, breakwater, cliff dwelling,
monastery, prison, water tower

suspension bridge, worm fence, turn-
stile, tile roof, beacon, street sign,
maze, chainlink fence, bakery, drilling
platform

wheeled vehicle snowplow, trailer truck, racer, shopping
cart, unicycle, motor scooter, passenger car,
minibus, jeep, recreational
vehicle

jinrikisha, golfcart, tow truck, ambu-
lance, bullet train, fire engine, horse
cart, streetcar, tank, Model T

produce broccoli, corn, orange, cucumber,
spaghetti squash, butternut squash,
acorn squash, cauliflower, bell pepper,
fig

pomegranate, mushroom, strawberry,
lemon, head cabbage, Granny Smith,
hip, ear, banana, artichoke
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Table 10. The class and their corresponding subclasses split for incremental subpopu-
lation learning (ISL) on Entity-30. In the base step, each class training data comprises
the data from the subclasses in the middle column accordingly. For the incremental
step, we split the unseen subclasses in the rightmost column based on different proto-
cols.

Class Subclasses in Base Step Unseen Subclasses in Incremental Steps

serpentes green mamba, king snake, garter
snake, thunder snake

boa constrictor, green snake, ringneck
snake, rock python

passerine goldfinch, brambling, water ouzel,
chickadee

magpie, house finch, indigo bunting,
bulbul

saurian alligator lizard, Gila monster,
American chameleon, green lizard

Komodo dragon, African chameleon,
agama, banded gecko

arachnid harvestman, barn spider, scor-
pion,
black widow

wolf spider, black and gold garden spider,
tick, tarantula

aquatic bird albatross, red-backed sandpiper,
crane,
white stork

goose, dowitcher, limpkin, drake

crustacean crayfish, spiny lobster, hermit
crab,
Dungeness crab

king crab, rock crab, American lobster,
fiddler crab

carnivore Italian greyhound, black-footed
ferret,
Bedlington terrier, basenji

flat-coated retriever, otterhound, Shi-
hTzu, Boston bull

insect lacewing, fly, grasshopper, sul-
phur butterfly

long-horned beetle, leafhopper, dung
beetle, admiral

ungulate llama, gazelle, zebra, ox hog, hippopotamus, hartebeest,
warthog

primate baboon, howler monkey, Mada-
gascar
cat, chimpanzee

siamang, indri, capuchin, patas

bony fish coho, tench, lionfish, rock beauty sturgeon, puffer, eel, gar

barrier breakwater, picket fence, turn-
stile,
bannister

chainlink fence, stone wall, dam,
worm fence

building bookshop, castle, mosque,
butcher
shop

grocery store, toyshop, palace, beacon

electronic
equipment

printer, pay-phone, microphone,
computer keyboard

modem, cassette player, monitor, dial
telephone

footwear clog, Loafer, maillot, running
shoe

sandal, knee pad, cowboy boot, Christmas
stocking
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Table 11. The class and their corresponding subclasses split for incremental subpop-
ulation learning on Entity-30. In the base step, each class training data comprises the
data from the subclasses in the middle column accordingly. For the incremental step,
we split the unseen subclasses in the rightmost column based on different protocols.

Class Subclasses in Base Step Unseen Subclasses in Incremental Steps

garment academic gown, apron, miniskirt,
fur
coat

jean, vestment, sarong, swimming
trunks

headdress pickelhaube, hair slide, shower
cap,
bonnet

bathing cap, cowboy hat, bearskin,
crash helmet

home appli-
ance

washer, microwave, Crock Pot,
vacuum

toaster, espresso maker, space heater,
dishwasher

kitchen utensil measuring cup, cleaver, coffeepot,
spatula

frying pan, cocktail shaker, tray, caldron

measuring in-
strument

digital watch, analog clock, park-
ing
meter, magnetic compass

barometer, wall clock, hourglass, digital
clock

motor vehicle limousine, school bus, moped,
convertible

trailer truck, beach wagon, police van,
garbage truck

musical instru-
ment

French horn, maraca, grand pi-
ano, upright

acoustic guitar, organ, electric guitar,
violin

neckwear feather boa, neck brace, bib,
Windsor
tie

necklace, stole, bow tie, bolo tie

sports equip-
ment

ski, dumbbell, croquet ball,
racket

rugby ball, balance beam, horizontal
bar, tennis ball

tableware mixing bowl, water jug, beer
glass, water bottle

goblet, wine bottle, coffee mug, plate

tool quill, combination lock, padlock,
screw

fountain pen, screwdriver, shovel,
torch

vessel container ship, lifeboat, aircraft
carrier,
trimaran

liner, wreck, catamaran, yawl

dish potpie, mashed potato, pizza,
cheeseburger

burrito, hot pot, meat loaf, hotdog

vegetable zucchini, cucumber, butternut
squash,
artichoke

cauliflower, spaghetti squash, acorn
squash, cardoon

fruit strawberry, pineapple, jackfruit,
Granny Smith

buckeye, corn, ear, acorn
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Table 12. The class and their corresponding subclasses split for incremental subpop-
ulation learning on Living-17. In the base step, each class training data comprises the
data from the subclasses in the middle column accordingly. For the incremental step,
we split the unseen subclasses in the rightmost column based on different protocols.

Class Subclasses in Base Step Unseen Subclasses in In-
cremental Steps

salamander eft, axolotl common newt, spotted
salamander

turtle box turtle, leatherback
turtle

loggerhead, mud turtle

lizard whiptail, alligator lizard African chameleon,
banded gecko

snake night snake, garter snake sea snake, boa constrictor

spider tarantula, black and
gold garden spider

garden spider, wolf spider

grouse ptarmigan, prairie
chicken

ruffed grouse, black
grouse

parrot macaw, lorikeet African grey, sulphur-
crested cockatoo

crab Dungeness crab, fiddler
crab

rock crab, king crab

dog bloodhound, Pekinese Great Pyrenees, papillon

wolf coyote, red wolf white wolf, timber wolf

fox grey fox, Arctic fox red fox, kit fox

domestic cat tiger cat, Egyptian cat Persian cat, Siamese cat

bear sloth bear, American
black bear

ice bear, brown bear

beetle dung beetle, rhinoceros
beetle

ground beetle, long-
horned beetle

butterfly sulphur butterfly, admi-
ral

cabbage butterfly, ringlet

ape gibbon, orangutan gorilla, chimpanzee

monkey marmoset, titi spider monkey, howler
monkey


