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1 Further proof about sub-optimal topology structure

The motivation of the Counterfactual Relation Intervention (CRI) is that joint
learning of graph inputs X and outputs Y leads to bad affinities A. Here, we
do some toy example experiments to demonstrate that phenomenon. We aim to
investigate the relationships of A with the quality of X and Y . For example, if
the quality of X and Y are good (meaning both graph and backbone features
trained well), how about the quality of A. We firstly define the metric to evaluate
features and affinities. For a good learned representation, features should fit the
following scheme:

GR(Xi) = D(Xi, Xk)−D(Xi, Xj), ∀j ∈ Pi, k ∈ N i,

GR(Y i) = D(Y i, Y k)−D(Y i, Y j), ∀j ∈ Pi, k ∈ N i.
(1)

j and k mean the indexes of the positive set Pi and the negative set N i for the
i-th samples. D is the distance function. These equations compute the margins
between distances of its all positive pairs and their corresponding negative ones.
We statistic the averaged margin as the quality metrics:

QX =

∑
i ∈ {GR(Xi)}

N
, QY =

∑
i ∈ {GR(Y i)}

N
, (2)

where N is the number of features, equal for the graph one and the backbone
one. And we also propose a metric to evaluate affinities A:

QA =

∑
i∈GA(Ai) i

N
, GA(Ai) = {i, Ai,j > Ai,k}, j ∈ Pi, k ∈ N i, (3)

where {i, cod} means the set of i who satisfies the condition cod. That equation
means that the good affinities should include larger positive similarities than
corresponding negative ones. So this QA metric measure the ratio of samples’
affinities belonging to that constraint.

After that, we randomly generate a series of triplets {X,A, Y } and control
their quality carefully. And then, we evaluate the quality of QY and draw these
data in Figure 1 and see how do the QX and QA affect QY . To achieve stable
results, we reproduce that statistic 100 times and compute mean results. From
Figure 1 (a) (bird of view figure), it obvious that A cannot learn sufficient when
the inputs features are trained well. A low-quality affinities A (low QA, e.g.
about 0.1, the blue dash line in Figure 1 (a)) can also get a good transferred
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Fig. 1. (a) shows the relationships between QA, QX and QY . The blue dash line gives
an example about fixing QA and seeing the changes of QY introduced by QX . The
yellow dash one aims to analysis the changes from QA to QY on the real fixed QA

computed on our baseline on the SYSU-MM01 benchmark. (b) is the 3D surface version
of (a).

features Y (high QY ) as long as having a high-quality input representation X
(high QX). It proves that if the A is not good, the graph output features Y can
also have a good representation abilities because of good X. So the training of
X can relax the constraint of A. And as we know, in the training set of ReID
task, features also trained well. So the range of A could be flexible. To prove
that, we compute the QA on our baseline network and the result is 0.57. We
analysis the QA influence to QY on this constant QX value (yellow dash line in
Figure 1 (a)). And we find that, the range of A is extreme big. As long as the QA

upper than 0.16, the outputs of Y can achieve satisfied quality, larger than 0.7.
It shows that well-trained X and Y can lead to a flexible range of A, bringing
sub-optimal topology structure.

2 Feature learning loss function details

For both backbone and graph module features, we add cross-entropy losses to
train the features include identity information:

Lb
ce(Yb) = Ei[− log(Y i

b )], Lg
ce(Yg) = Ei[− log(Y i

g )], (4)

where Y i
· is the predicted probability for the ground-truth category of the i-th

sample. It is computed based on the features F i
· by the corresponding classifica-

tion layer:

Y i
b = WbF

i
b , Y i

g = WgF
i
g. (5)
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whereW· means learnable parameters of classification layers. Except that, we de-
sign a new metric learning loss called Heterogeneous Center Contrastive (HCC)
loss:

Lhcc(I, C,D) = Ei{D(Ii, Cj) +
∑
k

max[ρ−D(Ii, Ck), 0]}, (6)

where I is the input features and C is their heterogeneous center. j and k mean
the indexes of the positives and negatives for the i-th samples. Specifically, Cj are
feature centers computed by features of positive samples of the i-th sample in the
current batch. And Ck is similar but computed by negative samples. This metric
learning loss essentially put the features close to their corresponding category
centers and put them away from the negative centers. We add this loss on both
graph features and the backbone features. Their metric learning losses are:

Lb
me = Lhcc(F

b, CF b

, Eu)︸ ︷︷ ︸
feature-level

+Lhcc(Y
b, CY b

,KL)︸ ︷︷ ︸
logit-level

, Lg
me = Lhcc(Y

g, CY g

,KL)︸ ︷︷ ︸
logit-level

,
(7)

where the feature-level HCC loss aims to guide features embed in the euclidean
(Eu) space well. And the logit-level one puts KL-divergence (KL) constraints
on the classification results, further regularizing the logit distribution.

3 Graph Feature Transfer (GFT) details

In the original paper, we split the H2FT into three parts in the ablation study:
Graph Feature Transfer (GFT), UnBalanced Scenario simulation (UBS) and
Homogeneous&Heterogeneous Graph module (H2G). Here we further introduce
the details of GFT. Similar to the original H2FT, it can be defined as:

F = A ·X, (8)

where X, F and A mean input features matrix, transferred features and affinity
matrix respectively.X is the whole batch data consisting ofN rgb andN infrared
modality data (1 query with NG galleries in inference). A is computed by the
following equations:

A = D−1 · S′, S′ = T (S, k), (9)

where

Si,j = exp
cos(v(xi), v(xj))

τ
. (10)

A is computed by the full X, which is different from our H2FT. It is obvious
that GFT transfers features in all batch in the training stage, suffering from the
train-test modality balance gap.

4 More visualization results

In the original paper, we have given visualizations about influence of the CRI
in Fig. 3. And we give more CRI visualizations about different views under the
SYSU-MM01 single-shot all search mode in Fig. 2, Fig. 3, Fig. 5 and Fig. 4.
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The visualizations all mean affinities with and without CRI. For each group,
the first image is the sample preparing to interact and others are the top-3
similar samples of the first one. The green boxes represent correct matches, and
the red boxes represent incorrect matches. The results more intuitively show the
effectiveness of our method for improving affinity.
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Fig. 2. CRI leads to more positive samples for graph message passing.
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Fig. 3. CRI can enlarge positive affinities between easy sample pairs.
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Fig. 4. CRI can suppress negative affinities between hard samples.
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Fig. 5. CRI can enlarge positive affinities and suppress negative ones simultaneously.


