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We organize our supplementary materials as follows. In Section A, we pro-
vide the detailed formulations of both pair-based and proxy-based DML loss
functions. In Section B, we detail the formulations of DML sampling methods.
In Section C, we provide more implementation details of DAS. In Section D,
we analyze the overhead of DAS, In Section E, we provide experiment results
of DAS on widely used proxy-based losses. In Section F, we provide results on
DAS w/o image augmentation. In Section G, we study the effect of batch size
on DAS. In Section H, we study the effect of embedding dimension on DAS. In
Section I, we visualize and analyze the frequency recorder matrix. In Section J,
we provide the evolution of training process w.r.t. more DML losses. In Sec-
tion K, we investigate the effect of hyper-parameters rs, rb, T . In Section L, we
provide qualitative results w.r.t. DFS and MTS. In Section M, we provide more
qualitative results on different loss functions.

A Detailed Formulations of Loss Function in DML

A.1 Pair-based Loss Function

Contrastive Loss [2]. The goal of contrastive loss is simply pulling the embed-
dings of the same class as close as possible and separating the embeddings of
different classes at least of a given margin. Specifically, contrastive loss requires
the index set of the sampled embedding pairs P = {(i, j)} and the pair-wise
euclidean distance is calculated as Dij = ∥vi − vj∥. Then the formulation of
contrastive loss is as follows

LContrastive =
∑

(i,j)∈P

I{yi = yj} Dij + I{yi ̸= yj} [γ −Dij ]+ , (I)

where I{·} is the indicator function, γ (set to 1.0 in this paper) is the margin.

Triplet Loss [8]. Triplet loss extends the contrastive loss by converting the
absolute distance relationship between embeddings into a relative distance re-
lationship (i.e., ranking): the distance between embeddings of different classes
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should be farther away than any embeddings of the same class. Specifically,
triplet loss requires sampling a set of embedding triplets T = {(a, p, n)}, where
ya = yp ̸= yn and a, p, n are the index of the anchor, positive and negative,
respectively. The formulation of triplet loss is as follows

LTriplet =
∑

(a,p,n)∈T

[Dap −Dan + γ]+ , (II)

where γ (set to 0.2 in this paper) is the margin.

Margin Loss [11]. Margin loss introduces a more flexible optimization paradigm
into the triplet loss. Specifically, a adjustable and learnable margin β ∈ RC is
proposed to replace the fixed margin (i.e., 0) between embedding of different
classes, which converts the triplet ranking problem into a relative ordering of
pairs. The formulation of margin loss is as follows

LMargin =
∑

(i,j)∈P

I{yi = yj} [γ +Dij − βyi ]+ + I{yi ̸= yj} [γ + βyi −Dij ]+ ,

(III)
where γ (set to 0.2 in this paper) is the margin in the triplet loss and βyi

is the
learnable margin for class yi. Each element in β is initialized with 1.2 and the
learning rate for β is set to 5e−4.

Generalized Lifted Structure Loss [3]. Generalized lifted structure loss ex-
tends the standard lifted structure loss [6] by considering all embeddings from
the same class w.r.t. the anchor during intra-class distance minimization. Gen-
eralized lifted structure loss pulls embeddings of the same class w.r.t. the anchor
close while pushing embeddings of different classes apart. To save computation
cost, each embedding in a batch is used as the anchor once. To be specific, the
index set of the sampled embeddings is P = {(a,Q,R)}, where a /∈ Q,R, and
ya = yq ̸= yr, q ∈ Q, r ∈ R. Then the formulation of generalized lifted structure
loss is as follows

LGenLifted =
∑

(a,Q,R)∈P

log∑
q∈Q

exp (Daq) + log
∑
r∈R

exp (γ −Dar)


+

+ ν ∥va∥2 ,

(IV)
where γ (set to 1.0 in this paper) is the margin to avoid pushing the embeddings
of different classes too large and ν (set to 5e−3 in this paper) regularizes the
embeddings. Note that, in this loss, embeddings for distance computation and
producing embeddings with no data points are not normalized.

N-Pair Loss [9]. N-Pair loss extends the triplet loss by considering all embed-
dings of different classes during inter-class distance maximization. Specifically,
the index set of the sampled embeddings is P = {(a, p,R)}, where ya = yp ̸=
yr, r ∈ R, and the pair-wise distance is calculated as Dij = vT

i vj . Then the
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formulation of N-Pair loss is as follows

LN-Pair =
∑

(a,p,R)∈P

log

(
1 +

∑
r∈R

exp (Dar −Dap)

)
+ ν ∥va∥2 , (V)

where ν (set to 5e−3 in this paper) controls the optimization strength on the
embedding regularization. Note that, in this loss, embeddings for distance com-
putation and producing embeddings with no data points are also not normalized.

Multi-similarity Loss [10]. Apart from considering simple anchor-positive,
anchor-negative relationships, multi-similarity loss better leverages all embed-
dings in a batch by additionally considering positive-positive and negative-negative
relationship. Also, to save computation cost, each embedding in a batch will only
be used as anchor once. For a anchor a, let Pa and Na denote its corresponding
positive and negative embedding index sets, respectively. Given the pair-wise
distance computed by Dij = vT

i vj , the sampled embedding index set is con-
structed as P = {(a,Q,R)}, where a /∈ Q,R, Q = {q | yq = ya, Daq >
mini∈Pa

(Dai − ϵ)} and R = {r | yr ̸= ya, Dar < maxj∈Na
(Daj + ϵ)}. Then

the formulation of multi-similarity loss is as follows

LMS =
∑

(a,Q,R)∈P

1

α
log

1 +∑
q∈Q

exp (−α (Daq − λ))


+
1

β
log

[
1 +

∑
r∈R

exp (β (Dar − λ))

]
,

(VI)

where α, β, λ, ϵ are hyper-parameters to be set. In this paper, we set α = 2, β =
40, λ = 5e−1, ϵ = 1e−1.

A.2 Proxy-based Loss Function

Softmax Loss [12]. Different from the pair-based loss function, softmax loss1
introduces a proxy i.e., classifier for each class and optimizes the embedding by
pulling it close to its proxy. The formulation of softmax loss is as follows:

LSoftmax = −
∑
i

log
exp

(
WT

yi
vi / T

)∑
c∈C exp (WT

c vi / T )
, (VII)

where W ∈ RC×d is the classifier weight for all training classes. Since the em-
bedding vi is normalized, a temperature T (set to 5e−2 in this paper) is used to
boost the gradient. Moreover, the learning rate of W is set to 1e−5 for CARS
and CUB, 2e−3 for SOP.

ArcFace Loss [1]. ArcFace loss improves the vanilla softmax by adding an
angular margin into embedding and its corresponding proxy to achieve more
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compact intra-class representation. The formulation of ArcFace loss is as follows

LArcFace = −
∑
i

log
exp

(
s · cos

(
WT

yi
vi + γ

))
exp

(
s · cos

(
WT

yi
vi + γ

))
+
∑

c̸=yi
exp (s · cos (WT

c vi))
,

(VIII)
whereW ∈ RC×d is the classifier weight for all training classes and γ, s are hyper-
parameters to be set. In this paper, we set γ = 5e−1 and s = 16. Moreover, the
learning rate of W is set to 5e− 4 for all datasets.

B Detailed Formulations of Sampling Method for DML

Random Sampling [4]. Random sampling simply selects the index of pos-
itive pair or negative pair in a most trivial way i.e., randomly selecting. To
be specific, given an embedding vi, its index of positive is randomly draw
from {j | yi = yj , i ̸= j} and its index of negative is randomly draw from
{k | yi ̸= yk, i ̸= k}.

Semi-hard Sampling [8]. Semi-hard sampling is proposed to effectively sample
embedding triplets that grows cubically to batch size. In the training process,
most of the triplets satisfy the objective function and they provide limited (or
no) training signal to train the model, thereby impeding the model learning [8].
Thus, given an anchor va and its positive vp (randomly sampled), semi-hard
sampling carefully choose negative embedding’s index as follows

n ∼ {i | yi ̸= ya, ∥va − vp∥2 < ∥va − vi∥2}. (IX)

Soft-hard Sampling [7] To avoid selecting “hard” embeddings that impedes
model training, semi-hard sampling chooses embeddings that are relatively close
to the anchor. Soft-hard triplet sampling shows that a probabilistic (soft) se-
lection of potentially hard embeddings is actually beneficial. Given an anchor
embedding va, soft-hard sampling attain the indexes of positive and negative
embedding as follows

p ∼ {i | yi = ya, ∥va − vi∥2 > argmin
q∈Qa

∥va − vq∥2}, (X)

n ∼ {j | yj ̸= ya, ∥va − vj∥2 < argmax
r∈Ra

∥va − vr∥2}, (XI)

where Ra = {r | yr ̸= ya}, Qa = {q | yq ̸= ya} are the positive and negative
index sets w.r.t. the anchor a, respectively. In this way, soft-hard sampling ex-
plores more triplets than semi-hard sampling to improve the model training.

Distance-weighted Sampling [11] . Different from other sampling strategy
that considers a certain distance range of embeddings, distance-weighted sam-
pling considers a wide range of embeddings in a probabilistic way. Since the
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embedding space is typically a d-dimensional hypersphere Sd−1, the analytical
distribution of pairwise distance on a hypersphere obeys

q (Dij) ∝ Dd−2
ij [1− 1

4
Dij ]

d−3
2 , (XII)

and Dij = ∥vi − vj∥ for any embedding pairs vi,vj ∈ Sd−1. To obtain a wide
range of negative embeddings that are able to improve the embedding diversity as
well as model training, distance-weighted sampling acquires the index of negative
embedding based on the inversed distance distribution

P (n | a) ∝ min
(
λ, q−1(Dan)

)
. (XIII)

In this paper, we set λ = 5e−1 and the largest distance to 1.4.

C More Implementation Details

In this section, we provide more implementation details. As for image augmen-
tation process, random crop (image size 224×224) with random horizontal flip
(p = 0.5) is applied during training and single center crop (image size 256×256)
is used for testing. In terms of training strategy, the number of training epochs
is 300. We use Adam [5] as the optimizer. The initial learning rate is 1e−5, which
is reduced by a factor of 0.3 in 200th and 250th epoch, respectively. The weight
decay is 4e−4. For batch preparation, SPC-2 construction [7] is used (2 samples
per category). The batch size is set to 112.

D Efficiency and Overhead Analysis

DAS takes extra cost only in the training stage. Specifically, w/ and w/o DAS,
the training time cost for [11] are 1.15s vs. 0.70s per batch, which includes
the cost of DAS and using more embeddings for sampling and loss computation.
Moreover, DAS only consumes 13% of the total time, which is efficient compared
to the whole training procedure.

E Effectiveness of DAS on Proxy-based Loss

Although DAS is developed for pair-based loss, we perform experiments to eval-
uate the generalization ability of DAS on classic and widely used proxy-based
losses i.e., Softmax and ArcFace. The results are presented in Table I. The im-
provements are still observed when equipped with DAS for Softmax and ArcFace
across different datasets.

F DAS w/o Image Augmentation

We further perform experiments without image augmentation using triplet loss
and distance weighted sampling on CARS. The results are shown in Table II.
DAS boosts all metrics considerably, showing that DAS is complementary to
image augmentation technique.
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Table I: Comparisons with proxy-based approaches on various datasets

Method
CUB CARS SOP

R@1 F1 NMI R@1 F1 NMI R@1 F1 NMI

Softmax [12] 61.58 36.12 66.73 79.07 37.11 67.01 77.92 37.20 90.05
Softmax + DAS 62.02 36.24 67.42 81.23 39.95 68.91 79.36 38.72 90.40

ArcFace [1] 61.56 35.73 66.83 79.50 37.75 67.82 78.08 37.79 90.18
ArcFace + DAS 62.80 37.63 67.80 82.22 40.82 69.82 78.12 38.08 90.26

Table II: Comparisons without image augmentation on CARS

DAS R@1 F1 NMI

61.47 22.06 53.88
✓ 65.13 (+3.66) 23.77 (+1.71) 55.89 (+2.01)

G Effect of Batch Size

In this section, we investigate the effect of batch size on the proposed DAS. The
results are presented in Fig. I. The loss function and sampling method are margin
loss [11] and distance-weighted sampling [11], respectively. From Fig. I, we have
the following observations: First, under various batch size and image retrieval
evaluation metrics, when equipped with DAS, the model is able to consistently
obtain better results than the one trained without DAS. Second, we observe that
the model trained with DAS and batch size = 32 outperforms the one trained
without DAS and batch size = 224 in terms of R@1. It shows that producing
effective embeddings without datapoints by DAS is as equally important as
providing more data points in a batch to achieve improved performance. These
results well prove the rationality of our motivation and the efficacy of DAS.
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Fig. I: The test set R@{1, 2, 4, 8} on CARS with different batch size

H Effect of Embedding Dimension

In this section, we evaluate the proposed method on different embedding di-
mensions. The results are shown in Fig. II. We use the margin loss [11] as the
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loss function while leveraging the distance-weighted sampling as the sampling
method [11]. From Fig. II, we obtain the following results: First, under different
embedding dimension, DAS consistently reaches the best performance for all im-
age retrieval metrics. Second, the model that trained with DAS and embedding
dimension = 64 obtains a comparable result like the one trained without DAS
and embedding dimension = 128 regarding R@1. It shows that the produced
embeddings by DAS are able to force the model to better leverage the model
capacity. And covering the barren area in embedding space is important to get
improved performance when model capacity is low. These results demonstrate
the effectiveness of DAS.
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(a) Experiments using different embedding dim.

Fig. II: Test set R@{1, 2, 4, 8} on CARS with different embedding dimension d

I Visualization Results on Frequency Recorder Matrix

In this section, we visualize the Frequency Recorder Matrix (FRM) P introduced
in the DFS module. The FRM serves as a stable and effective identifier for seman-
tic scaling by considering the top activated features for one class as the effective
semantics instead of noises. The loss function and sampling method we used here
are triplet loss [8] and distance-weighted sampling [11], respectively. We perform
experiments on all three datasets (i.e., CARS, CUB and SOP). The results are
depicted in Fig. III, from which, we have the following observations: First, for
different training stages (i.e., epoch = 1, 150, 300), the number of top activated
features for embeddings of the same classes are limited (i.e.,around 4 ∼ 8) across
all datasets. Second, as the training process proceeds, more features are likely
to be the top activated features. Third, for the large scale dataset SOP, more
features are likely to be the top activated ones due to the rich semantics covered
by adequate data points. In this sense, with the proposed FRM, we are able to
figure out channels with more discriminative power to achieve effective semantic
scaling. These results demonstrate the rationality of the proposed FRM.
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(a) Visualization of the frequency recorder matrix at epoch = 1
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(b) Visualization of the frequency recorder matrix at epoch = 150
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(c) Visualization of the frequency recorder matrix at epoch = 300

Fig. III: From left to right, the visualized FRM on CARS, CUB and SOP, re-
spectively. Each element in P is normalized (i.e., divided by the maximum value
in its row). Only the first 48 classes are presented due to page limit
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J Evolution of Training Process w.r.t. Different Losses

In this section, we provide the evolution of training loss and test set R@1
w.r.t. different losses in the training process. The results are depicted in Fig. IV.
We have the following observations: First, when training with DAS, the train-
ing losses are generally higher and decrease smoother than the baseline, which
demonstrates that producing more embeddings by DAS is able to consistently
provide training signal to train the model. Second, when equipped with DAS,
the test set R@1s are higher than the baseline. Third, for some loss functions
that face severe overfitting problems such as contrastive loss and generalized
lifted structure loss, DAS is able to ease the overfitting problem. These results
verify the effectiveness of the proposed method across different loss functions
and sampling methods.
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Fig. IV: The training loss and test set R@1 on CARS with different losses



10 L. Liu et al.

K Ablation Studies on Hyper-parameters

In this section, we investigate the effect of the hyper-parameters rs, rb, T in
DAS. The loss function and sampling method are margin loss [11] and distance-
weighted sampling [11], respectively. The default hyper-parameters’ settings are
(rs, rb, T ) = (1e−2, 1e−2, 3).
Random scale in DFS (rs). The results on different random scale in DFS are
shown in Table III (a). Our method is insensitive to a wide range of random
scale, showing that scaling the discriminative features is able to provide effective
semantics of different strength.
Semantic shifting scale in MTS (rb). rb is to provide the flexibility of con-
trolling the strength of adding intra-class semantic differences. The results on
different semantic shifting scales in MTS are shown in Table III (b). Our method
obtains similar results under different rb and reaches the best results when rb = 1,
which suggests that larger rb is able to cover more barren area in the embedding
space to improve the model training.
Number of the produced embeddings T . The results on different numbers
of the produced embeddings are shown in Table III (c). As T increases from 1 to
5, the proposed DAS achieves better results and reaches the best result at T = 5.
When T = 10, the performance is worse than T = 5, which indicates that too
many produced embeddings with no data points will dominate the optimization
direction and impair the learning of embeddings with data points.

Table III: Experiments on different hyper-parameters on CARS

(a) Effect of the random scale rs in DFS

rs 1e−2 1e−1 2e−1 5e−1

R@1 82.29 82.25 82.30 82.43

(b) Effect of the scale rb in MTS

rb 1e−3 1e−2 1e−1 1

R@1 82.19 82.29 82.07 82.55

(c) Effect of the number of produced embedding (T ) in DAS

T 1 3 5 10

R@1 80.78 82.29 83.40 81.75

L Qualitative Results of DFS and MTS

In this section, we investigate the effectiveness of the proposed DFS and MTS.
Specifically, we apply DFS and MTS in the test phase and compare results from
the model trained with or without them. Since the training and test classes are
different, the DFS and MTS modules used for training are unavailable here.
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Thus, the semantic scaling is implemented as randomly scaling the top K fea-
tures in an embedding; Whilst we perform semantic shifting by adding the trans-
formation (obtained from another two embeddings of the same class) to the em-
bedding. The loss function and sampling method we used here are contrastive
loss [2] and distance-weighted sampling [11], respectively. The results for seman-
tic scaling and shifting are shown in Fig. V and Fig. VI, respectively. We have
the following observations: 1) When we apply different semantic scaling to the
query, the model trained with DAS consistently retrieves correct results, which is
not the case for the baseline. 2) The model trained with DAS is able to retrieve
expected results even with the semantic shifted embedding while the baseline
fails to do so. These results show that DAS is able to produce embeddings with
effective semantics to train the model, which is insensitive to the semantic dif-
ferences and consistently achieves good generalization ability after training.
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M More Qualitative Results

In this section, we provide qualitative results on different losses w/ or w/o DAS.
The results for CARS and SOP are in Fig. VII and Fig. VIII, respectively.
From those results, we can see that the proposed DAS can enforce the model
to focus on real semantics despite the background noises and other semantics’
interference such as car’s colors, drastic viewpoint changes etc. These results
show the generalization ability and robustness of the proposed DAS.
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(c) Top 3 retrieved results using the
model trained with Triplet [S] [8]
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(d) Top 3 retrieved results using the
model trained with Margin [11]
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(f) Top 3 retrieved results using the
model trained with MS [10]

Fig.VII: Top 3 retrieved results using the model trained by different loss func-
tions that are equipped w/ or w/o on CARS. The expected and unexpected
results are framed by green and red rectangles, respectively



DAS: Densely-Anchored Sampling for Deep Metric Learning 13

w/ DAS w/o DAS
Top 1 Top 2 Top 3 Top 1 Top 2 Top 3Query

query index:59549

query index:6441

query index:15668

query index:7327

Lifted
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(c) Top 3 retrieved results using the
model trained with Triplet [S] [8]
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(f) Top 3 retrieved results using the
model trained with MS [10]

Fig.VIII: Top 3 retrieved results using the model trained by different loss func-
tions that are equipped w/ or w/o on SOP. The expected and unexpected results
are framed by green and red rectangles, respectively
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