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A Approximation of the von Mises-Fisher Distribution’s
Normalizing Constant
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Fig. 8: Comparison of approximations and exact values of the logarithmized normaliza-
tion constant of the vMF distribution logCM (κ) for M = 512 dimensions.

As we aim to resolve sample-specific ambiguities captured by κz , we need to cal-
culate the logarithmic normalizing constant of the vMF distribution:

logCM (κ) = log
κM/2−1

(2π)M/2IM/2−1(κ)
, (11)

where Id is the modified Bessel function of first kind at order d and M is the dimen-
sionality of the embedding space. However, Id is expensive to compute and impossible
to backpropagate through in high dimensions since it has no closed form. Hence, it is
commonly approximated in the literature. [3] and [9] for example utilize approxima-
tions from lower and upper bounds which are shown in Figure 8c and 8d for M = 512.
However, if we calculate logCM from the exact Bessel functions implemented in R
4.1.1’s base package [7], we see in Figure 8a that logCM is monotonically decreas-
ing, because Id is monotonically increasing with κ [5, Section 10.37].

To account for this issue, we thus choose to derive an approximation by directly
fitting a quadratic model to the exact Bessel function for M ∈ {128, 512} with κ ∈
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{10, . . . , 50}. The resulting approximations are

logC128(κ) ≈ 127− 0.01909 · κ− 0.003355 · κ2 and (12)

logC512(κ) ≈ 868− 0.0002662 · κ− 0.0009685 · κ2. (13)

The mean squared error of these approximations to the ground truth values is smaller
than 0.1%, which is visually confirmed in Figure 8b. During experimentation, we found
that the model is insensitive to perturbations in the precise coefficients. Also, we found
that a linear model is too simple and an exponential model imposed very high gra-
dients and inverts the behaviour of the metrics when κ is high. Hence, we decided
for the quadratic approximation as the simplest yet well extrapolating function. As a
reference for future work, we note that [2] recently gave an additional approximation
implemented in PyTorch.

B Derivation of the Non-isotropic von Mises-Fisher Distribution

The nivMF can be motivated by a transformed vMF distribution, which we assume to be
parametrized by µ ∈ SM−1 and K = diag(κ) ∈ R(M×M)

>0 , κ ∈ RM
>0. Transforming our

parameters into µ̃ = Kµ
∥Kµ∥ and κ̃ = ∥Kµ∥, we can define an ordinary vMF distribution

X̃ ∼ vMF(µ̃, κ̃) with density

fX̃(x̃) = CM (κ̃) exp
(
κ̃x̃⊤µ̃

)
. (14)

For ease of notation, we do not include the subscript p to denote specific proxies. Now,
we substitute x̃ := g(x) = Kx

∥Kx∥ . Note that g is bijective as a function g : SM−1 →
SM−1, but non-bijective when seen as a function g : RM → RM , since it would lose a
degree of freedom due to normalization. We will still treat it as the latter and ignore the
non-bijectivity, such that the following should be seen as motivation and not proof, and
comment on the implications further below. We now seek the density of X = g−1(X̃).
The change-of-variable theorem gives

fX(x) = fX̃(x̃)|det ∂g(x)
∂x

| . (15)

By Equation 130 given in [6] and the chain rule, we obtain

∂g(x)

∂x
=

(
1

∥Kx∥
Im − K⊤xx⊤K

∥Kx∥3

)
K⊤ (16)

=

(
1

κ̃
IM − (κ̃µ̃)(κ̃µ̃)⊤

κ̃3

)
K⊤ (17)

=
1

κ̃

(
IM − µ̃µ̃⊤)K⊤ . (18)

Since the first part of this matrix is a projection on the orthogonal complement of µ̃,
the matrix has rank M − 1 and the determinant becomes zero. This is a consequence of
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the broken bijectivity assumption from above. However, we can see that Equation 18 es-
sentially projects K on the tangential plane of µ̃. By taking its determinant, we measure
the volume of the remaining (M − 1)-dimensional concentration sphere. Performing
a singular value decomposition on Equation 18 reveals that µ is the eigenvector with
eigenvalue 0. So, if we substract the contribution of µ to the volume of K, which is
∥Kµ∥ = κ̃, we obtain

D(K) =

∏M
m=1 κm

κ̃
. (19)

When we plug this heuristic into Equation 15, we arrive at the nivMF density:

fX(x) = CM (κ̃) exp
(
κ̃x̃⊤µ̃

)
D(K) (20)

= CM (∥Kµ∥)D(K) exp

(
∥Kµ∥

(
Kx

∥Kx∥

)⊤
Kµ

∥Kµ∥

)
(21)

= CM (∥Kµ∥)D(K) exp (∥Kµ∥ s(Kx,Kµ)) . (22)

We stress that D(K) is a heuristic choice, such that the proposed nivMF density strictly
speaking yields only a measure and not necessarily a probability measure. An analytical
solution is promising material for future work. It may also enable the density of the
nivMF to become a true expansion of the vMF density, i.e., D(K) may vanish when
K = κIM for κ > 0, which is currently not the case. In empirical tests, dropping D(K)
lead to a considerably severed performance.

C Further distribution-to-distribution Metrics

We can define further distribution-to-distribution metrics beyond dEL-nivMF. One starting
point are probability product kernels (PPK) [1]. They are a family of metrics to compare
two distributions ρ and ζ by the product of their densities:

PPKγ(ρ, ζ) =

∫
E
ρ(a)γζ(a)γda, with γ > 0. (23)

Since the loss in Equation 2 takes the exponential of the distance metrics, we take their
logarithms here to retain the PPK as actual score in nominator and denominator. In
particular, if we assume a vMF distribution for both ρ and ζ

dB-vMF(ρ, ζ) := −log(PPK0.5(ρ, ζ)) (24)

gives the Bhattacharyya distance and

dEL-vMF(ρ, ζ) := −log(PPK1(ρ, ζ)) (25)

gives the expected likelihood distance, also known as mutual likelihood score [10].
Their analytical solutions are provided in Supp. D.

The previous metrics are symmetric in ρ and ζ. To capture the inherent asym-
metry between samples and proxies, we also study the Kullback-Leibler divergence
dKL-vMF(ρ, ζ) := KL(ζ||ρ). Its analytical solution if both ρ and ζ are vMF densities is
given in Supp. E.
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D Analytical Solutions of Bhattacharyya and Expected Likelihood
Distance

Let ζ and ρ be densities of two vMF-distributed random variables with parameters
νz = κzµz and νp = κpµp, respectively.

Bhattacharyya distance. Since the vMF is a member of the exponential family, [1]
gives us that

PPK0.5(ρ, ζ) = exp(K(νz/2 + νp/2)−K(νz)/2−K(νp)/2), with (26)
K(ν) = − logCM (∥ν∥) . (27)

Thus,

dB-vMF(ρ, ζ) = −log(PPK0.5(ρ, ζ)) (28)
= logCM (∥νz + νp∥/2)− logCM (νz)/2− logCM (νp)/2 . (29)

Expected likelihood distance. We can extend

PPK1(ρ, ζ) =

∫
E
ζ(z̃)ρ(z̃)dz̃ (30)

= CM (κz) · CM (κp)

∫
E
exp((κzµz + κpµp)

⊤z̃)dz̃ (31)

=
CM (κz) · CM (κp)

CM (∥ν0∥)

∫
E
CM (∥ν0∥) exp(ν⊤0 z̃)dz̃, with (32)

ν0 := κzµz + κpµp, (33)

such that the latter is again the density of a vMF distributed random variable, whose
integral over the embedding space is 1. Then,

dEL-vMF(ρ, ζ) = −log(PPK1(ρ, ζ)) (34)
= logCM (∥νz + νp∥)− logCM (νz)− logCM (νp) . (35)

Note that both dEL-vMF and dB-vMF depend on ∥νz + νp∥ which implicitely respects the
cosine similarity between µz and µp, but also processes κz and κp.

E Analytical Solution of KL-Divergence

Let ζ and ρ be densities of two vMF-distributed random variables with parameters
µz, κz and µp, κp, respectively. Then

KL(ζ||ρ) =
∫
E
ζ(z̃) log

ζ(z̃)

ρ(z̃)
dz̃ (36)

=

∫
E
logCM (κz)− logCM (κp) + (κzµ

⊤
z − κpµ

⊤
p )z̃dζ(z̃) (37)

= logCM (κz)− logCM (κp) + (κzµ
⊤
z − κpµ

⊤
p )

∫
E
z̃dζ(z̃) (38)

= logCM (κz)− logCM (κp) + (κzµ
⊤
z − κpµ

⊤
p )µz (39)
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F Gradients of dL2 and dCos

We are interested in differentiating the loss LNCA++ from Equation 1 in §3.2 by the
cosine similarity between the image z and a proxy of interest p. Let p∗ denote the
ground-truth proxy of z and δ

δs := δ
δs(µp,µz)

. Then,

δ

δs
LNCA++ =

{
δ
δsd(ρ

∗, ζ)/t+ δ
δs log(

∑C
c=1 exp(−d(ρc, ζ)/t)) , if p = p∗

δ
δs log(

∑C
c=1 exp(−d(ρc, ζ)/t)) , else

(40)

and by the chain rule we get

δ

δs
log

(
C∑

c=1

exp(−d(ρc, ζ)/t)

)
= − exp(−d(ρ, ζ)/t)∑C

c=1 exp(−d(ρc, ζ)/t)

δ

δs
d(ρc, ζ)/t . (41)

Let’s consider the LCos
NCA++ loss, i.e., d(ρ, ζ) = −s(µp, µz). We can plug δ

δsd(ρ, ζ) =
−1 into Equations 40 and 41 and obtain:

δ

δs
LCos

NCA++ =


1
t

(
−1 + exp(−d(ρ,ζ)/t)∑C

c=1 exp(−d(ρc,ζ)/t)

)
, if p = p∗

1
t

exp(−d(ρ,ζ)/t)∑C
c=1 exp(−d(ρc,ζ)/t)

, else
(42)

=


1
t

(
−1 +

exp(s(µp,µz)/t)∑C
c=1 exp(s(µpc ,µz)/t)

)
, if p = p∗

1
t

exp(s(µp,µz)/t)∑C
c=1 exp(s(µpc ,µz)/t)

, else
. (43)

Now, consider LL2
NCA++, i.e., d(ρ, ζ) = ∥νp − νz∥2 = κ2

p + κ2
z − 2κpκzs(µp, µz),

following from the law of cosines. Here, δ
δsd(νp, νz) = −2κpκz , which we can again

plug into Equations 40 and 41 and obtain:

δ

δs
LL2

NCA++ =

{
− 2κpκz

t +
2κpκz

t
exp(−d(ρ,ζ)/t)∑C

c=1 exp(−d(ρc,ζ)/t)
, if p = p∗

2κpκz

t
exp(−d(ρ,ζ)/t)∑C

c=1 exp(−d(ρc,ζ)/t)
, else

(44)

=

− 2κpκz

t +
2κpκz

t

exp((κ2
p+2κpκzs(µp,µz))/t)∑C

c=1 exp((κ2
pc

+2κpκzs(µpc ,µz))/t)
, if p = p∗

2κpκz

t

exp((κ2
p+2κpκzs(µp,µz))/t)∑C

c=1 exp((κ2
pc

+2κpcκzs(µpc ,µz))/t)
, else

.

(45)

G Summary of Loss Calculation

Algorithm 1 sketches how EL-nivMF is implemented practically. As discussed, the
parameters of the proxies are learnable parameters, whereas the vMF distributions of
points are predicted by an encoder. Thus, the module in Algorithm 1 can be plugged
on-top of an encoder and trained jointly. Since test-time retrieval only requires access
to the image-embeddings, the module can be discarded after training.
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Algorithm 1: Module to compute EL-nivMF loss
Function initialize(C: num proxies, M : dimensions, N : num samples):

µρ ← learnable tensor ∈ [C,M ]
κρ ← learnable tensor ∈ [C,M ]
t← learnable parameter ∈ [1]
Save C,M,N

Function loss(z: image embedding ∈ [1,M ], c∗: ground-truth proxy index):
samples← empty matrix ∈ [N,D]
for n = 1, . . . , N do

samples[n, :] ∼ vMF
(
µ = z

∥z∥ , κ = ∥z∥
)

end
sim to proxy← empty vector ∈ [C]
for c = 1, . . . , C do

logls← empty vector ∈ [N ]
for n = 1, . . . , N do

logls[n]
= log(nivmf likelihood(z, µ = µρ[c, :],K = diag(κρ[c, :]))

end
sim to proxy[c]← logsumexp(logls/t)

end
logloss← −sim to proxy[c∗] + logsumexp(sim to proxy)
return logloss

H Experimental Details

As already noted in §3.3, we generally utilize N ≈ 10 for our Monte-Carlo estima-
tion of the PPK kernel (Eq. 5), but switch to N = 5 for hyperparameter searches and
N = 20 for our ablation experiments, as within this range, we found performance to be
similar.

I Experimental Details Ablation Study

To reduce any influences of covariates, we seek to keep experimental settings in the
ablation study in §4.3 constant across all benchmarked metrics. Hence, we fixed all hy-
perparameters as in the previous experiment, and tuned the following hyperparameters
for each approach on validation data:

t ∈ {1, 1/32, 1/256} (46)
κp ∈ {10, 50, 200} (for ni-vMF, this is for each dimension) . (47)

Across all metrics, we used the dimensionality M = 512, a batchsize of 106, and
150 epochs on CARS and 50 on CUB. To reduce the initialization noise, we initiated
each hyperparameter-tuning experiment 3 times with random seeds, then calculated
the median of the maximum R@1 performance on the validation set, and ran the best
hyperparameter settings with 5 seeds.
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J L2 Distance as Retrieval Metric

Table 4: R@1 of the same trained models from Figure 5, but using the euclidean instead
of the cosine distance for retrieval.

Method CUB CARS

dL2 61.89± 0.36 76.61± 0.17
dCos 62.01± 0.35 76.94± 0.49
dnivMF 63.74± 0.18 78.62± 0.41

dB-vMF 62.29± 0.34 79.69± 0.15
dEL-vMF 62.49± 0.56 80.17± 0.24
dKL-vMF 61.68± 0.36 76.65± 0.20
dEL-nivMF 63.69± 0.56 76.37± 5.32

K Qualitative Impact on Image Norms

To understand in more detail the difference in learned and assigned image norms pro-
duced when training with dEL-nivMF, we compare the distribution of image norms be-
tween those belonging to originally correctly and incorrectly classified samples (initial
separation done using a standard baseline DML model operating on dcos) for CUB &
CARS, respectively. Results are shown in Fig. 9, which reveal that correct classifica-

Fig. 9: Norms of prev. correct/incorrect pred. on CUB/CARS.

tions on average have higher norms while miss-classifications are more often attributed
to lower norms. This aligns well with the underlying motivation assigning low norms
to ambiguous images (compare to e.g. Sec.4.4).
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L Non-isotropic Proxies Encourage Diverse Representations

Finally, we qualitatively investigate the metric representation spanned by metric learn-
ers trained using dEL-nivMF. To do so, we follow both [8] and look at the feature diversity,
as well as evaluating the cluster diversity to see whether encouraging unique class-proxy
distributions helps in learning a more diverse class-specific encoding. For the former,
we follow [8] and evaluate the uniformity of the sorted spectral value distribution of
all training image embeddings to measure the number of significant directions of vari-
ances in feature space. The latter is simply computed as the variance (i.e. diversity) of
intraclass distances for each class-cluster. For both cases, we specifically care about
relative changes compared to models trained without probabilistic treatment (i.e. us-
ing dcos) as well as changes going from an isotropic (dEL-vmf) to a non-isotropic setup
(dEL-nivMF). Results are summarized in Tab. 5, showcasing a consistent improvement

Dataset Metric dcos → dEL-vMF dcos → dEL-nivMF

CARS
Cluster-Div.↑ +24% +31%
Feat.-Div. ↑ +13% +14%

CUB
Cluster-Div. ↑ +11% +25%
Feat.-Div. ↑ +6% +8%

Table 5: Metrics on how EL-nivMF structures the embeddings.

in both feature and cluster diversity when incorporating both a probabilistic treatment
and a non-isotropic encoding of proxy distributions. This provides further heuristic ev-
idence linking the usage of dEL-nivMF to a better capture of the semantic class variability
as well as an improved incorporation of a more diverse feature set, shown to facilitate
generalisation [8,4].
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M Further Qualitative Embedding Norm Studies

. . .

. . .

. . .

. . .

. . .

lowest norm highest norm

Fig. 10: CARS train images with lowest (left) to highest (right) embedding norms on a
M = 512 dimensional ResNet-50 backend.

. . .

. . .

. . .

. . .

lowest norm highest norm

Fig. 11: Images for four randomly chosen classes (rows) of the CARS training set, or-
dered by their norm from lowest (left) to highest (right). Obtained from the dEL-vMF
model on a ResNet-50, where the norms of image embeddings range from 70.58 to
140.09 whereas the proxy norms are between 45.95 to 79.98.
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