
Sound Localization by Self-Supervised Time Delay Estimation 1

A.1 In-the-wild Evaluation

Video results. We provide some random samples of prediction results from
our in-the-wild dataset on our webpage. We also provide qualitative results for
motion correlation along with our predicted time difference on our webpage.
Please click here for videos. When watching, we recommend wearing headphones,
since it can be difficult to perceive stereo sound without them.

A.2 Visually-guided Time delay Estimation

Video results. We provide more qualitative results for the visually-guided
speaker localization task along with audio on our webpage. When watching, we
recommend wearing headphones, since it can be difficult to perceive stereo sound
without them.

A.3 Qualitative Results on Phone Recordings

We also ran our model on ordinary iPhone-recorded videos, exploiting the
fact that portrait-mode recordings have a sufficiently large baseline for estimating
time delays. We use a combination of self-collected videos and internet videos (we
used an iPhone 12 for self-recorded videos and searched Flickr for videos with tags
indicating that they were recorded with an iPhone 13). We provide qualitative
results in Fig. 9. Please see our webpage for more video results.

Fr
am

e
L

 R

Fig. 9: Qualitative results for iPhone videos. We show time delays both for our
method and for GCC-PHAT over time. The left video shot by the authors records
several vehicles driving from left to right. The right video, from Flickr user Black
Diamond Images, shows a waterfall that is recorded by a moving camera. In the first
frame, the waterfall is to the right. The camera then moves to face it directly.

A.4 Ablation Study

Post-processing. We study the effect of the number of votes, m, used during
post-processing for both StereoCRW and GCC-PHAT. We evaluate 1024-sample
audio using m ∈ {1, 32, 128, 256, 512} for both mean and mode. In the special
case m = 1, the result is not affected by post-processing, and purely measures
the quality of the representation. As shown in Fig. 10(a), both methods improve
with the number of votes. Our method benefits from mode post-processing, while

https://ificl.github.io/stereocrw
https://ificl.github.io/stereocrw
https://ificl.github.io/stereocrw

2 Z. Chen et al.

1 32 128 256 512
of votes

0.02

0.04

0.06

0.08

0.10

RM
SE

 (m
s)

SNR=30, RT60=0.1
GCC-PHAT(mean)
Ours(mean)
GCC-PHAT(mode)
Ours(mode)

1 32 128 256 512
of votes

0.20

0.25

0.30

0.35

0.40

0.45
SNR=10, RT60=0.5

512 1024 2048 4096 8192
of samples

0.0

0.1

0.2

0.3

0.4
SNR=30, RT60=0.1

512 1024 2048 4096 8192
of samples

0.2

0.3

0.4

0.5

0.6

0.7
SNR=10, RT60=0.5

(a) Post-Process (b) Input duration

Fig. 10: Ablation experiments on the simulated data. (a) We evaluate with
different vote numbers and post-processing methods. (b) We evaluate longer audio
lengths. We note that the x-axis of both plots is on a log scale.

mean works better for GCC-PHAT. In particular, we significantly outperform
GCC-PHAT with m = 1 vote, emphasizing the quality of our representation.

1 32 128 256 512
of votes

0.02

0.03

0.04

0.05

0.06

0.07

0.08

RM
SE

 (m
s)

SNR=30, RT60=0.1
Ours (prob)
Ours (argmax)

1 32 128 256 512
of votes

0.20

0.25

0.30

0.35

0.40

0.45

SNR=10, RT60=0.5

Fig. 11: Probabilistic vs. Argmax.

We also design experiments to
study the performance gap between us-
ing probabilistic post-processing and
nearest neighbor (argmax) for our
method. For consistency, we evaluated
our StereoCRWmodel with both types
of post-processing on two simulated en-
vironments, with different vote num-
bers. The results are shown in Fig. 11.
Probabilistic post-processing outperforms the nearest neighbor post-processing
in the complex simulated environment. We use probabilistic post-processing in
our other experiments.

Duration. We ask how our model performs when given longer audio, exploiting
the fact that our embeddings use fully convolutional networks and thus can be
tested on arbitrary-sized inputs (Fig. 10(b)). We provided our method with
various input sizes (up to 8× the training duration). For very long audio (4×
training duration), we found that our model’s performance starts saturating, and
that GCC-PHAT overtakes it. This may be due to the fact that the model has a
fixed-size (d = 128) representation, while GCC-PHAT grows its representation—
the waveform itself—with the input size and eventually converges to the correct
solution (a maximum likelihood estimate [51,87] in many situations).

Simulated vs. real data. We also study the data distribution gap between
simulation and real-world data. We trained our best self-supervised model (Stere-
oCRW) and Salvati et al. [1] on the simulated data with Free-Music-Archive
clips. We evaluated on both simulated and in-the-wild recordings (Tab. 5). As
expected, our model trained on FMA-Sim obtains competitive performance, but
overall does not perform as well as a model trained on real data. The supervised
model improves on the in-the-wild evaluation while the performance drops on
the simulated evaluation cases when training on FMA-Sim. We also include the
comparison between mode and mean post-process for Salvati et al. [1] in the
Tab. 5.

Sound Localization by Self-Supervised Time Delay Estimation 3

Table 5: Time delay estimation on simulated data and in-the-wild recordings. Vox-
Sim is the simulator [61] with VoxCeleb2 clips and FMA-Sim is the simulator with
Free-Music-Archive clips.

Simulation Real-world

Model Variation Data Num Aug MAE RMSE Acc (%)

Salvati et al. [1]

Mode Vox-Sim 8K 0.146 0.306 87.6

Mean Vox-Sim 8K 0.126 0.254 87.0

Mode Vox-Sim 8K ✓ 0.184 0.327 87.5

Mean Vox-Sim 8K ✓ 0.169 0.294 87.3

Mode FMA-Sim 95K 0.150 0.294 88.5

Mean FMA-Sim 95K 0.135 0.256 87.9

Mode FMA-Sim 95K ✓ 0.160 0.303 89.3

Mean FMA-Sim 95K ✓ 0.146 0.267 89.1

StereoCRW Mode Vox-Sim 8K ✓ 0.193 0.360 85.6

StereoCRW Mode FMA-Sim 95K ✓ 0.194 0.341 87.9

StereoCRW Mode FMA 95K ✓ 0.133 0.259 88.7

A.5 Training with Youtube-ASMR

Table 6: Delay estimation on simulated
data. We use SNR = 10 and RT60 = 0.5s.
ASMR is YouTube-ASMR [84]. Errors in ms.
Sup refers to supervision.

Model Variation Data Sup Aug MAE RMSE

Salvati et al. [1]
Mean Vox-Sim ✓ 0.126 0.254
Mean Vox-Sim ✓ ✓ 0.169 0.294

GCC-PHAT [51] Mean – 0.160 0.318

Ours

Random – 0.448 0.505

MonoCLR ASMR 0.425 0.620
MonoCLR ASMR ✓ 0.177 0.330
ZeroNCE ASMR 0.349 0.468
ZeroNCE ASMR ✓ 0.184 0.313
StereoCRW ASMR 0.736 0.913
StereoCRW ASMR ✓ 0.162 0.315

We also train our models on
YouTube-ASMR, a highly diverse
dataset of 30K binaural (83 hours)
internet videos [84]. As the results
shown in Tab. 6, our proposed Ze-
roNCE and StereoCRWmethods out-
perform GCC-PHAT. Augmentation
was important for YouTube-ASMR
particularly, which failed to learn a
good representation without it, per-
haps due to the high diversity of the
dataset.

A.6 Simulation Setup

We provide the details of each simulated room with its dimension and micro-
phone positions in Tab. 7.

Table 7: Simulation setup. The unit is in meters.

Room 1 Room 2 Room 3

Room dim (X, Y, H) (7, 6, 3) (4, 7, 2.8) (7, 7, 2.7)
Left Mic position (X, Y, H) (3.4, 1, 1.6) (0.2, 3.2, 1.7) (3.4, 3.1, 1.5)
Right Mic position (X, Y, H) (3.7, 1, 1.6) (0.2, 3.0, 1.7) (3.5, 2.9, 1.5)
Source angle range [−90◦, 90◦] [−90◦, 90◦] [−90◦, 90◦]
Source distance range [0.5, 3.0] [0.5, 3.0] [0.5, 3.0]

4 Z. Chen et al.

A.7 Implementation Details

Network architecture. We use a ResNet [38] with 9 layers as the backbone for
the audio encoder. We modify the input channel number of the first convolution
layer to be 2, and the output of the last fully-connected layer as 128. For a raw
waveform of length L, we use an STFT with a window length of 256 and hop
length of ⌊ L

128⌋ to create an input spectrogram. For the audio-visual task, we use
a hop length of 160 to create an input spectrogram.

Augmentations. During the training, we apply the following augmentations
to audio where the first three are regular augmentations applied to all the models
and the last two are applied to augmented models only:

• Random channel swapping: we randomly swap the left and right audio
channels with a probability of 0.5.

• Random channel-wise scaling: we randomly re-scale each audio channel by
the factor in the range of [0.5, 1.5].

• Random shifting: for the instance discrimination model with mono audio, we
randomly shift the audio for −16 to 16 samples. For the audio-visual model,
we apply different random shifts for each mono audio with −24 to 24 samples.

• Random noise: we add random Gaussian noise to audio with SNR=[0, 30].
• Random reverberation: we add random reverberation to audio with RT60=[0, 0.9].
• Mixture augmentation: we randomly add another sound to the original
audio. We normalize the second sound to be 10% – 100% loudness of the
original audio before mixing. For the audio-visual model, the second sound is
normalized to be 50%-150% intensity level of the original one.

When computing affinity matrix A21 for the contrastive random walk model,
we do not augment x1 with noise or mixture augmentation, so as to avoid learning
unexpected matching. Similarly, for the instance discrimination model, we do not
apply noise, reverberate or mixture augmentations to one of the two channels.

Training details. To accelerate the training process, we first train each model
with 0.48s audio (7680 samples) and then finetune on the input audio of 1024
samples using a correspondingly finer hop length.

	Sound Localization by Self-Supervised Time Delay Estimation

