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A Supplementary Material

We first go over neural network architecture details in Section A.1. We then
present additional quantitative results on the Bot-and-Objects (B&O) dataset
in Section A.2. Next we show quantitative results on both datasets on an ad-
ditional baseline. Next we present an additional result where we inspect the
image reconstruction qualities from discovered Keypoint Pyramids. Next we de-
scribe the network architectures for the action category recognition on H3.6M
experiments in Section A.5 where we show that improved keypoints discovery
by our approach improves downstream task performance. Next, we demonstrate
the robustness of our method to multi-object scenes. Lastly, we show more vi-
sualizations and examples on both datasets in Section A.7.

A.1 Architecture Implementation Details

In Section 3.5 of the main paper, we overviewed the architectural choices. Here
we provied a more detailed description of the implementation details.

The FPN networks have four bottom-up layers and three top-down layers.
Each bottom-up layer is consists of six Conv-BatchNorm layers. The filter size is
1 x 1 followed by 3 x 3, alternatively. For each top-down layer, it consists of one
convolutional layer with a skip connection from the output of its corresponding
bottom-up layer. The same FPN design is used as the feature extraction network
®(2rcf) and ®;(x) and to provide input to our keypoint network. The keypoint
encoder at level [ takes in FPN features f;(z) and ¥;_;(x), followed by two Conv-
BatchNorm-ReLu layers. The keypoint-only reconstruction decoders and feature
refinement decoders are the reverse of their corresponding encoders with bilinear-
upsampling layers to undo striding. We have also provided our implementation
code for further implementation details.

A.2 Detailed Quantitative Results on B&O Dataset

In the main paper’s Section 4.3, we reported keypoint regression results on
H3.6M which comes with comprehensive annotations of 17 keypoints correspond-
ing to main joints of the human body. For B&O, such comprehensive annotation
is not possible because each scene contains three deformable objects and they
have infinite degrees of freedom. Here, we flesh out the quantitative evaluation
of discovered keypoint representations on B&O in two ways: first, by annotating
5 coarse key points as a direct analogue to the H3.6M results, and next, by re-
porting the errors for reconstructing the full image from the keypoints alone, for
which we showed qualitative visualization results in Figer 7 in the main paper.

Coarse keypoint regression: On our B&O dataset, we randomly select 1000
images from the held-out evaluation set and annotate five keypoints: one on each
of the three deformable objects, one on the QR code attached to the end effector
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Methods | / Level (num. keypts.) — level 1(10) level 2(20) flattened(30)

Transporter 113.74 116.57 119.71
KeyNet 114.41 118.10 119.53
Keypoint Pyramids (Ours) 117.35 115.85 113.76
(KP) No-Reconstruction 119.19 116.98 114.98
& (KP) No-Transport 119.26 117.15 115.69
£ (KP) No-Spring 117.44  115.36  114.26
% (KP) All-Transport 120.54 117.68 115.28
< (KP) All-Reconstruction 119.39 117.01 114.50
(KP) Unconditioned 117.73 115.44  113.67

Table 3. Keypoint regression RMSE error on B&O for regressing to coarse annotations
of just 5 keypoints (2 on robot, 1 on each object), compared to prior flat unsupervised
keypoint discovery baselines and ablations. Lower is better.

of the robot arm and one on the last revolute joint of the robot arm (these cor-
respond to the two consistently visible joints of the arm). We further split these
labeled test images: we train a linear regressor from discovered keypoints to our
annotations on 500 samples and test on the remaining 500. We report the RMSE
error in Table 3. We observe similar trends as in H3.6M dataset (Table 4.3). Flat-
tened Keypoint Pyramids has much lower RMSE than baselines. The ablations
on the objective functions (the No-X rows) show that dropping any one of them
leads to worse performance, thus all terms in the designed objective function
are important. In B&O, dropping the transport loss hurts the performance the
most. All-Reconstruction again works slightly better than All-Transport, but
both are worse than our method. Finally, Unconditioned, which removes the for-
ward connections from coarser to finer keypoint levels produces marginally worse
flattened representation than our full-approach, confirming that our training ob-
jective alone is sufficient to enforce the discovered keypoint hierarchy.

However, unlike the H3.6M keypoint regression results reported in the main
paper, these new keypoint regression errors on B&O reported in Table 3 do not
quite tell the full story: (1) regressors are trained and evaluated on much smaller
datasets (500 images), (2) we are only evaluating the recovery of 5 coarse key-
points in a scene with many more degrees of freedom: three deformable objects
and one articulated 5-DOF robot arm.

Indeed, these drawbacks cause some anomalous results. Both the flat base-
lines, Transporter and KeyNet benefit on this metric when trained with only 10
keypoints, compared to when they are trained with 20 or 30. This happens be-
cause (1) linear regression from a small number of discovered keypoints involves
learning fewer parameters, and therefore can more effectively avoid overfitting
on the small training set, and (2) further, the additional detail captured by
larger representations provides no advantage when trying to recover merely the
5 hand-labeled coarse keypoints. This latter reason is also why Transporter with
10 keypoints is able to match the best performance of Flattened Keypoint Pyra-
mids.
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Methods | / Level (num. keypts.) — level 1(10) level 2(20) flattened(30)

Transporter 0.0061 0.0050 0.0060
KeyNet 0.0041 0.0023 0.0027
Keypoint Pyramids (Ours) 0.0039 0.0021 0.0019
(KP) No-Reconstruction 0.0081 0.0067 0.0069
& (KP) No-Transport 0.0061 0.0031 0.0028
£ (KP) No-Spring 0.0043  0.012 0.0024
_o (KP) All-Transport 0.013 0.0071 0.0070
< (KP) All-Reconstruction 0.0039 0.0027 0.0025
(KP) Unconditioned 0.0038 0.0025 0.0021

Table 4. Image reconstruction MSE error on B&O, compared to prior flat unsupervised
keypoint discovery baselines and ablations. Lower is better.

Ours( l1 Ours(lZ Ours lHl2 Ours(l;)  Ours(l,)  Ours(ly

Fig. 7. Image reconstructions from keypoints discovered using Keypoint Pyramids.

A.3 Additional Baseline

In the main paper, we evaluated against Transporter (Neurips 2019) and KeyNet
(Neurips 2018) because they remain the most widely used object keypoint dis-
covery methods. Another reason is that we use components of these flat keypoint
approaches in our hierarchical method, making them natural baselines for eval-
uating our key contributions. Here we include results on a more recent baseline
PermaKey [12] in Table 5: while they report improved results compared to Trans-
porter on Atari images, we find that it performs poorly on our more complex
datasets.
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Method  level 1(10) level 2(20) flattened(30) GT(17)

= KP(Ours) 52.81 43.97 43.30 -
ﬁ PermaKey [12]  72.26 70.02 69.12 -
T Supervised - - - 37.97
© KP(Ours) 117.35 115.85 113.76 -
g PermaKey [12] 181.73 177.48 173.30 -

Table 5. Keypoint Regression RMSE error on H3.6M and B&O.

A.4 TImage Reconstructions from Discovered Keypoint Pyramids

To fix the aforementioned shortcomings of our keypoint regression on B&O and
perform a more thorough evaluation, we also report an image reconstruction
MSE on all the held-out data in Table 4. For these results, we train stop-gradient
decoders that takes in the discovered keypoint heatmaps ¥}'(x) or ¥(z), along
with the “appearance” features ®(x,.s), to reconstruct the input image x. These
decoders has the same architecture as the keypoint-only reconstruction decoder
described in Section 3.2, and are trained along with the main architecture. We
use these stop-gradient decoders for generating the visualizations in Figure 7.
Unlike coarse keypoint regression, this metric rewards methods that more com-
prehensively capture the object configuration. The reconstructions help to easily
visualize which information about the pose is correctly captured at various lev-
els. Both datasets show a clear progression in detail from level 1 to 2 to the
combination. For example, on H3.6M person images, level 1 omits arms nearly
entirely and produces coarse estimates of the rest of the pose. Reconstructions get
progressively sharper with more detailed keypoints, and the flattened keypoint
representation in both cases produces the sharpest, least blurry reconstructions
with quite detailed object poses. On B&O, reconstructions from the flattened
representation (11 + 12) are near-perfect, capturing the complex shapes and ar-
ticulations of the octopus toy, and even permitting representing the QR code
on the robot wrist. These results agree with our main observations both from
the H3.6M results in the main paper, and from the results above: namely, Key-
point Pyramids outperforms flat baselines, and all components contribute to its
performance. Additionally, the anomalous results from Table 3 do not hold up
under this more comprehensive metric: coarser representations such as Trans-
porter and KeyNet trained with 10 keypoints now perform poorly as expected,
since they do not capture sufficient information for image reconstruction.

A.5 Architecture Details for H3.6M Action Category Recognition

To evaluate how our keypoint pyramids help with downstream usecases, we
design an action classification task for action category recognition on H3.6M
dataset. We train a 2-layer GRU network for this task. The input to this recur-
rent network is a sequence of predicted keypoints from a video snippet sampled
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from a random time within the original video. The sampled video snippet is
initially 25 frames long, and we subsample it 5x to contain only 5 frames before
keypoint encoding. The keypoint representations of these five frames are the
inputs to the GRU.

A.6 Robustness of Keypoint Pyramids in Multi-object Scenes

In the main paper, we show results on H3.6M which is a single-object scene
and B&O, a real-world multi-object scene. Our choices of number of keypoints
are only loosely influenced by the number of objects we expect: we set 10 and
20 keypoints for the two levels for both B&O and H3.6M datasets. Further,
our method is robust to varying numbers of objects: in images with a miss-
ing/occluded object, we find that its corresponding keypoints are predicted with
very low confidence, and could therefore be plausibly discarded (Fig 8).

Fig. 8. Keypoint confidence with and without occlusion. Smaller dots means lower
confidence.

A.7 Additional Qualitative Results

In Figure 9, 10, 11 and 12, we show more visualizations of our flattened key-
point representation versus the other two baseline methods that also predict
30 keypoints. Detailed analysis are in the captions. In summary, our Keypoint
Pyramid consistently binds to parts of subjects under occlusions (Figure 9), large
movements (Figure 10), and perspective changes (Figure 11), and can efficiently
represents articulated objects (Figure 12).
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Fig. 9. (Best seen in pdf) More visualization of discovered keypoints from our method
and baselines Transporter [24] and KeyNet [19]. For our method, parent and children
keypoints are illustrated with the same color, as well as their connections. Even with
significant occlusions, the discovered keypoint hierarchy (green) consistently maps to
the left arm of the subject. However, for the two flat baselines, keypoints don’t bind
to the left arm consistently with occlusions (purple, yellow and blue points on the left
arm for Transporter(30), light yellow point on the left arm for KeyNet(30))
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Ours(l,,l;)  Transporter (30) KeyNet (30)

Fig. 10. (Best seen in pdf) More visualization of discovered keypoints from our method
and baselines Transporter [24] and KeyNet [19]. When the subject exhibits large move-
ments like raising both hands, it becomes easy to see that our Keypoint Pyramids
manage to bind consistently to landmarks like shoulders (cyan and orange) and el-
bow(green). In contrast, for the flat baselines, keypoints that match to parts with large
movements varies and it’s hard to find consistent binding between keypoints and the
body parts they represent.
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Fig. 11. (Best seen in pdf) More visualization of discovered keypoints from our method
and baselines Transporter [24] and KeyNet [19]. Even with large perspective changes,
the keypoint pyramids consistently bind to certain body parts of the subject in the
scene. For example, our blue pyramids binds to the left knee throughout the three
frames presented here. In comparison, the dark pink point in Transporter(30) matches
to the left feet in the first frame, lies in between two legs in the second frame and
match to the left calf in the last frame. The light pink point in KeyNet(30) is on the
left knee for the first and the third frame, but lies in between two legs in the second
frame.
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Ours(l,41,)  Transporter (30) KeyNet (30)

Fig. 12. (Best seen in pdf) More visualization of discovered keypoints from our method
and baselines Transporter [24] and KeyNet [19]. Our discovered Keypoint Pyramids
efficiently and consistently represent the articulated objects in the scene(pink, purple
and light green). When the robot arm extends forward, the parent keypoints(pink,
purple and light green) consistently map to each joint of the robot arm, while their
children keypoints extend and capture the full pose of the robot arm. In contrast,
the position and number of keypoints on the robot arm in the other baselines varies
significantly.
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