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A Appendix

A.1 HEVC/H.264 commands

We use ffmpeg, v4.3.2, to encode videos with HEVC and H264. We use the
medium preset, and no B-frames, as mentioned in Sec 4.3. We compress each
video using quality factors $Q € {10,...,35} to find bpps that match our models,
using the following commands:

ffmpeg -i $INPUT_FILE -c:v h264 \

-crf $Q -preset medium \
-bf 0 $0OUTPUT_FILE

ffmpeg -i $INPUT_FILE -c:v hevc \
-crf $Q -preset medium \
-x265-params bframes=0 $0UTPUT_FILE

A.2 User Study Detalils

— Metrics for all ablation studies from Fig. 6 are shown in Table 2

— The result of repeating the user studies three days later is shown in Fig. 8
(top).

— Rater instructions are shown in Fig. 8 (bottom).

We show user study statistics in Fig. 9, see caption for details.

a) Neural Methods (Reproduced) b) Standard Methods (Reproduced)

SSE

DVC Ours No-GAN

Ours vs. Ours vs.RLVC Ours vs. Ours vs.H.264 Ours vsHEVC

Instructions

In this task you will look at two different videos and you have to choose whichever is [STYTYTIRTIRTTIIELILIN video (which is
always displayed on the right, and is labeled "Original"). In every single video there will be a visible difference. You might
need to pause to see this difference, but we guarantee that there are differences.

Please use the keyboard to toggle between three videos:

R T R T B ST Changing the zoom level invalidates the results of this study.
Maximize your window (or go full screen)
Wait until the video plays smoothly

press [l to view video "1".

press [ to view video "2".

press [ once you have found the video that looks closest to the original, to select it and move on to the next.

Press BZ:X®A:FNY to pause the video and make your decision based on the still frame. On some videos you need to do this to
see a difference.

LlCan’t see the difference ?[IECIAILE SPACEBAR NS IR LN.EUTN

Fig.8: Top: Study repeated 3 days later. Bottom: Instructions shown to the
raters.
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Fig.9: User study statistics, grouped in various ways. The dotted line in each
plot indicates the mean of the values shown in the plot. From left to right, we
show different statistics: Answer time in [sJeconds, number of flips, and number
of pauses. The rows show different ways of grouping the data: Top: We group
by study, and color based on whether the study compares to a ncural codec, to a
standard codec, or is an ablation. Middle: We group by MCL-JCV video ID (01
to 30), and sort each plot. Bottom: We group by rater ID, and sort each plot
(note that the means here are slightly different, as not all raters rate did the

same number of studies).
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HEVC
Predicts?
HEVC
Predicts?

PSNR?t 34.5 35.1 No 34.8 No~
MS-SSIM7 0.964 0.967 No~ 0.966 No~
VMAFt 87.3 86.9 No~ 85.6 Yes
PIM-1] 3.34 4.17 Yes 3.83 Yes
LPIPS] 0.168 0.194 Yes 0.172 Yes
FID/256) 32.8 35.7 Yes 34.9 Yes

33.9 Yes 33.9 Yes
0.959 No~  0.96 No~
81.9 Yes 84.2 Yes
3.85 Yes 3.32 Nox~
0.194 Yes 0.167 No~
35.9 Yes 32.7 No~

37 No 38.2 No
0.974 No~.  0.979 No~
94.7 No 96.5 No
2.15 No 1.75 No
0.112 No  0.0895 No
15.5 No 10.7 No

Preferred vs. Ourst 32% 28%

23% 33%

41.2% 41.4%

Table 2: We show metrics corresponding to the user studies, where the last row
repeats the results from Fig. 6. We indicate whether each metric predicts the
study, using Yes and No. If the values are within 1% of each other, the metric
also does not predict the study, and we indicate this with No~. T indicates that
higher is better for this row, | the opposite. We can see that no metric predicts
all user studies (since Ours is preferred in all studies).
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A.3 Decoupled Scale-Space Warping: Details

DEFAULT_SIGMAS =

def adaptive_blur(image: np.ndarray,
sigma_field: np.ndarray,
sigmas: Sequence[float]
ur ‘image' with sc. )

DEFAULT_SIGMAS) :

field".

A (B, H, W, 3) adaptively blurred image.

num_levels = len(sigmas)
scale_space_volume = [
gaussian_blur (image, sigma) for sigma in sigmas]

coeffs_by_level = [0.0 for _ in range (num_levels) ]

w = sigma_field
for level in range (num_levels - 1):

sl = sigmas[level]

s2 = sigmas[level + 1]

mask ((w >= sl) & (w < s2)).astype(np.float32)
# (B,

t = (wWwx*2 — slx#%2) / (s2+ — sl%%2)
coeffs_by_level[level] += (1 - t) * mask
coeffs_by_level[level + 1] += t * mask

# Re the interpol 1t

return sum(
coeffs_by_level[level] * scale_space_volume[level]
for level in range (num_levels)

Fig. 10: Numpy implementation of adaptive blurring.

We show a numpy version of adaptive blurring in Fig. 10, and a visualization
of some variables in Fig. 12. To validate our implementation of decoupled scale-
space warping (DSSW), we compare MSE-trained models in Fig. 11. We show
that DSSW with bilinear warping is similar to scale-space warping with trilinear
interpolation, validating our version. We see that using a bicubic resampling
kernel, R-D performance improves by =6%. As we mention in Sec. 3.2, DSSW is
also significantly faster to run on GPU. For the Figure, we used the architecture
of [1] trained for MSE only, with a slightly accelerated training schedule by
skipping the last training stage on larger (384px) crops, instead decaying the
learning rate by 10x after 800000 steps.
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PSNR @ L
36.5 =
® DSSW, Bicubic (Ours)
3644 B DSSW, Bilinear (Ours)
®  Scale Space Warp, Trilinear (SSF, CVPR 20")
Bilinear Warp
36.3
bpp
0.10 0.11 0.12

Fig. 11: To validate our Decoupled Scale Space Warping (DSSW) implementa-
tion, we train models for MSE. We compare the R-D performance of Bilin-
ear/Bicubic resamplers in DSSW against the Scale-Space Warping of Agusts-
son et al. [1] and find that DSSW with bicubic improves the bpp. We also show

plain bilinear warping, without any scale space blurring.
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image sigma_field adaptive_blur (image,
sigma field)

coeffs by _level[levell

IJ

level = level = level = 4

=

coeffs by _level[level] * scale_space_volume(image, sigmas([level])

level = level = level =

Fig. 12: Visualizing variables of the algorithm given in Fig. 10.
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—e— DVC: Evaluated by us L
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36.5 1 DVC: Paper

Model we use

36.0 1

PSNR on UVG

35.0 1
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bpp

Fig.13: Comparing our DVC models to what the authors reported, on UVG.
We use the model in the lower right, as this is closest to our bpps (achieving
~ 0.06bpp on UVG, = 0.09bpp on MCL-JCV).

A.4 DVC Details

To get DVC reconstructions, we use the code provided by the authors.! DVC uses
the image compression model by Ballé et al. [5] for I-frames, but the code does
not include the exact model. We thus tried all models, and picked the one with
highest R-D performance, which is available as “bmshj2018-hyperprior-mse-5”
in TFC.2. We note that we add padding and cropping as described in Sec. 4.3.
We show the PSNR, of our model obtained on UVG in Fig. 13.

A.5 Architecture Details

A detailed version of the architecture from Fig. 3 is given in Fig. 14.

A.6 Hyper Parameters

For scale space blurring we set o9 = 1.5 and used L = 6 levels, which implies
that the sequence of blur kernel sizes is [0.0, 1.5, 3.0, 6.0, 12.0, 24.0].

For rate control we initially swept over a wide range kp € {10%,i € {—1,...,—-9}}
and found that 10~3 worked well, which we then fixed for all future experiments.
We initialized log, Ag = 1.0 in all cases.

Previous works [27,24] typically initially train for a higher bitrate. This is
usually implemented by using a schedule on the R-D weight A that is decayed
by a factor 2x or 10x early in training. Since the rate-controllor automatically
controls this weight, we emulate the approach by instead using a schedule on

! https://github.com/GuolLusjtu/DVC
2 https://github.com/tensorflow/compression


https://github.com/GuoLusjtu/DVC
https://github.com/tensorflow/compression
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the targeted bitrate b;. We use a simple rule and target a 40.5 higher bitrate
for the first 20% of training steps.

For the I-frame loss Li pame (Eq. 6), we use § = 128, and b, = 0.4 for
rate-control.

For the P-frame loss £ p_prame (Eq. 8), we use 8 = 128, and kty = 10.0, kaow =
1.0 in L,ce. For the three different models we use in the user study, we use
b, € {0.05,0.10,0.15}. A detail omitted from the equation is that we scale the
loss by the constant Cr = 1/T Zthz t, as this yields similar magnitudes as no
loss scaling.

We use the same learning rate LR = 1E—4 for all networks, and train with the
Adam optimizer. We linearly increase the LR from 0 during the first 20k steps,
and then drop it to LR = 1E—5 after 320k steps. We train the discriminators
for 1 step for each generator training step.

A.7 Training Time

In Table 3 we report the training speed for each of the training stages, which
results in a total training time of /248 hours. We note that the first stage (I-
frame) trains more than 14x faster than the last stage in terms of steps/s.

Batch size #1 #P # steps [k] steps/s time [h]

8 1 0 1000000 19.7 14.1
8 1 1 80 000 7.3 3.0
8 1 2 220000 3.9 15.7
8 1 3 50 000 2.6 5.3
8 1 5 50 000 1.4 9.9
Totals: 1400000 48.0

Table 3: Training speed/time for each stage of our model on a Google Cloud
TPU. #I, #P indicates the number of I- resp. P-frames used in that stage.
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Fig.14: Detailed view of the architecture, showing the layers in each of the
blocks in Fig. 3. “ConvF” denotes a 2D convolution with F' output channels,
“.SxS” denots the filter size, if that is omitted we use 3x3. |2, 12 indicates
downsampling and upsampling, respectively, “Norm” is the ChannelNorm layer
employed by HiFiC [24]. The blocks with a color gradient are Residual Blocks,
we only show the detail in one. “LReLU” is the Leaky ReLU with o = 0.2. We
note that we employ SpectralNorm in both discriminators. The distributions
predicted by the Hyperprior are used to encode the latents with entropy coding.
Like in Fig. 3, learned I-frame CNNs are in blue, learned P-frame CNNs in green,
dashed lines are not active during decoding, SG is a stop gradient operation, Blur
is scale space blurring, Warp is bicubic warping. UFlow is a frozen optical flow
model from [18].
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B Data Release

B.1 CSVs and Reconstructions

For each user study comparison we made between methods, we release the recon-

structions as well as a CSV containing all the rater information, via anonymous

links, see Table. 4.

Reconstructions folders:
Folder per method, which contains a subfolder for each of the 30 videos
of MCL-JCV, and each such video subfolder contains 60 PNGs, the recon-
structions of the resp. method.

CSVs: For each study, we release a CSV, where:
Each row is a video, and we have the following columns: wins_left, wins_right
indicate the number of times each method won (left is always Ours), bpp_left,
bpp-_right, indicate the per-video bpps, avg flips, avg_answer_time ms,
avg_num_pauses indicate average flips, average time per video, and average
num pauses, respectively.

CSVs https://storage.googleapis.com/eccv_sub/csvs.zip
Ours https://storage.googleapis.com/eccv_sub/ours.zip
No-GAN https://storage.googleapis.com/eccv_sub/nogan.zip
SSFE https://storage.googleapis.com/eccv_sub/ssf.zip
H.264 https://storage.googleapis.com/eccv_sub/h264.zip
HEVC https://storage.googleapis.com/eccv_sub/hevc.zip

Table 4: Links to user study data.

B.2 Tables

We show wins per method per video, that are available in the CSVs, in Table 5.


https://storage.googleapis.com/eccv_sub/csvs.zip
https://storage.googleapis.com/eccv_sub/ours.zip
https://storage.googleapis.com/eccv_sub/nogan.zip
https://storage.googleapis.com/eccv_sub/ssf.zip
https://storage.googleapis.com/eccv_sub/h264.zip
https://storage.googleapis.com/eccv_sub/hevc.zip
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Table 5: Wins per method for our user studies.



