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Abstract. We present the first neural video compression method based
on generative adversarial networks (GANs). Our approach significantly
outperforms previous neural and non-neural video compression meth-
ods in a user study, setting a new state-of-the-art in visual quality for
neural methods. We show that the GAN loss is crucial to obtain this
high visual quality. Two components make the GAN loss effective: we
i) synthesize detail by conditioning the generator on a latent extracted
from the warped previous reconstruction to then ii) propagate this detail
with high-quality flow. We find that user studies are required to compare
methods, i.e., none of our quantitative metrics were able to predict all
studies. We present the network design choices in detail, and ablate them
with user studies.
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1 Introduction

Recently, there has been progress in neural video compression, leading to the
latest approaches being comparable to or even outperforming the non-learned
standard codec HEVC [17] in terms of PSNR [1,48,33,20] or outperforming it
in MS-SSIM [11,33,20]. However, as we navigate the rate-distortion trade-off
towards low bitrates, reconstructions become blurry (for neural approaches) or
blocky (for non-neural). This was also observed for images, where there has been
interest in instead optimizing the rate-distortion-realism trade-off [3,42,10,39].
In short, the goal is to add a realism constraint, forcing the decoder to make
sure that reconstructions are also looking “realistic” (in the sense that they are
indistinguishable from real images), while still staying close to the input. To
optimize this constraint, previous work [2,24,37,34] added a GAN [12] loss to
the rate distortion objective, thereby navigating the triple-tradeoff.

However, targeting realism remains largely unexplored for neural video com-
pression. This is perhaps not surprising, as video compression brings various chal-
lenges [49], and GAN training is notoriously hard [12]. To apply rate-distortion-
realism theory for video, we need to be able to synthesize detail whenever new
content appears, and then we need to propagate this detail to future frames.
With this in mind, we carefully design a generative neural video compression
approach excelling at synthesizing and then preserving detail.

* Equal contributions.
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Fig.1: Comparing our reconstruction to various baselines. On the left, we see
crops from neural methods, where we compare to the published MSE-based
methods RLVC [47], SSF [1], and DVC [23]. On the right we see the original and
the non-neural methods, H.264 [4] and HEVC [17]. We see how high frequency
texture is faithfully synthesized in our approach, while staying close to the input,
where-as MSE-based methods suffer from blurryness. Best viewed on screen.

According to the theory [7,8], realism cannot be measured in terms of pair-
wise distortions such as PSNR and MS-SSIM. In fact, theory predicts that these
metrics must get worse as realism increases. Following previous work [2,24], we
thus perform extensive user studies to evaluate our approach, where we ask raters
to compare methods and chose which “is closest to the original” (see Sec. 4.2).
We find that by trading-off just a little bit in PSNR (x0.6dB, see Sec. 5), we
can significantly improve in realism, as measured by the study. This way, our
approach manages to synthesize small scale detail while staying close to the
original (see Fig. 1). Our main contributions are as follows:

1. We present the first GAN-based neural compression system and set a new
state-of-the-art in subjective visual quality measured with user studies, where
we significantly outperform previous neural compression systems ([1], [47],
[23]), as well as the standard codecs H.264 [1] and HEVC [17]. We show that
the GAN loss is crucial for this performance.

2. We show that two components are crucial to make the GAN loss effective:
i) We condition the generator on a “free” (in terms of bits) latent obtained
by feeding the warped previous reconstruction through the image encoder,
and show that this is crucial to synthesize details. ii) To be able to propagate
previously synthesized details, we rely on accurate optical flow provided by
UFlow [18], and warping with high-quality resampling kernels.
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a) Neural Methods b) Standard Methods

User
Study
Wins

Ours vs. SSF  Ours vs.RLVC Ours vs. DVC  Ours No-GAN  Ours vs.H.264 Ours vs.HEVC

Fig.2: Comparing 6 different pairs of methods in a user study, on MCL-JCV.
We visualize how often each method is preferred in the user studies. We had
1639 ratings in total, with an average of 273 per method pair. a) Shows neural
methods, SSF [1], RLVC [47], and DV C [23], seeing that our method significantly
outperforms them in terms of visual quality. We compare Ours to our no-GAN
baseline, where we see that a GAN clearly helps. b) We compare to the standard
codecs H.264 [1] and HEVC [17], and see that our method is also preferred.

2 Related Work

Neural Video Compression  Wu et al. [16] use frame interpolation for
video compression, compressing B-frames by interpolating between other frames.
Djelouah et al. [10] also use interpolation, but additionally employ an optical flow
predictor for warping frames. This approach of using future frames is commonly
referred to as “B-frame coding” for “bidirectional prediction”. Other neural video
coding methods rely on only using predictive (P) frames, commonly referred to
as the “low-delay” setting, since it is more suitable for streaming applications by
not relying on future frames. Lu et al. [23] use previously decoded frames and
a pretrained optical flow network. Habibian et al. [15] do not explicitly model
motion, and instead rely on a 3D autoregressive entropy model to capture spatial
and temporal correlations. Liu et al. [21] build temporal priors via LSTMs, while
Liu et al. [22] condition entropy models on previous frames. Rippel et al. [35]
support adapting the rate during encoding, and also do not explicitly model
motion. Agustsson et al. [1] propose “scale-space flow” to avoid complex residuals
by allowing the model to blur as needed via a pyramid of blurred versions of the
image. Yang et al. [18] generalize various approaches by learning to adapt the
residual scale, and conditioning residual entropy models on flow latents. Li et
al. [20] use deep features as context for encoding, decoding and entropy coding.
Golinsky et al. [11] recurrently connect decoders with subsequent unrolling steps,
while Yang et al. [47] also add recurrent entropy models. Rippel and Anderson et
al. [33] explore ways to make neural video compression more practical, with
models that cover a range of bitrates and a focus on computational efficientcy,
improving encode and decode time.

Non-Neural Video Compression The combination of transform cod-
ing [14] using discrete cosine transforms [3] with spatial and/or temporal predic-
tion, known as “Hybrid video coding”, emerged in the 1980s as the technology
dominating video compression until the present day. Non-neural methods such
as H.261 through H.265/HEVC [17], VP8 [6], VP9 [29] and AV1 [9] have all
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Fig.3: Architecture overview, with some intermediate tensors visualized in the
gray box. To the left of the gray line is the I-frame branch (learned CNNs in
blue), to the right the P-frame branch (learned CNNs in green). Dashed lines are
not active during decoding, and discriminators Dy, Dp are only active during
training. The size of the CNN blocks roughly indicates their capacity. SG is a stop
gradient operation. DSSW is our “decouped scale-space warping” (Sec. 3.2), and
UFlow is a frozen optical flow model from [18].

remained faithful to the hybrid coding principle, with extensive refinements, re-
garding more flexible pixel formats (e.g., bit depth, chroma subsampling), more
flexible temporal and spatial prediction (e.g., I-, P-, B-frames, intra block copy),
and many more. Thanks to the years of research that went into these codecs,
they provide strong baselines for neural approaches.

3 Method

3.1 Overview

An overview of the architecture we use is given in Fig. 3, while a detailed view

with all layers is provided in App. Fig. 14. Let © = {1, 2, ...} be a sequence

of frames, where z; is the initial (I) frame, denoted by z; in the figure and

below. Similar to previous work, we operate in the “low-delay” mode, and hence

predict subsequent (P) frames from previous frames. Let & = {&1,%3,...} be

the reconstructed video. We use the following strategy to obtain high-fidelity

reconstructions:

(S1) Synthesize plausible details in the I-frame.

(S2) Propagate those details wherever possible and as sharp as possible.

(S3) For new content appearing in P-frames, we again want to synthesize plau-
sible details.

As mentioned in the Introduction, we optimize for perceptual quality and distor-

tion, and note that the above three points are in contrast to purely distortion-

optimized neural video codecs, which, particularly at low bitrates, favor blurring
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detail to reduce the distortion loss. Instead, our approach will be able to syn-
thesize faithful texture, while still staying close to the input, as seen in Fig. 1.

The I-frame branch is based on a lightweight version of the architecture
used in “HiFiC” [24] (mostly making it less wide, see App. Fig. 14), and is used
to address (S1). In detail, the encoder CNN E; maps the input image z; to a
quantized latent yr, which is entropy coded using a hyperprior [26] (not shown
in Fig. 3, but which is detailed in App. Fig. 14). From the decoded y;, we obtain
a reconstruction Z; via the I-generator GG;. We use an I-frame discriminator Dy
that—following [24]—is conditioned on the latent z; (we elaborate on condition-
ing in Sec. 3.5).

The P-frame branch has two parts, an auto-encoder Egqy, Gaow for the
flow, and an auto-encoder F,.s, G,es for the residual, following previous video
work (e.g. [23,1], etc.). To partially address (S2), similar to previous work, we em-
ploy a powerful optical flow predictor network on the encoder side, UFlow [18].
The resulting (backward) flow F; = UFlow(x, x4—1) is fed to the flow-encoder
Efow, which outputs the quantized and entropy-coded flow-latent y; ;. From the
flow-latent, the generator G, predicts both a reconstructed flow Fy, as well
as a mask o;. The mask o; has the same spatial dimensions as F;, with each
value in [0, 0max]|. Together, (Ft,at) are used for our decoupled scale-space
warping, a variant of scale-space warping [1], described in Sec. 3.2. Intuitively,
for each pixel, the mask o predicts how “correct” the flow at that pixel is (see
the gray box in Fig. 3). We first warp the previous reconstruction ;1 using Ft,
then we use o; to decide how much to blur each pixel. In practice, we observe oy
predicts where new content that is not well captured by warping appears. Since
the flow is in general relatively easy to compress, we employ shallow networks for
Efow and G based on networks used in image compression [26]. We denote
the resulting warped and potentially blurred previous reconstruction with z;".

Finally, we calculate the residual r; = z; —2}" and compress it with the resid-
ual auto-encoder E,.s, G,cs. To address the last point above, (S3), we again
employ the light version of the HiFiC architecture for E,.,, G.s. However, we in-
troduce one important component. We observe that G, is not able to synthesize
high-frequency details from the sparse residual latent E,.s(r;) alone. However,
we found that additionally feeding a “free” latent extracted from the warped
previous reconstruction yff*¢ = E7(2) significantly increased the amount of syn-
thesized detail, possibly due to the additional information and context provided
by Z’. Note that this latent does not need to be encoded into the bitstream
because the decoder already has #}" and can compute y{ree directly (hence it is
“free”), and thus also does not need to be quantized. Instead, we concatenate it
to E,es(r¢) as a source of information, forming yt’r:concat(yfree, E,es(rt)).

To train the P-frame branch, we employ a seperate P-frame discriminator
Dp, with the same architecture as Dy, conditioned on the generator input y; ;.

3.2 Decoupled Scale-Space Warping

When warping previously reconstructed frames, we want to preserve detail as
much as possible (whether real or synthesized, per (S2) above). Previous neural
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Bilinear Resampling Kernel Bicubic Resampling Kernel

Fig.4: To avoid blurry results when repeatedly warping, the quality of the
resampling kernel is crucial. Here, we compare shifting an images 20 times with
a fixed flow of 0.5px to the left for bilinear and bicubic.

video compression approaches have commonly used bi-linear warping [23,10,35,47],
or tri-linear scale-space warping (SSW) [1,33,48]. However it is known from sig-
nal processing theory (see e.g. Nehab et al. [30, Fig. 10.6 on p. 64]) that for
repeated applications of re-sampling, the quality of the interpolation kernel is
crucial to avoid low-pass filtering the signal and blurring out details. We visualize
this phenomenon in Fig. 4.

Motivated by these observations, we were interested in implementing the
more powerful bicubic warping in SSW, but found that this makes the imple-
mentation significantly more complex when combined with the 3-D indexing of
scale-space warping. Instead, to be able to efficiently use bicubic warping (and
arbitrary other warping operations), we propose a variant of scale-space warp-
ing [1], where we decouple the operation into two steps: plain warping, followed
by spatially adaptive blurring. We can then use off-the-shelf warping implemen-
tations for the first part.

Both variants, at their core, use the scale-space flow field (13’, o), which gen-
eralizes optical flow a by also specifying a “scale” o, such that we get a triplet
(uij,vij,045) for each target pixel (i, ), where w;;,v;; are the flow coordinates,
and o5 is the blurring scale to use. We recall the method from [I]: To compute
a scale-space warped result

LTout = SSW('/*E’ F,O’), (1)

the source x is first repeatedly convolved with Gaussian blur kernels to obtain
a “scale-space volume” with L levels,

V(SC) = [iII,IIJ*G(Sl),"- 7x*G($L—1)]7 (2)

where G(s;) is the Gaussian blur kernel with std. deviation s;, and {s1,...,s-1}
are hyperparameters defining how blurry each level in the volume is. The three
coordinates of the scale-space flow field (u;;, vi;, 055) are then used to jointly warp
and blur the source image, retrieving pixels via tri-linear interpolation from the
scale-space volume.
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Fig.5: Visual examples for our ablations, see Sec. 5.1 for details. Top: Our model
faithfully reconstructs details of the input, whereas disabling the GAN loss or
removing the free latent introduces blurryness like in MSE models. Bottom: Not
using supervised optical flow (UFlow) gives poor quality flows. Not using the
flow loss makes the flow slightly burrier.

We obtain a Decoupled SSW (DSSW) result by combining plain warping
with spatially adaptive blurring (AB),
= DSSW(z, ', 0) = AB(Warp(z, F), o), (3)

out -

where Warp is plain warping, and AB is functionally the same as SSW with
a zero flow, i.e. AB(y,o) := SSW(y,0,0), but can be implemented with a few
lines of code using simple multiplicative masks for each level in the scale-space
volume to apply the 1-D linear interpolation for each pixel (code in App. A.3).

Together, bicubic warping and adaptive blurring help to propagate sharp
detail when needed, while also facilitating smooth blurring when needed (e.g.,
for focus changes in the video). See App. Fig. 12 for a visualization of how a
given input and sigma field o get blurred via scale-space blur.

We found that on a GPU, DSSW using an optimized warping implementation
and our AB was 2—3x faster than a naive SSW implementation. In App. A.3,
we validate our implementation by training models for MSE, and showing that
DSSW with bilinear warping obtains similar PSNR as SSW, and DSSW with
bicubic warping yields a better model.

3.3 Adaptive Proportional Rate Control

We train our system by optimizing the rate-distortion-perception trade-off [8,24],
and we describe our formulation and loss in Sec. 3.5, but here we want to focus
on one hyper-parameter in this trade-off (that also typically appears in the rate-
distortion trade-off optimized by previous work): the weight on the bitrate, Ag.
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a) Ablation Studies b) Higher Rates

User
Study
Wins

Ours mi HEVC  Ours hi HEVC

Ours No-GAN  Ours Uncond.

Ours No
Disc latent UFlow

Fig.6: a) User study for Ablations. We see that disabling the GAN loss (5=0),
using an unconditional discriminator, or not using the free latent hurts perfor-
mance. On the flow side, not using UFlow hurts. ) Comparing models at higher
rates, targeting 0.14bpp (mi) and 0.22bpp (hi).

Ours  No free

It controls the trade-off between bitrate and other loss terms (distortion, GAN
loss, etc.). Unfortunately, since there is no direct relationship between A and the
bitrate of the model when we vary other hyper-parameters, comparison across
models is practically impossible, since they end up at different rates if we vary
other hyper parameters, in particular other loss weights.

Van Rozendaal et al. [30] also observe this and propose targeting a fixed
distortion via constraint optimization. Another approach was used in [24], where
Ar was dynamically selected from a small A\; and a large A2, depending on
whether the model bitrate was below or above a given target. This approach can
be interpreted as an “on-off” controller, but still some requires tuning of Ay, As.

A natural generalization is to use a proportional-controller: We measure
the error between the current mini-batch bitrate b to a target bitrate b; (in
log-space), and apply it with a proportional controller to update Ar as follows:

logy(AR) < logy(Ar) + kp(log(b + €) — log(b; +¢€)), (4)

where e = 1E—9 for stability and the “proportional gain” kp is a hyperparameter.
We note that if we ignore the log-reparameterization, this corresponds to the
“Basic Differential Multiplier Method” [32].

logs(AR) Training bpp

-5.0

1.5 1\

oot w w

0.05 -
100k 200k 300k 400k 100k 200k 300k 400k

Fig. 7: Visualizing the effect of the rate controller for a broad family of models
with different hyper parameters, trained for 400k steps. The rate parameter Ag
is automatically adapted during training (left) to match the target bpp of 0.05
for all models (right). At 80k steps we drop the target rate, at 325k steps we
drop the learning rate.



Neural Video Compression using GANs 9

This approach is highly effective to obtain models that are comparable in
terms of bitrate, despite different hyper-parameters such as learning rates, amount
of unrolling, loss weights, etc., as visualized in Fig. 7.

3.4 Sequence Length Train/Test Mismatch

One problem in neural video compression is the train/test mismatch in sequence
length: Typically, neural approaches are trained on a handful of frames (e.g.,
three frames for [I] and five for [21]), and evaluated on hundreds of frames,
which can lead to error patterns that emorge during evaluation. While the un-
rolling behavior is already a problem for MSE-optimized neural codecs (some
previous works use small GOPs of 8-12 frames for evaluation to limit temporal
error propagation), it requires even more care when detail is synthesized in a
generative setting. Since we aim to synthesize high-frequency detail whenever
new content appears, incorrectly propagating that detail will create significant
visual artifacts. Ideally, we could train with sequences as long as what we eval-
uate on (i.e., at least T=60 frames), but in practice this is infeasible on current
hardware due to memory and computational constraints. While we can fit up to
T'=12 into our accelerators, training then becomes prohibitively slow.

To work towards preventing unrolling issues, as well as accelerating pro-
totyping and training new models, we instead adopt the following scheme: 1)
Train Fy, Gy, Dy only, on randomly selected frames, for 1 000 000 steps. 2) Freeze
Er, Gy, Dy and initialize the weights of Fyes, Gres from Er, Gr. Train Eaoyw, G Aow,
FEres, Gres, Dp for 400000 additional steps using staged unrolling, that is, use
T'=2 until 80k steps, T=3 until 300k, T'=4 until 350k, and T=6 until 400k. This
splitting into steps 1) and 2) means trained Ej, Gy can be re-used for many
variants of the P-frame branch, and, as a bonus, sharing Fj, G; across models
makes them more comparable. For training times, see App. A.7.

Some error accumulation remains, which we address in two ways: We quan-
tize the frame buffer at each step, i.e., during inference, we always quantize 2,
to be closer to the (8-bit quantized) input. Additionally, we randomly shift re-
constructions in each step, to avoid overlapping larger-scale error patterns from
accumulating. Together, these techniques help to get rid of most error patterns.

3.5 Formulation and Loss

We base our formulation on HiFiC [24] and optimize the rate-distortion-perception
trade-off [8]. We use conditional GANs [12,28], where both the generator and
the discriminator have access to additional labels. As a short recap, the general
conditional GAN formulation assumes data points x and labels s following some
joint distribution p(z,s). The generator is supposed to map samples s ~ p(s)
to the distribution p(z|s), and the discriminator is supposed to predict whether
a given pair (z,s) is from the real distribution p(z|s), or from the generator
distribution p(Z|s).

In contrast to HiFiC, we are working with sequences of frames and reconstruc-
tions, however, we aim for per-frame distribution matching, i.e., for T-length
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video sequences, the goal is to obtain a model s.t.:

p(Zelys) = plzelys) VEe{l,...,T}, (5)

where x; are inputs, #; reconstructions (as above), and we condition both the
generators and the discriminators on latents y;, using y1=y; for the I-frame,
yr=ysr for P-frames (¢>1). To readers more familiar with conditional generative
video synthesis (e.g., Wang et al. [14]), this simplification may seem sub-optimal
as it may lead to temporal consistency issues (i.e., you may imagine that re-
constructions &, 411 are inconsistent). We emphasize that since we are doing
compression, we will also have a per-frame distortion loss (MSE), and we have
information that we transmit to the decoder via a bitstream. So while the resid-
ual generator can in theory produce arbitrarily inconsistent reconstructions, in
practice, these two points appear to be sufficient for preventing any temporal
inconsistency issues in our models. We nevertheless explored variations where
the discriminator is based on more frames, but this did not significantly alter
reconstructions.

Continuing from Eq. 5, we define the overall loss for the I-frame branch and

its discriminator Dy as follows. We use the “non-saturating” GAN loss [12]. To
simplify notation, let y; = Er(xr), &1 = Gr(yr):

EI—Frame = Emjwp(zz) [)“Ir’%r(yf) + d(xb ‘i‘f) - 6 1Og(DI(§jI7 yl))] ’ (6)

Lp; = Eyymp(ep) [~ log(1 = Dy (21,y1)) — log(Dr(z1,y1))], (7

where )\f2 is the adaptive rate controller described in Sec. 3.3, 8 is the GAN
loss weight, and d is a per-frame distortion. We use d=MSE;, i.e., in contrast to
HiFiC [21], we do not use a perceptual distortion such as LPIPS. We found no
benefit in training with LPIPS, possibly due to a more balanced hyper-parameter
selection, and removing it speeds up training by ~35%.

For the P-frame branch, let p(xT) be the distribution of T-length clips, where
we use x7 as the I-frame, and let

£P—F’ra'me - Ep(x?) [ZZ;Q Agr(yt,r) + td(xta i't) - tﬁ 10g<DP (-’i'tv yt,'r)) + ‘Creg] )
(8)
EDP = Ep(mf) [ZtT:Q —thg(l - DP(‘%tv yt,r)) -t IOg(Dp(.’IJ[, yt,T)))] . (9)

Note that we scale the losses of the ¢t-th frame with ¢. This is motivated by
the observation that Z; influences all T'—t reconstructions following it, and hence
earlier frames indirectly have more influence on the overall loss. Scaling with ¢
ensures all frames have similar influence.

Additionally, we employ a simple regularizer for the P-frame branch:

Lrog = kfiow - SG(0¢) - La(Fy, By) + kry TV(ay), (10)

where the first part is an MSE on the flow, ensuring that Fgow, Gaow learn to
reproduce the flow from UFlow. We mask it with the sigma field, since we only
require consistent flow where the network actually uses the flow (but add a stop
gradient, SG, to avoid minimizing the loss by just predicting oy = 0). TV is a
total-variation loss [38] ensuring a smooth sigma field.
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4 Experiments

4.1 Datasets

Our training data contains 992k spatio-temporal crops of dimension 256 x256,
each containing 12 frames, obtained from videos from YouTube. For training,
we randomly choose a contiguous sub-sequence of length T € {2,3,4,5}, see
Sec. 3.4. The videos are filtered to originally be at least 1080p in resolution,
16:9, 30fps. We omit content labeled as “video games” or “computer generated
graphics”, using YouTube’s category system [50]. We evaluate our model on
the 30 videos of MCL-JCV [13], which is available under a permissive license
from USC, in contrast to, e.g., the HEVC test sequences, which are not publicly
available. MCL-JCV contains a broad variety of content types and difficulty,
including a wide variety of motion from natural videos, computer animation and
classical animation.

4.2 User Study

2AFC  We evaluate our method
in a user study, where we ask human
raters to rate pairs of methods, i.e.,
our setup is “two alternatives, forced
choice” (2AFC). We implement 2AFC
by showing raters two videos side-by-
side, where the right video is always
the original. On the left, raters see ei- . .
ther a video from method A or method B. They can toggle between A and B
in-place. We always shuffle the methods, i.e., Ours is not always method A. We
use all 30 videos from MCL-JCV, and show the first 2 seconds (to avoid large file
sizes, see below), playing in a loop, but raters are allowed to pause videos. Raters
are asked to select the video “is closest to the original” (the GUI is shown in the
inline figure, exact instructions in App. Fig. 8). This protocol is inspired by pre-
vious work in image compression [24,11], and ensures that differences between
methods are easy to spot.

Several considerations went into these choices: For generative video compres-
sion, it is important to be able to compare to the original, as otherwise the
method may, e.g., completely change colors or content. However, we do not re-
quire pixel-perfect reconstructions, which is why we show the original on the
right, and not in-place. Methods can be very similar, which is why we allow
in-place switching between methods to be able to spot differences.

Rater Qualifications Our raters are contracted through the “Google
Cloud AI Labeling Service” [13]. For each pair of methods, raters are asked
to rate all 30 videos of MCL-JCV. In order to make sure our ratings have a
high quality, we intersperse five golden questions at random locations into
each study, where we compare HEVC at quality factor Q=27 to Q=35 (Q=27
yields bitrates similar to what we study, and Q=35 is ~0.023bpp and contains
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significant blurring artifacts). We filter out raters who do not correctly answer 4
out of 5 of these questions. Overall, this yields 8-14 raters per study. To ensure
that our results are repeatable, we re-do the study after three days.

Shipping Videos to Raters In order to play back the videos in a web
browser we transcode all methods with VP9 [29], using a very high quality factor
to avoid any new artifacts. To ensure consistency, and to be sure that the raters
can fit the task in their web browser, we center-crop the videos to 1080 x 1080.
This yields large file sizes, so to ensure smooth playback, we focus on the first 2
seconds (60 frames) of each video.

4.3 Metrics and Models

In order to assess how quantitative metrics predict the user study, we employ
the well-known PSNR and MSSSIM [15]. We use LPIPS [51] (which measures
a distance in AlexNet [19] features space) and PIM (an unsupervised quality
metric), as well as FID [16]. Following HiFiC [21] we evaluate FID on non-
overlapping 256 x 256 patches (see App. A.7 in [24]). Finally, we use VMAF [31],
developed by Netflix to evaluate video codecs. We calculate these metrics on the
exact sequences we ship to raters.

We refer to our model as Ours, and report all hyper-parameters in App. A.6.
To assess the effect of the GAN loss, we train a no-GAN baseline, which uses
exactly the same architecture and training schedule as Ours, but is trained with-
out a GAN loss (=0 in Egs. (6), (8)). We compare to three neural codecs: SSF,
by Agustsson et al. [1], CVPR’2020, RLVC by Yang et al. [17], J-STSP’2021,
and DVC by Lu et al. [23], CVPR’2019. For SSF and RLVC, we obtained
reconstructions from the authors, for DVC we ran the open-sourced code our-
selves and verified that this does match their published numbers on the UVG
dataset [25] (exact details in App. A.4). We ran user studies comparing all these
models against our proposed GAN model. In contrast to most previous work,
we do not constrain our model to use a small GoP size, and instead only use
an I-frame for the first frame. For the neural models, we used the GoP from
the respective papers (oo for SSF, 10 for DVC, 12 for RLVC), and we do not
constrain the GoP for H.264 and HEVC. The neural codecs we compare to do
not densely cover the bitrate axis, so to ensure fair studies, we fix Ours to a
model targeting ~0.07bpp, and then select a different competing model for each
video to match filesizes as closely as possible. The resulting average bpps are
at most ~3% smaller or at most ~24% bigger than our method. We emphasize
that we would have liked to compare to even more neural models, but found no
additional code or reconstructions.

Furthermore, we compare against the non-neural standard codecs H.264
and HEVC. We follow best practice and make sure to minimally constrain the
codecs, thus using the default “medium” preset (note that some previous works
used “fast” or even “veryfast”). Like our method, we run the codecs in the low-
latency setting (disabling B-frames). The exact (short) ffimpeg commands are
listed in App. A.1. We also run the codecs at ~0.07bpp. To get an idea how
models compare at higher rates, we fruther run HEVC' at ~0.14 and ~0.22bpp.
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PSNRt 34.5 348 No~ 34.0 Yes 31.7 Yes 35.1 No 34.6 No~  35.6 No
MS-SSIM? 0.964 0.963 No~ 0.965 No~ 0.95 Yes 0.967 No~ 0.963 No~ 0.966 Nox~
VMAF1 87.3 84.8 Yes 83.1 Yes 81.9 Yes 86.9 No~  87.7 No~ 91.1 No
PIM-1| 3.34 4.69 Yes  4.93 Yes 6.91 Yes 4.17 Yes 3.17 No 2.62 No
LPIPS] 0.168 0.224 Yes 0.224 Yes 0.26 Yes 0.194 Yes 0.169 No~ 0.147 No
FID/256) 32.8 54.1 Yes  50.3 Yes 61.6 Yes 35.7 Yes  33.0 No~ 24.2 No

Preferred vs. Ours?t 27% 31% 15% 32% 35% 39%
Table 1: We show metrics corresponding to the user studies, where the last row
repeats the results from Fig. 2. We indicate whether each metric predicts the
study, using Yes and No. If the values are within 1% of each other, the metric
also does not predict the study, and we indicate this with No~. 1 indicates that
higher is better for this row, | the opposite. We can see that no metric predicts
all user studies (since Ours is preferred in all studies).

On Padding and Bitrates A problem faced by all CNN-based neural
compression codecs is: what happens if the stride of the network does not divide
the input resolution. For example, our encoder downscales 4 times, and thus
needs the input resolution to divide 16. Like most previous work, we solve this
by padding input frames (e.g., 1080x 1920 gets padded to 1088x1920), obtaining
the bitstream of the padded image, obtaining the reconstruction, cropping the
reconstruction back to the input resolution, and calculating bpp w.r.t. the input
resolution (calculating it w.r.t. the padded resolution would amount to cheating).
We note that the RLVC reconstructions were cropped to 1066 pixels, and we
thus performed that user study in a cropped setting, and we had to add padding
support to the DVC code, which may account for some differences in PSNR
(DVC seems to have calculated on cropped images).

5 Results

We show visual results in Fig. 1. We can see how our approach faithfully syn-
thesizes texture and looks very similar to the original, whereas MSE-based ap-
proaches suffer from blurryness. The quantitative results from our user study are
shown in Fig. 2. At a high level, we see that Ours is preferred by the majority
in all studies. Ours vs. no-GAN shows that the GAN loss significantly improves
visual quality. The first three studies show that our method significantly outper-
forms all neural baselines. The standard codecs fare somewhat better, yet our
method is clearly preferred overall. We show the comparison at higher rates in
Fig. 6b, where the gap between methods gets smaller, but our method is still
preferred.

In Table 1 we explore which metrics are able to predict the user study results
from Fig. 2. We show values of all methods on all metrics, and indicate whether
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the metrics predicts the corresponding study. E.g., we can see there that we are
preferred over no-GAN in the user study, yet our method has 34.5dB PSNR,
while no-GAN has 35.1dB (better), thus PSNR does not predict this study
correctly, and we write “No”. Overall, none of the metrics are able to predict
all studies. However, we find that the three “perceptual” metrics PIM, LPIPS,
and FID/256 all predict the studies of the neural codecs. Unfortunately, none of
them predicts the studies involving the standard codecs.

The table also shows how we trade-off distortion (PSNR) for improved real-
ism/visual quality. In the comparison against no-GAN, we can see that 0.6dB
in PSNR is traded for being preferred 68% of the time in the user study.

In App. A.2, we show that we were able to obtain the same overall results
when running the studies with the same raters three days later, with an even
wider gap, and more raters passing the golden study. We also present statistics:
how long raters take to answer questions, how often they flip, and how often they
pause. We split this data by experiment, by video, and by worker. Averaged over
all studies, raters take 26.4s per comparison, flip 13.5 times, and pause 0.967
times. To facilitate further research, we provide links to reconstructions and
raw user study data in App. B.

5.1 Ablations

We ablate our main components, using a user study (shown in Fig. 6a) and
visually (in Fig. 5). We do ablations by removing parts: In No-GAN, we disable
the GAN loss (8 = 0), for No free latent we train without the free latent yiree,
and in Uncond. Disc., we train with an unconditional discriminator (i.e., D
does not see any latents). We can see that all of these perform significantly worse
in terms of visual quality (Fig. 6), and lead to blurry reconstruction (Fig. 5,
uncond. disc. is not shown but looks similar to No-GAN). In No UFlow, we
disable UFlow, i.e., if we do not feed F; to Epow, and instead let Egq,, learn flow
unsupervised from frames, which performs significantly worse (Fig. 6).

6 Conclusion

We presented a GAN-based approach to neural video compression, that signif-
icantly outperforms previous neural and non-neural methods, as measured in a
user study. With additional user studies, we showed that two components are
crucial: i) conditioning the residual generator on a latent obtained from the
warped previous reconstruction, and ii) leveraging accurate flow from an optical
flow network. Furthermore, we showed how to decouple scale-space warping to
be able to leverage high quality resampling kernels, and we used adaptive rate
control to ensure consistent bitrates across a wide range of hyperparameters.

Limitations As we saw, the quantitative metrics we currently have can-
not be fully relied on, and hence we have to do user studies. However, this is
expensive and not very scalable, and further research into perceptual metrics
is needed. We hope that by releasing our reconstructions, we can encourage
research in this direction.
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