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Fig. 5: Visual examples for our ablations, see Sec. 5.1 for details. Top: Our model
faithfully reconstructs details of the input, whereas disabling the GAN loss or
removing the free latent introduces blurryness like in MSE models. Bottom: Not
using supervised optical ow (UFlow) gives poor quality ows. Not using the
ow loss makes the ow slightly burrier.

We obtain a Decoupled SSW (DSSW) result by combining plain warping
with spatially adaptive blurring (AB),

x′out = DSSW(x; F̂ ; �) = AB(Warp(x; F̂ ); �); (3)

where Warp is plain warping, and AB is functionally the same as SSW with
a zero ow, i.e. AB(y; �) := SSW(y; 0; �), but can be implemented with a few
lines of code using simple multiplicative masks for each level in the scale-space
volume to apply the 1-D linear interpolation for each pixel (code in App. A.3).

Together, bicubic warping and adaptive blurring help to propagate sharp
detail when needed, while also facilitating smooth blurring when needed (e.g .,
for focus changes in the video). See App. Fig. 12 for a visualization of how a
given input and sigma �eld �t get blurred via scale-space blur.

We found that on a GPU, DSSW using an optimized warping implementation
and our AB was 2�3� faster than a naive SSW implementation. In App. A.3,
we validate our implementation by training models for MSE, and showing that
DSSW with bilinear warping obtains similar PSNR as SSW, and DSSW with
bicubic warping yields a better model.

3.3 Adaptive Proportional Rate Control

We train our system by optimizing the rate-distortion-perception trade-o� [8,24],
and we describe our formulation and loss in Sec. 3.5, but here we want to focus
on one hyper-parameter in this trade-o� (that also typically appears in the rate-
distortion trade-o� optimized by previous work): the weight on the bitrate, �R.
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4 Experiments

4.1 Datasets

Our training data contains 992k spatio-temporal crops of dimension 256�256,
each containing 12 frames, obtained from videos from YouTube. For training,
we randomly choose a contiguous sub-sequence of length T 2 f2; 3; 4; 5g, see
Sec. 3.4. The videos are �ltered to originally be at least 1080p in resolution,
16:9, 30fps. We omit content labeled as \video games" or \computer generated
graphics", using YouTube’s category system [50]. We evaluate our model on
the 30 videos of MCL-JCV [43], which is available under a permissive license
from USC, in contrast to, e.g ., the HEVC test sequences, which are not publicly
available. MCL-JCV contains a broad variety of content types and di�culty,
including a wide variety of motion from natural videos, computer animation and
classical animation.

4.2 User Study

2AFC We evaluate our method
in a user study, where we ask human
raters to rate pairs of methods, i.e.,
our setup is \two alternatives, forced
choice" (2AFC). We implement 2AFC
by showing raters two videos side-by-
side, where the right video is always
the original. On the left, raters see ei-
ther a video from method A or method B. They can toggle between A and B
in-place. We always shu�e the methods, i.e., Ours is not always method A. We
use all 30 videos from MCL-JCV, and show the �rst 2 seconds (to avoid large �le
sizes, see below), playing in a loop, but raters are allowed to pause videos. Raters
are asked to select the video \is closest to the original" (the GUI is shown in the
inline �gure, exact instructions in App. Fig. 8). This protocol is inspired by pre-
vious work in image compression [24,41], and ensures that di�erences between
methods are easy to spot.

Several considerations went into these choices: For generative video compres-
sion, it is important to be able to compare to the original, as otherwise the
method may, e.g ., completely change colors or content. However, we do not re-
quire pixel-perfect reconstructions, which is why we show the original on the
right, and not in-place. Methods can be very similar, which is why we allow
in-place switching between methods to be able to spot di�erences.

Rater Quali�cations Our raters are contracted through the \Google
Cloud AI Labeling Service" [13]. For each pair of methods, raters are asked
to rate all 30 videos of MCL-JCV. In order to make sure our ratings have a
high quality, we intersperse �ve golden questions at random locations into
each study, where we compare HEVC at quality factor Q=27 to Q=35 (Q=27
yields bitrates similar to what we study, and Q=35 is �0:023bpp and contains
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