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Abstract. Learning representations of images that are invariant to sen-
sitive or unwanted attributes is important for many tasks including bias
removal and cross domain retrieval. Here, our objective is to learn rep-
resentations that are invariant to the domain (sensitive attribute) for
which labels are provided, while being informative over all other image
attributes, which are unlabeled. We present a new approach, proposing
a new domain-wise contrastive objective for ensuring invariant repre-
sentations. This objective crucially restricts negative image pairs to be
drawn from the same domain, which enforces domain invariance whereas
the standard contrastive objective does not. This domain-wise objective
is insufficient on its own as it suffers from shortcut solutions resulting
in feature suppression. We overcome this issue by a combination of a
reconstruction constraint, image augmentations and initialization with
pre-trained weights. Our analysis shows that the choice of augmentations
is important, and that a misguided choice of augmentations can harm
the invariance and informativeness objectives. In an extensive evalua-
tion, our method convincingly outperforms the state-of-the-art in terms
of representation invariance, representation informativeness, and training
speed 1. Furthermore, we find that in some cases our method can achieve
excellent results even without the reconstruction constraint, leading to a
much faster and resource efficient training.

1 Introduction

Representing the attributes of an image that are independent of its domain (e.g.
imaging modality, geographic location, sensitive attribute or object identity) is
key for many computer vision tasks. For instance, consider the following toy
example: assume that we observe images of faces, each image is specified by
the identity and pose but only labels of the identity are provided. The goal is
to learn a representation that captures the unlabeled pose attribute, and carry
no information about the identity attribute. This task has many other applica-
tions, including: learning to make fair decisions, cross domain matching, model
anonymization, image translation etc. It is a part of the fundamental machine
learning problem of representation disentanglement. We note that the most am-
bitious disentanglement setting, i.e. unsupervised disentanglement where no la-
bels are provided, was proven by Locatello et al. [25] to be impossible without

1 Our Code is available at https://github.com/jonkahana/DCoDR.

https://github.com/jonkahana/DCoDR
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inductive biases. Luckily, our setting is easier than unsupervised disentangle-
ment as the domain label is provided for all training images. This setting has
attracted much research e.g. DRNET [10], ML-VAE [1] and LORD [13].

We begin by defining the desired properties for domain disentanglement.
This task has two objectives: i) Invariance: the learned representation should
be invariant to the domain ii) Informativeness: the learnt representation should
include the information about all of the attributes which are independent of the
domain. The invariance requirement is challenging, but it can in-principle be
directly optimized as the domain label is provided, e.g. using an adversarial dis-
criminator. The informativeness requirement, however, is not generally possible
to directly optimize without additional inductive biases as the attributes are
unlabeled. This was theoretically demonstrated by [20,40]. Nonetheless, recent
methods have been able to achieve meaningful representations in many cases,
by enforcing a reconstruction term, which optimizes a related objective.

We present a new method,DCoDR:Domain-wiseContrastiveDisentangled
Representations, that significantly improves both representation domain invari-
ance and informativeness. To enforce the domain invariance, we propose a per-
domain contrastive loss, that requires the representations of each domain to
be uniformly distributed across the unit sphere. Differently from standard con-
trastive losses [4], our objective only considers negative examples from the same
domain. As shown in Sec. 5.2, this seemingly simple change is crucial for learn-
ing domain invariant representations. Unfortunately, we find that encoders which
satisfy this invariance constraint alone, are often uninformative over the desired
attributes. This is a case of the documented phenomenon of feature suppression
[24,6,32]. In line with previous methods [13,10,1], we optimize the informative-

Fig. 1: An illustration of our method. The representations are domain invariant
as the representations of each domain follow a spherically uniform distribution
(encouraged by our domain-wise contrastive objective). Image augmentations
(here Gaussian blurring) are used to assign similar images to nearby represen-
tations which indirectly improves informativeness. The reconstruction objective
and encoder pre-trained weights initialization are not shown in this diagram.
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ness of the representations indirectly by a reconstruction constraint. As we find
this may be insufficient for learning informative representations in some cases,
we propose two other techniques: i) Similarly to several self-supervised objectives
(e.g. the one in SimCLR [4]), we enforce representations of images to be similar
to those of their augmentations. Despite being common among self-supervised
methods, we show that standard choices of augmentations (specifically, those
used by SimSiam [8]) can harm the domain invariance of the representation. We
analyse the effectiveness of different augmentations for domain invariant repre-
sentation learning. ii) Initializing the image encoder using weights pre-trained
with self-supervision on an external dataset, which we empirically find to learn
both more informative and invariant representations.

We evaluate our method on five popular benchmarks. Our method signifi-
cantly exceeds the state-of-the-art in terms of invariance and informativeness.
We investigate a fully discriminative version and find that in many cases it is
competitive with the previous state-of-the-art while being much faster.
A summary of our contributions:

1. A non-adversarial and non-generative, domain invariance objective.
2. Analysing the benefits and pitfalls of image augmentations for informative-

ness and domain invariance of the learned representations.
3. A new approach, DCoDR, which significantly outperforms the state-of-the-

art in domain invariant representation learning.
4. A discriminative only variant, which is 5X faster than existing approaches.
5. An extensive evaluation on five datasets.

2 Related Work

Learning domain disentangled representations. Much research was done
on separating between labeled and unlabelled attributes. Several methods use
adversarial training [11,34,26]. Other methods use non-adversarial approaches,
e.g. cycle consistency [16], group accumulation [1] or latent optimization [13,14].
Our method improves upon this body of work.

Contrastive representation learning. Significant progress in self-super-
vised representation learning was achieved by methods relying on pairs of aug-
mented samples. Most recent methods use the constraint that the neural repre-
sentations of different augmentations of the same image should be equal. Non-
contrastive methods [8,15,31] use the above constraint with various other tricks
for learning representations. As the above formulation is prone to collapse, con-
trastive methods [38,18,36,29,18,17,7,27,4,5] add an additional uniformity con-
straint that prohibits collapse of the representation to a single point. We propose
a per-domain contrastive objective, tailored for domain disentanglement.

Contrastive approaches for disentanglement. Recently, Zimmerman et
al. [42] proposed a seminal approach for contrastive learning of disentangled rep-
resentations. They tackle the ambitious setting of unsupervised disentanglement,
and therefore make strong assumptions on the distribution of the true factors
of variation as well as requiring temporal sequences of images at training time.
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Our method applies to the different (and less ambitious) setting of domain dis-
entanglement - assuming domain labels for training data, but not having image
sequences or strong assumptions on the evolution of unlabeled true factors. Our
technical approaches are consequently very different.

Applications of disentangled representations. Learning disentangled
representations has many applications including: controllable image generation
[41], image manipulation [13,14,37] and domain adaptation [30]. Furthermore, it
is believed that better disentangled representations will have future impact on
model interpretability [19], abstract reasoning [33] and fairness [9].

3 Domain Invariant Representation Learning

3.1 Preliminaries

We receive as input a set of training samples Xt = {x1, x2, .., xN}. Each training
sample x ∈ Xt has a labeled domain d and unlabelled attributes y which are
uncorrelated to d. We assume that the labeled domain d is a single categorical
variable. The objective is to learn an encoder E, which encodes each image x as
code z = E(x) satisfying the criteria in Sec. 3.2.

3.2 Criteria

The domain disentanglement task requires satisfying the following two criteria:

Invariance: We require that the representation z should not be predictive
of the domain d. This can be written as:

P (d|z) = P (d) (1)

Informativeness: We require that the representation z should encapsulate
as much information on attributes y as possible. Note that z cannot hold more
information about y than the original image x, as there exists a deterministic
encoder E which maps x to z. It therefore follows by the data processing inequal-
ity, that the maximally informative representation z should be as informative as
the original image about the attributes y:

I(y, z) = I(y, x) (2)

In our setting, only the domain labels d are provided but not the attribute
labels of y. The objective in Eq. 2 cannot therefore be optimized directly. Saying
that, in line with previous methods, we optimize informativeness by training a
conditional generator through a reconstruction objective. Unlike previous meth-
ods, we use additional techniques which increase informativeness significantly.
Our proposed approach will be detailed in Sec. 4.3.
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3.3 Existing Approaches for Invariance Optimization

Current methods optimize the invariance criterion using two main approaches:

Adversarial methods [10]. Many disentanglement methods rely on adver-
sarial domain confusion constraints to ensure representation invariance. They
are often written in the following form:

Ladv = max
D

ℓCE(D(E(x)), d) (3)

Where ℓCE is the cross-entropy loss. The discriminator D measures how infor-
mative the representation z = E(x) is over the original domain d. An encoder
that satisfies this constraint will indeed be domain invariant P (d|z) = P (d). Un-
fortunately, adversarial training is challenging and the optimization often fails
to minimize this loss perfectly.

Variational-autoencoders (VAE) [1,13]. Given the weaknesses of adver-
sarial methods, variational methods were proposed that ensure the represen-
tations are normally distributed P (z|d) = N(0; I). The encoder in this case
outputs the parameters of a Gaussian distribution of the posterior p(z|x). Using
the ELBO criterion, the objective becomes:

Lvae = ℓKL(E(x), N(0, I)) (4)

However, LORD [13] found that simply optimizing this criterion does not con-
verge to disentangled representations. Furthermore, they showed that randomly
initialized encoders are highly entangled and variational losses were insufficient
for removing this entanglement. Instead, they suggested using latent optimiza-
tion rather than deep encoders at first, for directly learning the representation
z of each training image x. This indeed improves the domain invariance of the
representations, but is more sensitive to hyper-parameter choices. It also requires
an inconvenient second stage for learning an image to representation encoder.

4 DCoDR: Learning Domain-wise Contrastive
Disentangled Representation

4.1 Overview

We introduce a new approach, DCoDR, for learning informative, domain invari-
ant representations. In Sec. 4.2, a new per-domain contrastive loss is proposed
to enforce invariance directly. It does not, by itself, require the representation
to be maximally informative. To overcome this issue, we optimize informative-
ness indirectly by reconstruction and image augmentation objectives as well as
encoder pre-trained weights initialization. We investigate an additional, fully dis-
criminative variant of our method, which is much faster than existing methods
at the price of lower informativeness.
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4.2 Representation Invariance with Domain-wise Contrastive Losses

Learning an invariant representation requires the domain d to be unpredictable
from the learned representation z. We present a non-adversarial method for
encouraging domain invariance. Our approach enforces the probability distri-
bution of representations z to follow a uniform spherical distribution (denoted
US) regardless of the domain d: P (z|d) = US . It follows from Bayes’ law that
the representation z does not provide any information about the domain, ∀z :
P (d|z) = P (d). This also yields that mutual information between the domain
and representation is zero I(d, z) = 0.

The above analysis requires that P (z|d) = US for every domain d. We do
so by training a separate contrastive loss for every domain d. It was highlighted
by Wang and Isola [35] that the denominator of the contrastive objective en-
courages the representations follow a uniform spherical distribution. Learning
a contrastive loss separately over image representations from different domains,
ensures that the representations z are distributed as US regardless of the domain
d. For an image x from domain d, this can be written as follows:

Linv(x, d) = log
∑

(x′,d′)∈X

1d′=de
sim(E(x′),E(x)) (5)

sim is a similarity function, cosine similarity in our case. The objective only
considers image pairs drawn from the same domain. Unlike previous methods in
Sec. 3.3 (e.g. [10,28,13]), it does not rely on adversarial or variational approxi-
mations.

4.3 Improving Representation Informativeness

Beyond invariance, the representations z should encapsulate the information
about all of the image attributes y except the domain label d. In Eq. 2 this was
shown to imply I(y, x) = I(y, z). We cannot directly optimize this constraint, as
the attributes y for image x are not provided in our setting. In line with previous
methods presented in Sec. 3.3, we optimize the informativeness indirectly by a
reconstruction constraint. Furthermore, we present two algorithmic choices that
empirically further increase informativeness significantly.

Reconstruction: Reconstruction constraints are an established way to im-
prove the informativeness of the representation d. They have been used in many
previous methods [10,1,13]. In line with previous methods, we include a recon-
struction constraint in our method. Specifically, we learn a conditional generator
G that takes as input the domain d and representation z and outputs an image
Gd(z). The reconstruction objective requires that the output image is as close
as possible to the input image x. The difference between the reconstruction and
original images is measured using the function ℓ. In practice, we use the same
perceptual loss as in LORD [13] in Eq. 6

Lrec =
∑
d∈D

∑
x∈Xd

ℓperc(Gd(E(x)), x) (6)
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Augmentations: Contrastive objectives are susceptible to shortcut solu-
tions that lower informativeness, also known as feature suppression [32]. This
occurs by (inadvertently) learning an encoder that maps nuisance image at-
tributes (or noise) to the spherical uniform distribution. This representation
ignores the other image attributes, therefore being insufficiently informative.
Ensuring that image augmentations have similar representations to the original
image can help reduce this collapse, for suitably well selected augmentations:

Laug =
∑
x∈Xt

−sim(E(A1(x)), E(A2(x)) (7)

Table 1: Evaluation of our
method’s discriminative variant,
DCoDR-norec, with 2 different
augmentations on Cars3D.

Inv. Inform.

Blur 0.002 0.960
H. Flip 0.003 0.725

Where A1(x) and A2(x) are two random aug-
mentations of image x. Unfortunately, poorly
selected augmentations can make the repre-
sentation z invariant to the desired attributes
y, which is harmful. E.g. when y is pose, and
the augmentation is horizontal flip, the repre-
sentation z will be invariant to flip direction,
therefore less informative over the pose. To
test this hypothesis, we trained our method’s
discriminative variant, DCoDR-norec, using
blur or flip augmentations on Cars3D. We
measure each metric as explained in Sec. 5.2.
Tab. 1 shows flipping significantly reduced
the informativeness.

It is clear from the discussion above that augmentations can be highly de-
sirable for improving informativeness, while their choice is important. We dis-
covered that the standard augmentations used by state-of-the-art contrastive
methods e.g. [4,15,8] are not optimal for our task. The reason is that they are
designed to keep information only about the object’s ’class’ while being invariant
to all other attributes. This may, in some cases, also require invariance on the
attributes of interest y. Instead, we selected a much smaller set of augmentations
which we empirically show to be effective on a set of datasets that we consid-
ered. There selected augmentations are: i) Cropping, ii) Gaussian Blurring, iii)
Increase of contrast iv) Increase in saturation. For Edges2Shoes [39] dataset, we
find it more effective to include gaussian blurring alone. In Sec. 5.2 we show the
selected augmentations significantly outperform the standard set of SimSiam [8].

Encoder Initialization with Unsupervised Pre-Trained Weights: Al-
though the constraints proposed in this section are effective for learning domain
disentangled representations, we empirically find they are not always sufficient.
In order to improve generalization [12], we propose to initialize the encoder with
the weights of a network pre-trained in an unsupervised manner (MoCo-V2
[7]) on the ImageNet dataset. Using the inductive bias from pre-trained weights
in this setting is common, e.g. LORD [13] uses an ImageNet pre-trained percep-
tual loss. Note, this initialization is not beneficial for LORD as it does not use
an encoder in the first stage.
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4.4 Our Complete Method: DCoDR

DCoDR optimizes the combination of the 3 objectives presented in this section:

min
E,G

LDCoDR = Linv + Laug + Lrec (8)

We use the augmentations from Sec. 4.3. We initialize the encoder E with the
weights of an MoCo-V2 encoder pre-trained on ImageNet (without labels).

Discriminative DCoDR (DCoDR-norec) We present a discriminative vari-
ant of our method, by simply dropping the reconstruction constraint:

min
E

LDCoDR−norec = Linv + Laug (9)

The lack of a reconstruction constraint, makes this variant typically learn less
informative representations than DCoDR. However, as this variant does not train
a generator, it is several times faster than DCoDR which by itself is considerably
faster than previous state-of-the-art LORD.

4.5 Differences From SimCLR

Although a part of our method is motivated by the SimCLR [4] objective, it is
significantly different and attempts to obtain satisfy different criteria compared
to SimCLR (the first 3 apply for DCoDR-norec as well):

– Domain-wise Loss. DCoDR learns a contrastive loss over each domain
separately whereas SimCLR learns a single loss over all the data.

– Choice of Augmentations. DCoDR learns a reduced set of augmentations
rather than the standard set used in SimCLR.

– Pre-Training. DCoDR initializes the encoders weights by unsupervised pre-
training on ImageNet using of MoCo-V2 [7], which does not use any labels.

– Reconstruction DCoDR uses a reconstruction term for increasing the in-
formativeness of its representations, which does not exist in SimCLR.

Tab. 2 and 3 show that although the differences from SimCLR might look
superficially simple, each of them is essential for the success of our method, on
the described domain disentanglement setup.

5 Experiments

In this section, we evaluate our method against (variational and adversarial)
state-of-the-art domain disentanglement approaches. We evaluate the invariance
and informativeness of the learned representations. We then demonstrate cross
domain retrieval of our method compared to the other baselines in Sec. 5.3.

Benchmark Datasets. We report results on Cars3D [21], SmallNorb [22],
Shapes3D [3], CelebA [23] and Edges2Shoes [39]. All datasets are used in 64x64
resolution. Due to the large number of samples in the full Shapes3D and the
limited variation between them, we randomly sample 50, 000 images for training,
while keeping the test set size at 10% of the original size.
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5.1 Implementation Details

Architecture and optimization.We used a ResNet50 encoder, trained for 200
epochs using a batch size of 128. Each batch was composed from 32 images drawn
from 4 different classes. In line with other methods e.g. LORD, the reconstruction
loss is computed using a VGG based perceptual loss pre-trained on ImageNet.

Baselines. We use the default parameters of ML-VAE [1] and DRNET [10].
We tried to replace their encoders by larger ResNet architectures but it resulted
in degraded performance. We therefore kept the original architectures and hyper-
parameters for all runs. We use a ResNet50 architecture for LORD’s second stage
and SimCLR’s encoders, training each for 200 epochs. We do not compare to
OverLORD [14] as in our evaluated datasets it is exactly the same as LORD.

Augmentations. As mentioned in Sec. 4.3, we used cropping, Gaussian
blurring, high contrast and high saturation transformations as our positive aug-
mentations, except for Edges2Shoes where we use only Gaussian blurring.

5.2 Representation Evaluation

Experimental Setup. For each dataset, we evaluate both Invariance and In-
formativeness of the representations. To do so, we train a deep classifier to
predict all image attributes from the learned representations, including the do-
main d and the other factors y. For the synthetic datasets, we compute each of
the two objectives over each factor separately. Since some of the datasets have
multiple factors, we present the average of the informativeness over all factors,
while the full results are presented in the SM. For CelebA we use the location
of the 68 landmarks [2] as the uncorrelated attribute. As the landmarks are nu-
meric rather than categorical, we train an MLP regression model to predict the
landmark locations. We measure the L1 error of the MLP regressor where lower
errors are better. To understand how far the results are from the theoretical
limit, we present the frequency of the most common domain value as a lower
bound on the invariance. Note that since we use a probabilistic estimator to
evaluate our metrics, in some cases (especially when performance is close to op-
timal limit) the invariance may be slightly lower than the theoretical limit. This
can happen when the classifier slightly overfits its training data, hence the small
gap. To ensure a fair comparison is made, we train each classifier with several
regularization strengths and present the one that is able to generalize best.

Results. The results on all datasets are presented in Tab. 2. We observe that
on Cars3D, even though LORD is a strong baseline, both discriminative and
complete variants of DCoDR are able to surpass it, and achieve nearly perfect
results. ML-VAE, DRNET and SimCLR do not perform as well on this dataset,
inline with the observations in [13]. On SmallNorb, it is clear that LORD fails
to disentangle the domain. Both our methods outperforms it on both metrics,
achieving much more disentangled representations than any other method. As
the representations learned by ML-VAE and DRNET are not domain invari-
ant, they have higher informativeness but do not satisfy the main requirement
of disentanglement. Note that we used the original version of the SmallNorb
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Table 2: Content Invariance (↓) (Content to Domain) and Representation Quality
(↑) (Average Prediction Accuracy). For CelebA we use extracted landmarks as
attributes, and compute the regression L1 (↓) error.

Cars3D SmallNorb Shapes3D CelebA

Inv. ↓ Inf. ↑ Inv. ↓ Inf. ↑ Inv. ↓ Inf. ↑ Inv. ↓ L1 ↓

SimCLR 0.885 0.443 0.956 0.758 1 0.99 0.116 1.286
LORD 0.009 0.940 0.393 0.670 0.703 0.995 0.019 0.862
DRNET 0.504 0.909 0.953 0.899 0.892 1 0.084 0.795
ML-VAE 0.697 0.930 0.968 0.944 0.999 1 0.136 0.723

DCoDR-norec 0.005 0.970 0.071 0.730 0.246 0.997 0.015 1.127
DCoDR 0.005 0.980 0.143 0.785 0.245 0.999 0.017 0.858

Optimal 0.005 1 0.021 1 0.251 1 0.002 0

benchmark rather than the simplified version presented in the LORD paper. In
this setting, the domain is defined as the object category alone whereas both
pose and lighting are unknown. On Shapes3D, again both variants of DCoDR
achieve almost perfect results while all other methods suffer from lack of domain
invariance. LORD achieves very limited invariance while ML-VAE, DRNET and
SimCLR learn representations that are not invariant at all. CelebA is challeng-
ing for our per-domain contrastive loss, as it contains very few images per each
domain, meaning the estimation of a uniform distribution for each domain is lim-
ited. That being said, we observe DCoDR performs better than LORD. It has an
additional advantage over LORD of not requiring 2-stage optimization. CelebA
is a failure case for our discriminative variant. Although presenting stronger
invariance than the other methods, it is not sufficiently informative.

Generally, DCoDR demonstrated state-of-the-art results in invariance and
informativeness. In some cases (e.g. CelebA), DCoDR-norec fails to learn suf-
ficiently informative representations, while being more invariant than previous
methods as well as DCoDR itself. We emphasize that a key advantage of DCoDR-
norec is its training time, as shown in Sec. 5.4.

Ablation Study We ablate our method on the SmallNorb dataset (Tab. 3).
First, we observe that removal of the unsupervised MoCo-V2 pre-trained weight
initialization significantly hurts all metrics. Removal of per-domain negative
pairs i.e. using a single contrastive loss for all domains (the loss used in SimCLR),
makes the representations entangled. We also tested removing the positive aug-
mentations, using the objective in Eq. 5. Removing the positive augmentations
has different effects in to DCoDR and DCoDR-norec. DCoDR’s informativeness
was reduced while invariance improved. DCoDR-norec fails without the posi-
tive augmentations as they are its only objective that enforces informativeness.
Lastly, we consider the standard set of augmentations used in SimSiam [8]. This
choice significantly harms both invariance and informativeness in both variants.
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Table 3: Ablation analysis on SmallNorb.

DCoDR DCoDR-norec

Inv. (↓) Inform. (↑) Inv. (↓) Inform. (↑)

No Domain Negatives 0.863 0.829 0.879 0.754
No Positive Augmentations 0.057 0.555 0.021 0.166
No Pre-Training 0.253 0.701 0.298 0.716
SimSiam [8] Augmentations 0.244 0.643 0.246 0.658
Complete Method 0.143 0.785 0.071 0.730

Optimal 0.020 1 0.020 1

5.3 Cross Domain Retrieval Evaluation

Experimental Setup. To evaluate cross-domain retrieval, we first extract rep-
resentation z = E(x) for each image x from domain d in the test set. Than, we
retrieve its nearest neighbors (using L2 distance) from each domain d′ so that
d′ ̸= d and average the results over all domains. Finally, results are averaged over
all test images. We present both quantitative and qualitative analyses. For our
quantitative analysis, we use the labels of the attributes y for deciding weather a
match was found or not. Since many attributes are naturally ordered we would
like to consider more than just perfect matches in all attributes. To do so, we al-
low a match for small changes in some numeric attributes, as detailed in the SM.
Here we present the accuracy of matching over all attributes. The accuracy of
matching individual attributes is presented in the SM. We also visually present
the 5 nearest-neighbor images for several test set images - using the represen-
tations learned by our and baseline methods. Here, we search for neighbors in
all domains at once, contrary to the previous quantitative retrieval evaluation,
which was performed for each domain separately, then averaged. The analysis
highlights leakage of domain information in the representations.

Quantitative Analysis. Our numerical retrieval results are presented in
Fig. 4. Similarly to the earlier probing experiments on Cars3D, LORD achieves
the highest retrieval scores among all the baseline methods on this dataset. Our

Table 4: Retrieval Accuracies Comparison.

Cars3D SmallNorb Shapes3D Edges2Shoes

SimCLR 0.07 0.02 <0.01 0.40
LORD 0.88 0.06 0.76 0.66
DRNET 0.64 0.09 0.86 0.66
ML-VAE 0.50 0.06 0.63 0.65

DCoDR-norec 0.96 0.22 0.99 0.41
DCODR 0.97 0.26 1 0.90
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method, convincingly outperforms it, both with and without reconstruction.
DRNET and ML-VAE achieve acceptable results, but underperform DCoDR and
LORD due to their lack of invariance. SimCLR fails to retrieve accurately since,
as Tab. 2 suggests, it prefers representing the domain over the pose. SmallNORB
is a much harder task, all baseline methods struggle on this dataset achieving
poor retrieval accuracy. We showed in Tab. 2 that these methods have high
informativeness and poor invariance on this dataset. This shows that invariance
is important for succeeding in cross domain retrieval. DCoDR (with and without
reconstruction) is able to retrieve much better matches as it is considerably
less biased by the domain. This is backed up by the qualitative analysis of
SmallNorb in Fig. 2. Results on Shapes3D describe a similar case. Although
all methods achieve strong informativeness, DCoDR and DCoDR-norec only are
able to retrieve nearly perfect matches due to domain invariance. Surprisingly, on
this dataset DRNET was able to retrieve strong matches from different domains,
despite not being domain invariant at all. Finally, Edges2Shoes showcases a
failure of DCoDR-norec, as the augmentations do not provide a strong enough
inductive bias for learning informative representations. Saying that, when given
the inductive bias of a generator, DCoDR exceeds previous methods significantly.

Qualitative Analysis. We present retrieval results on SmallNorb [22] and
Edges2Shoes [39] datasets in Fig. 2 and 3 respectively. We present DCoDR-
norec on SmallNorb, and DCoDR on Edges2Shoes (as the reconstruction loss
is needed there). On SmallNorb, DRNET and ML-VAE retrieve images from
the same domain at the expense of changing the pose, achieving poor retrieval
results. While LORD does select images from other domains, the domains are
typically similar to the source. DCoDR-norec retrieves images from a variety of
domains while preserving the pose. Both LORD and DCoDR-norec struggle with

DRNET ML-VAE

LORD DCoDR-norec

Fig. 2: Retrieval Examples From SmallNorb.
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DRNET ML-VAE

LORD DCODR

Fig. 3: Retrieval Examples From Edges2Shoes.

Table 5: Training Times (↓) In Hours.

Cars3D SmallNorb Shapes3D (50K) CelebA

LORD 7.5 15.5 18 160
DCODR 5.5 9.5 11.5 30
DCoDR-norec 1.5 3.5 3.5 9

180◦ flips. For Edges2Shoes, ML-VAE clearly shows lack of domain invariance.
DCoDR retrieves more accurate images than DRNET and LORD.

5.4 Runtime Comparison

We compared our method’s runtime with LORD [13], the top baseline. All meth-
ods were run on a single NVIDIA-RTX6000 for 200 epochs for all datasets (note
that LORD has two stages). Results are presented in Tab. 5. Both DCoDR and
DCoDR-norec are faster than LORD. DCoDR-norec is 5-10 times faster than
LORD as it does not train a generator nor require perceptual loss computation.

6 Discussion

The mismatch between conditional reconstruction constraints and in-
formativeness. By the data processing inequality, the existence of a deter-
ministic mappings x = Gdtrue

(z) (and accordingly x = E(z)) implies that
I(y;x|z, dtrue) = 0. In other words, all the information about y which exists
in x, exists in the combination of z and the domain label dtrue as well. Note this
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does not imply I(y;x|z, d′) = 0 for any domain d′ but only for the true domain
of x, d′ = dtrue. To be equivalent to Eq. 2, it was shown by [20] and [40] that this
requires another property from the representations which is alignment. Mean-
ing, p(y|z, d) = p(y|z, d′) = p(y|z), where d and d′ are two different domains and
p(y|z, d) is the PDF of y’s values given the representation z under domain d.
Alignment is not guaranteed without additional inductive biases but in practice
learned representations are often well aligned.
Inductive bias of generators. We presented a discriminative variant that,
in some cases, competes with the top domain disentanglement methods, which
are generative. We believe the reason for the success of conditional generator
based methods is two-fold: i) a regularization effect caused by the difficulty of
conditional generator training, pushing the representations of different domains
to be more aligned. ii) invariance of generators to various image transformations.
DCoDR-norec presented partial improvements in these two aspects. Pre-trained
weights are used for initialization, we hypothesize this acts as a regularizer al-
though not as strong as a conditional generator. Image augmentations are used,
most of which are encapsulated in the invariance of generators. To test the in-
variance of generators to different augmentations, we performed an experiment
where we trained autoencoders on several datasets and compared their recon-
struction for images with and without augmentations. This motivated our choice
of augmentations. For more details, see the SM. Despite DCoDR-norec showing
promising results of in some cases, we find that all components of our method
are needed for sufficient informativeness. We expect that future research will
find other augmentations which will result in further improvements.
Limitations. Our method has a few limitations which we leave for future work:

(i) Discrete domains. As required by our per-domain invariance objective.
(ii) Pre-training. We showed in Sec. 5.2 that using unsupervised pre-training

(MoCo-V2 trained on ImageNet) significantly improves both invariance and in-
formativeness. Although requiring an external dataset is a limitation, we do not
believe it is a very serious one for two reasons. Firstly, previous methods, e.g.
LORD, often use supervised pre-trained features in their perceptual loss as well.
Secondly, these weights are available to all and identical for all new datasets.

(iii) Image-specific augmentations. Our method rely on image augmentations,
which are not always transferable to other modalities e.g. audio or text. Never-
theless, we believe other helpful augmentations can be found in each modality.

7 Conclusion

We presented a new approach for learning domain disentangled representations
from images. It uses a per-domain contrastive loss, a reconstruction objective,
image augmentations and self-supervised pre-trained encoder initialization. Our
method demonstrated results that are better in both invariance and informa-
tiveness metrics over the state-of-the-art.
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