
Supplementary Material
PT4AL: Using Self-Supervised Pretext Tasks for Active Learning

This supplementary material includes contents which are not included in the main paper due to space limit.

A. Hyper-parameters Image Classification Experiments
Table 1 presents the hyper-parameters used in Section 5.1 of the main paper.

Table 1. Hyperparameters used in image classification experiments for PT4AL. lr is the learning rate for the pretext and main tasks. Batch
size and epochs are also divided into pretext task and main task parameters

Dataset
lr

(pretext/main)
batch size

(pretext/main)
epochs

(pretext/main) initial/budget image size

CIFAR10 0.1 / 0.1 256 / 128 120 / 200 1000 / 50000 32 x 32 (padded)
Caltech-101 0.01 / 0.1 64 / 64 50 / 100 1000 / 8046 224 x 224 (cropped)
ImageNet 0.1 / 0.1 256 / 256 150 / 100 127986 / 1279867 224 x 224 (cropped)
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B. Details on Imbalanced Dataset Experiment
This section corresponds to Sec. 5.3 of the main paper.

Fig. 1 is a heatmap of the class distribution cumulative distribution of data extracted in each cycle by Random, VAAL [8],
and PT4AL (Rotation [3]) methods in imbalanced CIFAR10. The x axis represents each of the ten classes, and the y axis
represents each active learning cycles. As explained in the main paper, the number of data for each class increases as we go
from class ”airplane” to ”truck”.

As shown in the figure, Random sampling demonstrates that the distribution of data extracted in every cycle follows the
class distribution of the unlabeled imbalanced dataset. On the other hand, VAAL extracts data while relatively considering
class balance, but does not completely solve the class imbalance problem. Unlike existing methods, PT4AL extracts data
with severe class imbalance in the initial cycles, and moves on to sample in a class-balanced way as the cycle progresses. Our
PT4AL method can alleviate the class imbalance problem by using the loss-based sampling method to match class balance
in imbalanced datasets.

(a) Random
(b) VAAL

(c) PT4AL(Rotation)

Figure 1. Cumulative class distribution heatmap of (a) Random, (b) VAAL [8] and (c) PT4AL (Rotation [3]) methods in the imbalanced
CIFAR10 [6] dataset



C. Cold Start
This section corresponds to Sec. 5.4 of the main paper.

Fig. 2 presents a box plot using the results of 20 experiments in the first iteration of the PT4AL (Rotation) and Random
sampling methods on the imbalanced CIFAR10 dataset. As shown in the figure, our method has a smaller difference between
the minimum and maximum accuracies than the random method, and it can be seen that the difference between Q1, Q2 and
Q3 is also small. Therefore, our PT4AL (Rotation) confidently alleviates the cold start problem by having better starting
accuracy with small variance, compared to the existing methods that use random sampling in the first sampling iteration.

Figure 2. Results of first iteration main task accuracies across 20 experiments for random sampling and PT4AL(Rotation) on CIFAR10



D. Class Distribution for PT4AL(SimSiam [2])
This section corresponds to Sec. 6.2 of the main paper. In the main paper we compare (Fig. 6.a, 6.b) different pretext tasks
used for PT4AL. From the comparison we discover that SimSiam [2], one of the most recent papers that use contrastive
learning [4] (or joint embedding since it does not use negative examples) to learn visual features, performs poorly on our
main task compared to simple hand-designed pretext tasks. [3,7,9] The contrastive loss used in SimSiam displays very weak
correlation (ρ = −0.001) to the main task loss. To examine the cause of this behavior we examine the class distribution
of each of the ten batches created for sampling. Fig. 3 illustrates the class distribution for the first, fifth, and tenth batches.
Each batches contain 5000 images sampled by their pretext loss rank. Batch 1 has images with the highest ranking losses,
and batch 10 has the lowest losses. We can examine that most samples are focused on a few classes, and the biased classes
differ for every batch. We discover such behavior from all ten batches in the CIFAR10 [6] experiment. This biased class
distribution results in data from a select few classes being sampled in each iteration, which is detrimental for the main task
learning performance. PT4AL using SimSiam performs worse than the random baseline which evenly samples data from all
clsses. We discover that unlike other pretext tasks, SimSiam and other works [1, 5] that use contrastive learning have loss
ranks that vary by class. We contribute this behavior to the losses’ tendency to bring positive image pairs closer and repel
negative pairs, which explains the loss ”clustering” of specific classes. We also suspect that this class-biased tendency is
exacerbated with SimSiam’s implementation because it does not use negative sets: it only looks at augmentations of the same
image to minimize contrastive loss. Due to the class bias, combined with high variance from image augmentations and long
training time, we deem contrastive learning tasks are not fit for PT4AL’s pretext task model.

Figure 3. Class distribution of sampled data from the first, fifth, and tenth iterations using the losses extracted from the SimSiam pretext
task learner



E. Details on Sampling Strategies
E.1. Sampling in the first iteration

This section corresponds to Sec. 6.3 of the main paper. Fig. 4 demonstrates the samples extracted through top-k loss and
uniform sampling from the batch with the lowest rotation pretext task loss in the CIFAR10 dataset. When using the top-k
method, images with similar visual features are extracted, while uniform samples more diverse data. In particular, in classes
such as deer, airplane, and bird, it can be empirically confirmed that the Top-k method tends to extract visually overlapping
samples. Uniform sampling, in contrast, samples relatively diverse data points with different color, shape, and orientation.
For example, in the Truck class in Fig. 4 we can observe that top-k samples blueish trucks facing left, while images sampled
by uniform sampling face different directions and have different colors. Since the top-k method extracts data with overlapping
information, uniform sampling is used in the first iteration of PT4AL to avoid this problem.
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Figure 4. Image data extracted using top-k and uniform sampling from the batch with the lowest pretext task losses. Best viewed in color



E.2. Sampling Method Comparison

This section supplements Sec. 6.3 of the main paper. In this section different sampling methods are explored. Unlike
sampling in the first iteration, the methods explored is to be used in the second iteration onwards, when the trained main
task model from the previous iteration is available. We compare three different sampling methods: class balanced sampling,
confidence based sampling, and entropy based sampling. Class balanced sampling simply samples data from the given batch
in a class-balanced way. It uses pseudo-labels from the previous main task model to assign each data to a class, and samples
100 data points from each of the ten classes. If there are less than 100 data points in a class, the sampler supplements the
remaining for data from another class. Confidence sampling uses the top-1 posterior probability from each data point and
samples data with the lowest 100 top-1 probability. Entropy based sampling samples 100 data with the highest entropy. The
main task model is used to extract both top-1 probability and entropy for the methods. Fig. 5 displays the main task results
for the three sampling methods. We can see that both entropy and confidence based methods perform similarly, while class
balanced sampling under-performs the others. We choose to use confidence sampling since it queries data in the decision
boundary of the main task model. Fig. 6 illustrates main task results for confidence-based sampling using batches sorted in
ascending or descending order. Overall, sampling from batches with high pretext task losses first outperforms the low loss
batch first sampling method.

E.3. High loss first vs Low loss first sampling

Fig. 6 demonstrates the implementations in the main paper using high to low loss sampling and low to loss sampling.
While the performances are similar, we observe that sampling from batches with high pretext task loss values and moving on
to batches with lower losses perform better especially in the initial iterations. Thus, we use the high-to-low sampling method
in the main paper.

Figure 5. Results of PT4AL using different in-batch sampling meth-
ods on CIFAR10

Figure 6. Comparison of main task performance between
PT4AL(rotation) with losses sorted by low loss first and high loss
first



F. Combination of Pretext Tasks

Figure 7. Comparison of different pretext task combinations on CIFAR-10

Fig. 7 shows an experiment of different combinations of pretext tasks on CIFAR-10. The three pretext tasks (jig: jigsaw
puzzle, rot: rotation, color: colorization) are combined by summing the pretext task loss rankings. The results indicate
that only jigsaw + rotation shows a marginal improvement over the baseline which only uses rotation prediction. Although
combining multiple pretext tasks may be synergistic, we think the cost of training multiple tasks is not valuable due to the
marginal performance benefit.
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