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Abstract. Labeling a large set of data is expensive. Active learning
aims to tackle this problem by asking to annotate only the most infor-
mative data from the unlabeled set. We propose a novel active learning
approach that utilizes self-supervised pretext tasks and a unique data
sampler to select data that are both difficult and representative. We
discover that the loss of a simple self-supervised pretext task, such as
rotation prediction, is closely correlated to the downstream task loss.
Before the active learning iterations, the pretext task learner is trained
on the unlabeled set, and the unlabeled data are sorted and split into
batches by their pretext task losses. In each active learning iteration, the
main task model is used to sample the most uncertain data in a batch
to be annotated. We evaluate our method on various image classification
and segmentation benchmarks and achieve compelling performances on
CIFAR10, Caltech-101, ImageNet, and Cityscapes. We further show that
our method performs well on imbalanced datasets, and can be an effec-
tive solution to the cold-start problem where active learning performance
is affected by the randomly sampled initial labeled set. Code is available
at https://github.com/johnsk95/PT4AL
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1 Introduction

The recent success in deep learning has shown remarkable advancements in com-
puter vision tasks such as classification [19, 12] and semantic segmentation [7, 30].
This has been possible due to the advent of deep convolutional neural networks
(CNNs) and large annotated datasets such as ImageNet [12] and COCO [27].

As deep learning models are trained in a data-driven manner, having a large
enough training set is crucial to achieve high performance. However, building
a large labeled dataset is prohibitively time-consuming and expensive. Labeling
costs increase with the size of data and complexity of the tasks. Instead of
labeling the entire data, active learning (AL) [39] aims to select informative
subsets to label that achieve the highest performance within a fixed labeling
budget.
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Fig. 1: The overall framework of the proposed method. Unlabeled data are sorted
by pretext task losses, split into batches, and sampled for training

Existing AL approaches can be divided into two main groups: distribution-
based and uncertainty-based methods. Distribution-based methods [38, 5] aim to
sample data that well covers the distribution of the feature space. The advantage
of such methods is that they can sample representative points: data points from
high density regions that well represent the overall feature distribution. However,
distribution-based sampling fails to select data that are placed near the decision
boundary (i.e. high uncertainty data points). Uncertainty-based approaches [26]
resolve this problem by sampling the most uncertain points. Simple approaches
that utilize class posterior probabilities [26, 25], entropy [40, 21], and loss pre-
diction [46, 23] were revealed to perform well on various settings. While these
approaches effectively sample uncertain or difficult data near decision bound-
aries in the feature space, they do not capture the overall distribution of the data,
according to our qualitative analysis in Fig. 4. Our method aims to capture the
best of both worlds by sampling both representative and difficult data.

This paper proposes Pretext Tasks for Active Learning (PT4AL), a novel
active learning framework that utilizes self-supervised pretext tasks combined
with an uncertainty-based sampler. We train a pretext task model [16, 48] with
unlabeled data, and the pretext task loss is highly correlated to the main task
loss. In order to sample diversely from both representative and difficult data, the
unlabeled data are sorted in descending order by their pretext task loss, and split
into batches to be used for each AL iteration. Starting from the batch containing
data with the highest losses, the most uncertain K data points are sampled from
each batch, based on the posterior class probability of the previous main task
learner. The uncertainty-based sampler enables PT4AL to sample difficult data,
while the batch split allows balanced sampling across the entire data distribution.

PT4AL also resolves the innate problem in active learning: the cold start
problem. Existing approaches start from a randomly sampled set of labeled data,
rendering the overall performance highly dependent on the distribution of the
initial set. Since our method learns the representation of the unlabeled set in
advance, we can sample informative data from the first iteration. This approach
avoids the issue of high variance and decrease in performance that can stem from
randomly sampling the initial labeled set.

We validate our proposed method on various image classification and se-
mantic segmentation datasets and achieve state-of-the-art or compelling results
across different datasets and tasks. Additionally, we demonstrate the robustness
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of PT4AL on a class imbalanced setting by evaluating on an artificially created
class-imbalanced CIFAR10 dataset.

2 Related Work

Active Learning Various AL approaches has been proposed, such as informa-
tion theoretical approaches [32], ensemble approaches [33, 15], uncertainty based
methods [43, 21] and Bayesian AL methods [22]. However, these traditional
methods have not been verified in large-scale datasets for large-scale models,
such as in the field of CNN-based deep learning, which has achieved state-of-
the-art in various computer vision tasks.

Recent AL methods have been centered on large-scale settings for CNN-
based deep learning models. Sener & Savarese [38] proposed a core-set selection
method, which chooses data points that cover all data with high diversity based
on the feature distribution. This method targets two problems of the previous
uncertainty-based methods. First, uncertainty-based methods select only hard
samples, resulting in redundant, overlapping data points. Second, the existing
methods are not suitable for batch processing on CNNs. The core-set algorithm
aims to sample diverse data points in a batch manner. Yoo & Kweon [46] pro-
posed a sub-task module to predict the main task loss of unlabeled data, and
sample the high-loss samples from the unlabeled pool. This method samples from
a subset of the unlabeled pool to avoid selecting redundant data points when
sampling consecutively from the most uncertain data [4]. However, in our qual-
itative analysis in Fig. 4, uncertainty-based methods like Yoo & Kweon sample
data points from decision boundaries with less diversity in distribution. Recently,
using a variational autoencoder architecture [41], the discriminator adversarially
trains the input data to be unlabeled or labeled. In the data sampling phase,
a method that first labels the sample predicted as unlabeled with the lowest
confidence was proposed.

Our active learning method uses a self-supervised pretext task to supple-
ment the flaws of the data distribution-based method and the uncertainty-based
method. As described above, AL is largely divided into data distribution-based
methods [38, 5, 29] and uncertainty-based methods [41, 23, 46, 10]. The data
distribution-based method has the disadvantage that it cannot extract hard sam-
ples, and the uncertainty-based method has the possibility to sample overlap-
ping data points and it is difficult to extract the representation of the entire
data distribution. Other works [20, 45, 1] sample from both representative and
difficult data by utilizing variance maximization between labeled and unlabeled
data or using separate sampling criteria for data in each category. Our method
uses pretext task-based batch split which allows us to select representative sam-
ples across the semantic distribution, and an uncertainty-based in-batch sampler
which allows us to select difficult samples.

Representation Learning with Pretext Tasks Representation learning aims to
learn good pre-trained weights by learning self-supervised pretext tasks with
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unlabeled data. The pre-trained weights are fine-tuned with a small amount of
labeled data to achieve high performance on downstream tasks. The key assump-
tion and the findings in representation learning is that pretext tasks provide
enough learning signals without any labels (i.e. direct supervision) provided.
Using these assumptions, Liu et al. [28] proposed unsupervised neural architec-
ture search (NAS) using self-supervised pretext tasks [48, 34, 16] and achieved
similar performance to supervised NAS baselines. Zhang et al. [48] proposed a
pretext task to restore the color of the original image through a network after
transforming the input image to gray scale. Noroozi & Favaro [34] improved the
performance of representation learning in image classification through the task
of dividing input images into grids, mixing them with each other, and inputting
each grid into the network. Gidaris et al. [16] proposed a pretext task that ro-
tates the input image by 0◦, 90◦, 180◦, and 270◦ and training the network to
match the rotated angle of the transformed input image. This method achieved
the highest performance among representation learning methods utilizing data
structures. Recently proposed representation learning methods use contrastive
learning [35, 8, 9, 6, 18] to minimize the distance between different pairwise aug-
mentations of the same image, and repel from augmentations of different images.
Contrastive learning is proved to be robust on different downstream tasks and
provide state-of-the-art results by far.

There have been several efforts to use self-supervised pretext tasks in active
learning. Zhu et al. [49] uses graph contrastive learning [47] for active learning
on graph neural networks. [2, 37, 17] utilizes self-supervised learning to pre-train
the main task model, which is then fine-tuned on labeled data. Bhatnagar et
al. [3] presents a multi-task active learner trained for both pretext task and
main task, while being robust to mislabeled samples. Although these methods
help justify the use of pretext tasks in active learning, they are limited to specific
domains [49, 37, 17], fail to sample both difficult and representative data [2], and
does not solve the cold start problem [49, 2, 3].

As pretext tasks provide good initializations for downstream tasks, we assume
that the information learned through these tasks is highly correlated to the
semantic data distribution. We analyze and identify the correlation between
the pretext task loss and the supervised loss in downstream tasks in Section 3.
Finally, we propose an active learning method using pretext tasks in Section 4.

3 Using Pretext Tasks for Active Learning

The success of representation learning with self-supervised pretext tasks [8, 18,
9, 28], leads us to believe that there is a high correlation between self-supervised
pretext tasks and downstream tasks, and thus pretext tasks can be utilized for
active learning. Rather than utilizing the feature distribution after the pretext
task training, we resort to a simpler metric for active learning - the pretext
task loss. In this section, we propose and validate a hypothesis, and use these
evidences to formulate our AL algorithm. Our hypothesis is that:

H1: Pretext task loss is correlated with the main task loss.
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Fig. 2: (From left to right) The loss rank correlation plots for the main task loss
and the pretext task loss in CIFAR10, Caltech-101 and ImageNet. The x and y
axes represent the normalized rank of the two losses, respectively

We think that if a pretext task is correlated or representative of the main task,
images that are hard (i.e. having high loss values) for the pretext task will also
be hard for the main task.

Fig. 2 presents scatter plots of the pretext task loss and the main task loss
in three benchmark datasets. The x-axis is the normalized rank of the main task
loss, and the y-axis is the normalized rank of the pretext task loss. The pretext
task and the main task are independently trained with the training set, and the
losses are computed in the test set. For ease of interpretation, we visualized 1,000
random samples on the plots. Spearman’s rank correlation [42] denoted as ρ is
calculated on the full test set.

As illustrated in Fig. 2, the pretext and main task losses have a strong positive
correlation. That is, if a data sample has high loss for a pretext task, it is likely for
it to have high loss for the main task, and vice versa. We observe high ρ values for
all three datasets: CIFAR10 (ρ = 0.79), Caltech-101 (ρ = 0.78), and ImageNet
(ρ = 0.88). Note that these datasets vary in image size, number of classes,
and class balance. The strong correlation between the pretext task loss and the
main task loss across diverse datasets validates our hypothesis, and thus is a
strong evidence for using pretext task losses for active learning. However, there
is one caveat to the hypotheses: methods that use contrastive loss as the pretext
task [18, 8, 9] do not have a strong loss correlation. (ρ = −0.001 for SimSiam) We
contribute this result to two main reasons: class bias of the contrastive loss and
strong reliance to augmentations. Details are explained in the supplementary
material. Even if we could find a way to achieve close correspondence with the
main loss, we decide not to use contrastive methods since the large batch size
and long training time generally required for these methods beat our purpose
of a simple and quick AL model. Details are explained in the supplementary
material.

Throughout this work, we validate the efficacy of PT4AL with 4 different pre-
text tasks: Rotation prediction [16], colorization [48], solving jigsaw puzzles [34],
and SimSiam [9]. We compare and analyze the efficacy of different pretext tasks
on classification and semantic segmentation in Section 6.2. Since rotation pre-
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diction [16] performs best in CIFAR10 and colorization [48] performs the best in
Cityscapes, we use rotation prediction for image classification main tasks, and
colorization for semantic segmentation.

4 Method

In this section, we introduce the specifics of PT4AL. First, we provide a brief
overview of our active learning algorithm. Then we provide details of the pretext
task learning for batch split and in-batch sampling in the following sections.

4.1 Overview

In a typical active learning scenario, we are initially provided with a pool of
unlabeled data xU ∈ XU . The objective of AL is to achieve the best performance
in the main task model Fm(·) with a limited amount of labeled data. In specific,
we follow the batch mode active learning scheme: in the i-th AL iteration, we
select K samples from Xi

U , add them into labeled pool (Xi
L, Y

i
L) with oracle,

train and evaluate F i
m(·) with (Xi

L, Y
i
L). The iterations are repeated until the

specified labeling budget is reached.
The overall framework of PT4AL is illustrated in Fig. 1. PT4AL is split into

two parts: pretext task learning for batch split and in-batch sampling. Pretext
task learning is done prior to the AL iterations. We train a pretext task learner
with XU . The unlabeled samples are sorted in descending order of their pretext
task losses, and split into batches. The in-batch sampling is done at each AL
iteration. At the i-th iteration, the sampling module selects K samples from
the i-th batch, according to the uncertainty of the main task learner in these
samples. The main task learner F i

m(·) is trained with (Xi
L, Y

i
L) and evaluated on

the test set.

4.2 Pretext Task Learning for Batch Split

In this section, we explain how a pretext task is used for active learning batch
split. The term batch refers to a pool of unlabeled data to be sampled in an AL
iteration. While any pretext task can be used in our method, we use the widely
used rotation prediction task [16] for the explanation. For the rotation prediction
task, the backbone neural network [19] is trained on all four orientations (0◦,
90◦, 180◦, 270◦ degrees) of the input image. The loss function is defined as the
average of the losses for each orientation:

loss(xi, θp) =
1

k

k∑
y=1

LCE(Fp(g(xi | y) | θp), y) (1)

Where LCE is the cross-entropy loss. The rotation operator g(· | y) yields the
rotated input image according to the orientation label y. We define k = 4 since
we predict four different rotations. Fp represents the probability distribution of
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the input image rotated by label y. Note that the rotation label y is unknown to
Fp. In inference, four orientations of each image is fed into the trained network
Fp and the extracted loss is the same averaged loss loss(xi, θp) used in training.
Fp is trained and tested on the same unlabeled set XU . The model weights θp
with the best test accuracy is used for loss extraction.

After training the pretext task learner, we extract pretext task loss values
from XU and split them into batches. Given the pretext task loss values of the
unlabeled data lossXU

in the pretext task learning phase, we first sort the losses
in descending order. The sorted data XU is then divided into I batches of equal
size. The number of I is equal to the number of AL iterations: if there are ten
iterations(I = 10), there will be ten batches B = {bi}I=10

i=1 .

4.3 In-batch Sampling

The in-batch sampler selects K samples at each AL iteration. At the i-th it-
eration, the in-batch sampler ϕ(·) selects K samples from the i-th batch to be
annotated by the oracle. The sampler computes the top-1 posterior probability
in the given batch using the previous main task learner F i−1

m , and K data points
with the lowest confidence scores are selected. In the first iteration, K points are
sampled from the first batch b0 at even intervals. Equation 2 summarizes the
sampler ϕ(·). The sampling makes use of the main task model from the previous
iteration, F i−1

m .

ϕ(bi, F
i−1
m ) = minK{max(F i−1

m (bi | θm))} (2)

Algorithm 1 illustrates our overall sampling algorithm including batch splitting
and in-batch sampling. In the first iteration when we do not have F 0

m, we uni-
formly select samples in the first batch, based on our empirical observation that
visually similar samples have similar pretext task loss values. Sampled data have

Algorithm 1 Sampling Strategy

Input: Unlabeled XU , labeled XL, pretext task losses lossXU , main task model Fm

XU = sort(lossXU ) ▷ Sort losses in descending order
Split XU into batches B
for bi in B do

if i == 1, XK = uniform(bi, loss
i
XU

) ▷ For the first batch, uniformly sample
else, XK = ϕ(bi, F

i−1
m ) ▷ For other batches, sample top-K uncertain data

XU ← XU −Xk ▷ Remove from unlabeled pool
XL ← XL ∪Xk ▷ Add to labeled pool
train F i

m with XL

end for

two main traits: difficult and representative. Difficult or uncertain data refers to
data that the main task model cannot easily distinguish because it is near a
decision boundary. Conversely, representative data well defines the distribution
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in the feature space. Our intuition is that if we can sample data from both
categories, we can form a labeled pool with the most informative data. This is
empirically verified through query analysis in Section 5. Our batch split method
combined with the sampler samples both representative and difficult data. Our
method is much simpler and well performing compared to previous works that
sample data from both traits [20, 45, 1].

5 Experiments

We evaluate the efficacy of our method on two commonly used visual recog-
nition tasks: image classification and semantic segmentation. We choose CI-
FAR10 [24], Caltech-101 [14], ImageNet [12] benchmarks for image classifica-
tion, and Cityscapes [11] for semantic segmentation. To further demonstrate our
method’s efficacy in a more challenging class-imbalanced setting, we additionally
use a class-imbalanced version of CIFAR10. Finally, we show the use of PT4AL
as an effective solution to the cold start problem. Unless otherwise specified, all
the experiment results are reproduced by ourselves, averaged over multiple runs
with different random seeds.

5.1 Image Classification

Dataset We perform experiments on three image classification datasets with
varying size and number of classes. CIFAR10 contains 50,000 training and 10,000
testing images of size 32 × 32 with 10 object categories. We start with 1,000
labeled images, and 1,000 images are added for each iteration. Caltech-101 has
9,144 images of size around 300 × 200 distributed around 101 classes. We divide
the data into 8,046 for training and 1,098 for testing. Similar to CIFAR10 we
also start with 1,000 labeled images with increments of 1,000 per iteration. Ima-
geNet consists of over 1.3M images of 1,000 classes. 1,279,867 and 49,950 images
are used for the training and testing set. For ease of experimentation and to
avoid noise from similar class labels, ImageNet classes are reduced to 67 based
on the WordNet [36] superclasses. ImageNet starts with K ≈ 128, 000 labeled
samples, and the same K samples are selected for each iteration. Due to heavy
computation, each ImageNet performance is the average of 3 runs.

Baselines and implementation details We compare PT4AL with random sam-
pling, Core-Set [38], Variational Adversarial Active Learning (VAAL) [41], Learn-
ing Loss [46], CoreGCN [5], and PAL [3]. For CIFAR10 we add “Learning
loss(detached)”, where the loss prediction task is detached during supervised
learning to avoid influences from multi-task learning. ResNet-18 [19] is used as
the backbone network for the pretext task and the main task learner. The final
linear layer of the pretext task learner is converted to (512,4) to account for
the four orientations of the rotation task. For Caltech-101 and ImageNet, input
images are resized into 224 × 224. No data augmentation is applied in the pre-
text task learning phase. Random resized crop and horizontal flip is applied in
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(a) CIFAR10 (b) Caltech-101 (c) ImageNet-67

Fig. 3: Comparison of image classification performance on CIFAR10, Caltech-
101, ImageNet-67. Best viewed in color

the main task phase. The main task is trained for 200 epochs in CIFAR10 and
Caltech-101, and 100 epochs in ImageNet. SGD with a multi-stage learning rate
is applied. Detailed hyper-parameters are described in the supplement material.

Results Fig. 3a demonstrates the results for CIFAR10. PT4AL clearly out-
performs other methods across all AL iterations by a noticeable margin. The
accuracy of PT4AL in the final iteration of 10,000 labeled points is 95.13% (↑
8.91%), while the second-best performing learning loss scores 89.93% (↑ 3.71%).
Note that detached learning loss [46] performs significantly worse than the orig-
inal multi-task learning approach, where the main task model is simultaneously
trained with auxiliary tasks. The significant drop in performance due to the de-
tachment indicates that the multi-task approaches [46, 41, 5] may benefit from
multi-task learning. To strictly measure the benefit of AL to select informa-
tive samples, we need to compare the detached setting across all methods. Our
method also has a significant advantage from the first iteration, achieving an
accuracy of 55.83% (↑ 9.81%) compared to the other methods’ 46.02%. This
emphasizes the advantage of PT4AL sampling informative points in the first
iteration, instead of random sampling in other AL frameworks. Further details
of PT4AL solving the cold-start problem is described in Section 5.4.

Similar results can also be observed in Caltech-101 and ImageNet, in Fig. 3b
and Fig. 3c. Our method outperforms other methods across most of the iterations
with a considerable advantage from the start.

Query Analysis Fig. 4 illustrates t-SNE [31] embeddings of the CIFAR10 data
points sampled by random, learning loss [46] and ours. For a fair comparison,
we use embeddings extracted from a ResNet-18 model trained with fully labeled
CIFAR10. To visualize the sampled data in different methods across the AL it-
erations, each of the 1,000 samples from the first iteration are marked in circle,
fifth iteration in triangle, and tenth (last) iteration as square. Fig. 4a shows that
random sampling queries evenly from the embedding space, but fails to sample
difficult data points along the decision boundaries. As shown in Fig. 4b, learning
loss [46] has most of its queries concentrated on the border regions. While this
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(a) Random (b) Learning loss (c) PT4AL(Rotation)

Fig. 4: t-SNE visualization of the CIFAR10 dataset for random, learning loss [46]
and PT4AL. Vivid points are sampled for labeling. Best viewed in color

(a) Cityscapes (b) Imbalanced CIFAR10

Fig. 5: Comparison of cityscapes semantic segmentation and imbalanced cifar10
classification. Best viewed in color

may be effective for the labeled classifier to learn difficult points, it does not
query points that represent the classes well. Fig. 4c shows that PT4AL queries
from both difficult and representative regions. The sampled points are either
concentrated on the class boundaries or evenly located in the class distributions.
Since PT4AL initially samples from batches with higher pretext loss values, se-
lected points from the first iteration are concentrated on the decision boundaries
of the embedding space. As the sampler progresses to batches with lower loss
values, we can see that the sampled points propagate to the remaining regions
of the class clusters. Such sampling behavior is a mix of both distribution and
uncertainty-based methods, mitigating their flaws while sampling both difficult
and representative data points.

5.2 Semantic Segmentation

Dataset We choose Cityscapes [11], a public benchmark dataset widely used in
semantic segmentation. The dataset consists of 2,975 training and 500 validation
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images. At each AL iteration, 100 images are sampled for the labeled training
set. The original training set is set as the unlabeled set.

Baselines and Implementation Details We choose the state-of-the-art active
learning methods for this experiment: Core-Set [38], Learning loss [46], VAAL [41],
TA-VAAL [23], and PAL [3]. We choose a widely-used semantic segmentation
architecture, DeepLab [7] with a ResNet-101 [19] backbone. The model is ini-
tialized with ImageNet [13] pre-trained weights. The input images are resized to
(1024,512) and no data augmentation is applied. The training batch size is 1,
and all hyper-parameters follow the original paper [7], unless otherwise specified.

Results Fig. 5a demonstrates that PT4AL outperforms all other methods by
a noticeable margin across all iterations. The performance improvement at the
first iteration is also significant, showing that PT4AL is an effective solution for
the cold start problem. Note that learning loss [46], VAAL [41] and Core-Set [38]
are not as effective as in CIFAR10, sometimes being worse or on-par with the
random selection baseline. One possible reason for the universal effectiveness of
PT4AL across tasks is that the nature of PT4AL can dynamically change with
respect to the pretext task being used. A more detailed analysis among pretext
tasks is described in Section 6.2.

5.3 Image Classification on an Imbalanced Dataset

Dataset & Experiment details To evaluate the efficacy of PT4AL on a more
challenging class-imbalanced setting, we recompose the CIFAR10 dataset. The
number of images for each class is as follows: airplane-500, automobile-1,000,
bird-1,500, cat-2,000, deer-2,500, dog-3,000, frog-3,500, horse-4,000, ship-4,500
and truck-5,000. All implementation details are identical to the balanced CI-
FAR10 described in 5.1, except for dataset composition.

Results Fig. 5b demonstrates the performances of PT4AL and other baselines on
imbalanced CIFAR10. PT4AL outperforms other baselines across all iterations
by a large margin. In the pretext task, data from classes with little training data
generally have high loss, and classes that have abundant training data generally
have low loss values. Since PT4AL samples from data batches with high to low
loss, it can sample in a class-balanced way even in imbalanced settings. Also,
unlike other methods using only the main task model related metrics, PT4AL
utilizes the pretext task loss which is completely independent from the main
task model. Interestingly, unlike the experiment results in balanced CIFAR10,
data distribution-based AL methods (Core-Set, CoreGCN) obtains higher perfor-
mance than the uncertainty-based methods (VAAL, learning loss). These results
empirically show that uncertainty-based methods are more negatively affected by
the class-imbalanced setting than the distribution-based methods. PT4AL out-
performs other methods by a margin, showing robustness on a more challenging
class-imbalanced setting. Furthermore, we observe that PT4AL samples data in
a more class-balanced way. Details on the class distribution of the sampled data
are in the supplementary material.
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5.4 Cold Start Problem in Active Learning

Since most AL approaches require a trained main task model, the first AL it-
eration starts with randomly selected labeled data. This is what we call the
cold start problem in active learning. To thoroughly validate the efficacy of our
method as a solution to the cold start problem, we take a closer look into the
first AL iteration in the CIFAR10 benchmark. Note that all other methods use
random selection for the first iteration. For PT4AL, after training the pretext
task learner, the unlabeled data are sorted by pretext task loss in a descending
order, split into 10 batches, and 1,000 data points are uniformly selected from
the first batch. The experiment is repeated 20 times with different random seeds.
All implementation details are identical to Section 5.1.

Table 1 summarizes the experiment results. PT4AL displays more stable per-
formance compared with random sampling in the first iteration, as the standard
deviation is smaller, and the gap between the max/min accuracy is smaller than
that of the random baseline. PT4AL significantly outperforms random in the
average accuracy, indicating that more informative data points are sampled for
the main task model. These results indicate that PT4AL is a good solution to
the cold start problem, and can be used as a good starting point for existing AL
methods [46, 41, 23, 29, 5]. More details are in the supplement material.

Table 1: Results of the first active learning iteration in CIFAR10
Method Mean accuracy Min / Max

Random 47.49± 3.15% 43.06 / 53.74 %
PT4AL(Rotation) 55.20± 1.95 % 52.00 / 57.71 %

5.5 Computational Overheads

As described in Section 4, the extra computation for PT4AL, apart from the
main task model training, is the pretext task learning for batch split, and the
unlabeled data inference for uncertainty measurement in in-batch sampling. To
fairly compare the computational overheads of different approaches, we measure
the wall-clock time of the methods compared in CIFAR10 experiment under the
same environment. In Fig. 3a and Table 2, we can observe that PT4AL achieves
the best performance while having on-par computational overheads with others.
Core-Set [38] has similar computations as the random selection baseline.

Table 2: The wall-clock time of each algorithm in the CIFAR10 experiment
Method Random Selection PT4AL Learning Loss [46] VAAL [41] CoreGCN [5]

Time 2hr 16min 3hr 36min 2hr 37min 14hr 9min 3hr 48min
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(a) Component Ablation (b) CIFAR10 (c) Cityscapes

Fig. 6: (a) Ablation on two components of PT4AL. (b),(c) PT4AL with different
pretext tasks on CIFAR10 and Cityscapes

6 Ablation Study

6.1 Ablation on sampling strategy and pretext task loss

Fig. 6.a shows the ablations results of the two core components of PT4AL.
Instead of the pretext task loss, “Sampling only” uses the main task model’s
entropy. Batches are made by randomly segmenting the unlabeled data. Data
in the first iteration are randomly sampled as there is no main task model to
begin with. “Pretext only” replaces our proposed sampling method with a naive
sampling of high-loss samples or low-loss samples. Compared with PT4AL which
uses both heuristics, the two variations display inferior performance. Using both
components is imperative to a well-performing model.

6.2 Pretext Tasks

Fig. 6.b and Fig. 6.c presents active learning performance of PT4AL using dif-
ferent pretext tasks. Rotation prediction [16], colorization [48], solving jigsaw
puzzles [34], and SimSiam [9] are compared in CIFAR10 and Cityscapes bench-
marks. The experiment settings are identical to Section 5.1 and Section 5.2. The
inferior performance of SimSiam is analyzed in detail in the supplement mate-
rial. The rotation prediction task shows the best performance in CIFAR10, and
the colorization task performs best in Cityscapes. The best performing pretext
task differs by the main task. Since rotation prediction is an image-level task
and colorization is a pixel-level task, it is intuitive to match rotation prediction
with image classification and colorization with segmentation.

6.3 Sampling Strategy

Sampling in the first iteration In the first iteration, we do not have access to
the main task model for uncertainty measurement. Thus, sampling within the
first batch resorts to sampling with the pretext task losses. We compare three
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simple sampling methods in CIFAR10: top-K, random, and uniform. The per-
formances for top-K loss, random, and uniform sampling are 44.65%, 51.88%,
and 55.20%, respectively. As the uniform sampling outperforms the other two
sampling methods, we choose it as our in-batch sampling method for the first
iteration. We observe that the samples with similar loss values are visually sim-
ilar, indicating overlapping semantic information in the top-K sampling. This
observation is also coherent with the best performance of uniform sampling, as
it avoids selecting data points with visually too similar data points. More details
are in the supplementary material.

High loss first vs Low loss first batch split We examine two different strategies
for batch split: high loss batch first or low loss batch first. High loss batch first
method starts the first iteration with the batch containing the highest pretext
task losses, then moves to batches with lower losses for consecutive iterations.
Low loss batch first is in reverse. On the CIFAR10 experiment, the high loss first
strategy displays slightly better results with 55.20% accuracy in the first iter-
ation and 95.13% from the last iteration. Low loss first strategy scores 53.47%
and 94.59% in the first and last iterations. We attribute the small performance
difference between the two batch split methods to a finding in curriculum learn-
ing [44]. Low loss batch first and high loss batch first are analogous to curriculum
learning and anti-curriculum learning, respectively. Wu et al. [44] concludes that
curriculum or anti-curriculum is not effective in standard settings, which ex-
plains the small performance gap. As the high loss first method performs better
across all iterations, we choose it as our batch split method.

7 Conclusion

In this paper we introduce PT4AL, a novel active learning method based on pre-
text tasks. We demonstrate the correlation between pretext tasks and semantic
recognition tasks, and utilize the pretext task losses to split unlabeled samples
into batches. In the query analysis in Section 5, we show that the batches are scat-
tered across the whole semantic distribution. Combined with the uncertainty-
based in-batch sampler, PT4AL samples both difficult and representative data
from the unlabeled pool. We thoroughly examine our method on two widely
used vision tasks across various datasets. Our method demonstrates compelling
results on datasets with varying resolution, scale and class distribution. We also
show that PT4AL is an effective solution for the cold start problem. Although
our proposed method performs well on different tasks and datasets, performance
varies by the pretext task being used and some tasks such as SimSiam [9] perform
poorly. Future research directions may include designing a pretext task that is
universal across various recognition tasks.
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