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Abstract. Recently, vision transformers started to show impressive re-
sults which outperform large convolution based models significantly. How-
ever, in the area of small models for mobile or resource constrained de-
vices, ConvNet still has its own advantages in both performance and
model complexity. We propose ParC-Net, a pure ConvNet based back-
bone model that further strengthens these advantages by fusing the mer-
its of vision transformers into ConvNets. Specifically, we propose position
aware circular convolution (ParC), a light-weight convolution op which
boasts a global receptive field while producing location sensitive features
as in local convolutions. We combine the ParCs and squeeze-exictation
ops to form a meta-former like model block, which further has the at-
tention mechanism like transformers. The aforementioned block can be
used in plug-and-play manner to replace relevant blocks in ConvNets
or transformers. Experiment results show that the proposed ParC-Net
achieves better performance than popular light-weight ConvNets and
vision transformer based models in common vision tasks and datasets,
while having fewer parameters and faster inference speed. For classifi-
cation on ImageNet-1k, ParC-Net achieves 78.6% top-1 accuracy with
about 5.0 million parameters, saving 11% parameters and 13% compu-
tational cost but gaining 0.2% higher accuracy and 23% faster inference
speed (on ARM based Rockchip RK3288) compared with MobileViT,
and uses only 0.5× parameters but gaining 2.7% accuracy compared
with DeIT. On MS-COCO object detection and PASCAL VOC segmen-
tation tasks, ParC-Net also shows better performance. Source code is
available at https://github.com/hkzhang91/ParC-Net
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1 Introduction

Recently, various vision transformers (ViTs) models have achieved remarkable
results in many vision tasks, forming strong alternatives to convolutional neural
networks (ConvNets) [5] [33] [21].

However, we believe both ViTs and ConvNets are indispensable for the follow-
ing reasons: 1) From application perspective, both ViTs and ConvNets have their
advantages and disadvantages. ViT models generally have better performance
but usually suffer from high computational cost and are difficult to train [33].
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Compared with ViTs, ConvNets may show inferior performance, but they still
have some unique advantages. For instance, ConvNets have better hardware
support and are easy to train. In addition, as is summarized in [9] and our ex-
periments, ConvNets still dominate in the area of small models for mobile or
edge devices. 2) From the information processing perspective, both ViTs and
ConvNets have unique features. ViTs are good at extracting global information
and use attention mechanism to extract information from different locations
driven by input data [3] [25]. ConvNets focus on modeling local relationships
and have strong prior by inductive bias [4]. The above analysis naturally raise
a question: can we learn from ViTs to improve ConvNets for mobile or edge
computing applications?.

In this paper, we aim to design new light-weight pure ConvNets that further
enhance its strength in the area of mobile and edge computing friendly models.

Pure convolution is more mobile friendly because convolutions are highly
optimized by existing tool chains that are widely used to deploy model into
these resource constrained devices. Even more, because of the huge popularity
of ConvNets in the past few years, some existing neural network accelerators
are designed mainly around convolution style operations, and the complex non-
linear operations such as softmax and data bus bandwidth demanding large
matrix multiplications are not efficiently supported. These hardware and soft-
ware constraints make a pure convolutional light-weight model more preferable
even if a ViT based model is equally competitive in other aspects.

To design such a ConvNet, we compare ConvNets with ViTs and summa-
rize three main differences between them: 1) ViTs are good at extracting global
features [3] [25] [4]; 2) ViTs adopt Meta-former block [40]; 3) Information aggre-
gations in ViTs are data driven (data dependent dynamic computation). Cor-
responding to these three points, we design our ParC block. 1) We propose the
position aware circular convolution (ParC) to extract global features; 2) Based
on the proposed ParC, we build a pure ConvNet Meta-former block as the ba-
sic outer structure; 3) We add channel wise attention module to the feature
forward network (FFN) part of meta-former, which makes our proposed ParC
block adapt kernel weights according inputs. Finally, inspired by CoatNet [4] and
MobileViT [25], we use a bifurcate structure (section 3.2) as the outer frame to
build a complete network ParC-Net.

Experiment results show that the proposed ParC-Net achieves solid per-
formance on three popular vision tasks, including image classification, object
detection and semantic segmentation. Taking experiment results of image clas-
sification as an example, ParC-Net achieves 78.6% top-1 accuracy with about
5.0 million parameters, saving 11% parameters and 13% computational cost
but gaining 0.2% higher accuracy and 23% faster inference speed (on Rockchip
RK3288) compared with MobileViT [25]. For experiments of object detection and
semantic segmentation, compared with other light-weight models, the proposed
ParC-Net achieves higher mAP and mIOU, while having fewer parameters.

Our main contributions are summarized as follows:
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– To overcome the restriction that traditional convolutions have limited per-
ception fields, we propose position aware circular convolution (ParC), where
base-instance kernel and position embedding strategies are used to handle
input size variations and inject location information to output feature maps
respectively. We jointly use the proposed ParC and conventional convolution
operations to extract local-global features, which brings higher accuracy.

– We propose ParC-Net, a pure ConvNet for mobile and edge computing appli-
cations. The proposed ParC-Net inherits advantages of ConvNets and ViTs.
To our knowledge, this is the first attempt that combines strengths of Con-
vNets and ViTs to design a light-weight ConvNet.

– We apply the proposed ParC-Net on three vision tasks. Compared with the
baseline model, the proposed ParC-Net achieves better performance on all
three tasks, while having fewer parameters, lower computational cost and
higher inference speed.

2 Related work

2.1 Vision transformers

Vaswani et al. firstly proposed transformer [34] for natural language processing
(NLP) tasks. Compared with recurrent neural network (RNN) models, trans-
former has much higher computational efficiency and it is good at capturing
relationship from any pair of elements in the input sequence. As a result, trans-
formers replaced RNNs and dominate the NLP field.

In 2020, Dosovitskiy et al. introduced transformer into vision tasks and pro-
posed vision transformer (ViT) [5], where each image is cropped into a sequence
of patches to meet the input requirement of transformer and PE is adopted
to ensure the model is sensitive to position information of the input patches.
With pre-training on huge datasets such as JFT-300M [29], ViT achieves im-
pressive performance on various vision tasks. However, the original ViT model
has some restrictions, for instance, it is heavy-weight, having low computational
efficiency and hard to train. Subsequent variants of ViTs are proposed to over-
come these problems. From the point of improving training strategy, Touvron et
al. [33] proposed to use knowledge distillation to train ViT models, and achieved
competitive accuracy with less pre-training data. To further improve the model
architecture, some researchers attempted to optimize ViTs by learning from
ConvNets. Among them, PVT [35] and CVT [37] insert convolutional opera-
tions into each stage of ViT model to reduce the number of tokens, and build
hierarchical multi-stage structures. Swin transformer [21] computes self atten-
tion within shifted local windows. PiT [11] jointly use pooling layer and depth
wise convolution layer to achieve channel multiplication and spatial reduction.
CCNet [15] propose a simplified version of self attention mechanism criss-cross
attention and inserted it into ConvNet to build ConvNet which has global re-
ceptive field. These papers clearly show that some techniques of ConvNets can
be applied on vision transformers to design better vision transformer models.
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2.2 Hybrid structures combining ConvNet and vision transformers

Another popular line of research is combining elements of ViTs and ConvNets to
design new backbones. Graham et al. mixed ConvNet and transformer in their
LeVit model, which significantly outperforms previous ConvNet and ViT models
with respect to the speed/accuracy tradeoff [8]. BoTNet [28] replaces the stan-
dard convolution with multi-head attention in the last several blocks of ResNet.
ViT-C [38] adds early convolutional stem to vanilla ViT. ConViT [6] incorpo-
rates soft convolutional inductive biases via a gated positional self-attention.
The CMT [9] block consists of depth wise convolution based local perception
unit and a light-weight transformer module. CoatNet [4] merges convolution
and self-attention to design a new transformer module, which focuses on both
local and global information. After comprehensive comparison, we find that these
hybrid models simultaneously employed similar structure, that is using convo-
lutional stem to extract local features in the beginning stages and transformer
style models later to extract global or local-global features. We choose a similar
structure when designing our pure convolutional model.

2.3 Light-weight ConvNets and ViTs

Since 2017, light-weight ConvNets attract much attentions as more and more ap-
plications needs to run ConvNet models on mobile devices. Now, there are a lot
of light-weight ConvNets, such as ShuffleNets [24] [24], MobileNets [13] [27] [12],
MicroNet [18], GhostNet [10], EfficientNet [32], TinyNet [2] and MnasNet [31].
Compared with standard ConvNets, light-weight ConvNets have fewer param-
eters, lower computational cost and faster inference speed. In addition, light-
weight ConvNets can be applied on a wide range of devices. Despite these bene-
fits, these light-weight models have inferior performance compared with heavy-
weight models. Very recently, following the research line of combining strengths
of ConvNet and ViT, some researcher attempted to build light-weight hybrid
models for mobile vision tasks. Mobile-Former presents a parallel design of Mo-
bileNet and transformer, which leverages the advantages of MobileNet at extract-
ing local features and transformer at capturing global information [3]. Mehta and
Rastegari proposed MobileViT, where the upper stages of MobileNetv2 [27] are
replaced with MobileViT block [25]. In MobileViT block, local representations
extracted by convolution and global representations are concatenated to generate
local-global representations.

In terms of purpose, our proposed ParC-Net is related to Mobile-Former and
MobileViT. Different from these two models which still keep transformer blocks,
our proposed ParC-Net is pure ConvNet, which makes our proposed ParC-Net
more mobile friendly. Our experiments of deploying models on low power plat-
form confirm this point. In terms of designing a pure ConvNet via learning from
ViTs, our work is most closely related to a parallel work ConvNext [22]. The
two major differences are: 1) Ideas and architectures are different. The Con-
vNext modernizes a standard ResNet toward the design of a vision transformer
by introducing a series (more than ten) of incremented but effective designs.
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Fig. 1. ParC block. (a) A residual block that is widely used in ConvNets; (b) A ViT
block; (c) An ParC block

Our proposed ParC-Net starts from three main differences between ConvNets
and ViTs and fills the gaps from macro level. As the ideas are different, the
corresponding structures are also different; 2) They are proposed for different
purposes. Our ParC-Net is proposed for mobile devices. Compared with Con-
vNext, the proposed ParC-Net shows advantages when constraining models as
light-weight models.

3 The proposed method

In this section, we will introduce our ParC-Net in two parts, the details of the
building block (ParC block) and the overall model structure (ParC-Net).

3.1 ParC block

The upper part of Figure 1 shows three major differences between common
ConvNets and ViTs. The bottom half of Figure 1 illustrates the architecture of
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Fig. 2. Illustration of the position aware circular convolution. (a) ParC-V; (b) ParC-H.
F , EV and EH are explained in equations 1 and 2

our proposed ParC block. In the following, we will explain the motivation and
the specific structure of each component of the proposed ParC block.
Extracting global features with ParC. In ConvNets, feature is calculated
as yi =

∑
j∈L(i) wi−jxj , where xi, yi are the input and output at position i

respectively, and L(i) denotes a local neighborhood of i. In ViTs, self-attention

modules extracts features based on formula yi =
∑

j∈G
e(x

T
i xj)∑

k∈G e(x
T
i

xk)
xj , where

G means the global spatial space. Comparing these two formulas, we can see
that self attention learns global features from the entire spatial locations but
convolution gathers information from a local receptive field.

To overcome this issue, we propose the position aware circular convolution
(ParC). As shown in Figure 2, our proposed ParC has two types, one is ParC
of vertical direction (ParC-V) and the other one is ParC of horizontal direction
(ParC-H). The receptive field of the ParC-V and ParC-H covers all pixel in the
same column and the same row, respectively. Jointly using ParC-V and ParC-H
can extract global features from all input pixels. For notational simplicity, we
assume the input x has only one channel and the corresponding shape is 1×h×w.
The output of ParC-V at location (i, j) is computed with:

peV = F (p̃eV ) = [peV0 , pe
V
1 , · · · , peVh−1]

T

peVe = EV (peV , w)

kV = F (k̃) = [kV0 , kV1 , · · · , kVh−1]

xp = x+ peVe

yi,j =
∑

t∈(0,h−1)

kVt xp
((i+t)modh,j)

(1)

where, peV is instance position embedding (PE) and it is generated from a base

embedding p̃eV via bilinear interpolation function F (). Here F () is used to adapt
the size of position embedding to the size of input features. peVe is expanded PE.
kV is instance kernel. EV () is an expand function of vertical direction. After
copying the input vector w times, EV () concatenates these copied vectors along
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Fig. 3. Illustration of global circular convolution on horizontal direction.

horizontal direction to generate a h× w-sized PE matrix. Similarly, the output
of ParC-H at location (i, j) can be expressed as:

xp = x+ peHe

yi,j =
∑

t∈(0,w−1)

kHt xp
(i,(j+t)modw)

(2)

where peHe = EH(peH , h) and EH() is an expand function. EH() expands
input vector along the vertical direction. Implementing the ParC in modern deep
learning libraries is straightforward. Taking the most complicated part yi,j =∑

t∈(0,w−1) k
H
t xp

(i,(j+t)modw) as an example, it can be implemented with one line

of code: y = F.conv2D(torch.cat(xp, xp, dim = 3), kH). Figure 3 illustrates the
computational process in the case that the input is an one dimensional vector.
From Figure 3, we can see that ParC-H perform convolutions along a circle
generated by connecting the start and the end of the input. So, we name the
proposed convolution as the circular convolution. The proposed ParC introduces
three modifications:

– The receptive field is increased to global spatial space. Note that, increasing
the kernel size of tradition local convolution to full input size does not extract
global features. In local convolution, zero padding is usually used to keep
the size of convolutional feature the same with that of the input. Even if
we increase the kernel size to global size, the global kernel only covers part
pixels coming from input. Especially for extracting feature in edge portion,
only about half of pixels that covered by global kernel are from input actual
input, while others are simply zeros.

– The PE is used to keep the output feature sensitive to spatial location.
Circular convolution can extract global features, but it disturbed the spatial
structure of the original input. For classification, keeping spatial structure
may not be a big issue. But, as is shown in ablation study, for location
sensitive tasks such as segmentation and detection, keeping spatial structure
does matter. Here, following the design in ViTs, we introduce PE to keep
spatial structure. Experiment results in ablation study show that PE is useful
in segmentation and detection tasks

– The kernel and PE are dynamically generated according to the input size.
In ParC, the sizes of kernels and PE codes must be consistent with that of
instance inputs. To handle the case that inputs have different spatial resolu-
tion, we generate instance kernels and PE codes via interpolation functions.
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Designing ParC block with ParC. From ConvNets to ViTs, a considerable
modification is meta-former block replaced residual block (the blue two-way ar-
row). A Meta-former block generally consists of a sequence of two components: a
token mixer and a channel mixer. The token mixer is for exchanging information
among tokens in different spatial locations. The channel mixer is for mixing in-
formation among different channels. Both two components use residual learning
structure.

Inspired by this, we insert ParC into Meta-former like block to build our ParC
block. Specifically, we replace self-attention module with the proposed ParC to
build an new spatial module to replace token mixer part. Here, we do this for
two main reasons: 1) ParC can extract global features and interacts information
among pixels from global space, which meets the requirement of token mixer
module; 2) the computation complexity of self attention module is quadratic.
Replacing this part with ParC can reduce computational cost significantly, which
is helps achieving our goal of designing a light-weight ConvNet. Based on the
proposed ParC, we build a pure ConvNet meta-former like block.

Adding channel wise attention in channel mixer part.In ViTs, self atten-
tion module can adapt weights according input, which makes ViTs data driven
models. By adopting attention mechanism, data driven models can focus on
important features and suppress unnecessary ones, which brings better perfor-
mance. Previous literature [14][36][16] already explained the importance of keep
model data driven.

By replacing the self-attention with the proposed global circular convolution,
we get a pure ConvNet which can extract global features. But the replaced model
is no longer a data driven model. To compensate, we insert channel wise attention
module into channel mixer part, as shown in Figure 1(c). Following SENet [14],
we first aggregate spatial information of input features x ∈ Rc×h×w via global
average pooling and get aggregated feature xa ∈ Rc×1×1; Then we feed xa into
a multi-layer perceptron to generate channel wise weight a ∈ Rc×1×1. The a is
multiplied with x channel wise to generate the final output.

3.2 ParC-Net

In section 3.1, we have presented the ParC block, which is a basic block and can
be inserted into most of the current existing models. In this section, we select
an outer frame for it and build the complete network ParC-Net.
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Currently, as shown in Figure 4, existing hybrid structures can be basically
divided into three main structures, including serial structure (Figure 4(a)) [8][38],
parallel structure (Figure 4(b)) [3] and bifurcate structure (Figure 4(c)) [25][4].
Among all three structures, the third one achieves best performance for now. At
present, bifurcate model CoatNet [4] achieves the highest classification accuracy
on Imagenet-1k. Mobile device aimed model MobileViT [25] also adopts the third
structure.

Inspired by this, we adopt bifurcate structure as our outer frame and build
our final outer frame based on MobileViT. Specifically, taking the outer frame
adopted in MobileViT as baseline, we further make some improvements:

– MobileViT consists of two major types of modules. Shallow stages consist
of MobileNetV2 blocks, which have local receptive field. Deep stages are
made up of ViT blocks, which enjoy global receptive field. We keep all Mo-
bileNetV2 blocks and replacing ViT blocks with corresponding ParC blocks.
This replacement converts the model from hybrid structure to pure ConvNet.

– We appropriately increase the widths of ParC blocks. Even so, the replaced
model still has fewer parameters and less computational cost.

– As show in Figure 4(c), the bifurcate structure contains some interaction
modules, which are in charge of interacting information between local and
global feature modules. In the original MobileViT, ViT blocks are the most
heavy modules. After replacing ViT blocks with ParC blocks, the cost of
these interaction modules becomes prominent. So, we introduce group con-
volution and point wise convolution into these modules, which decreases
number of parameters without hurting performance.

4 Experiment results

In experiments, we show the overall advantages of the proposed ParC-Net on
three typical vision tasks, and then conduct detailed study to show the value of
our design choices, the model scaling characteristics, and its speed advantage on
low power devices.

4.1 Image classification

We conduct image classification experiments on ImageNet-1k, the most widely
used benchmark dataset for this task. We train the proposed ParC-Net models
on the training set of ImageNet-1K, and report top-1 accuracy on the validation
set.

Training setting. As we adopt MobileViT like structure as our outer frame-
work, we train our model using a very similar training strategy as well. To be
specific, we train each model for 300 epochs on 8 V100 or A100 GPUs with
AdamW optimizer [23], where the maximum learning rate, minimum learning
rate, weight decay and batchsize are set to 0.004, 0.0004, 0.025 and 1024 re-
spectively. Optimizer momentum β1 and β2 of the AdamW optimizer are set to
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Frameworks Models # params (M) Top1(%)
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5.4 75.2
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Fig. 5. Classification experiment results on ImageNet-1K. (a) Accuracy vs model size.
Here we only keep part of comparison models for clarity. (b) Comparison of results
on image classification. ∗ indicates our implementation. Pre-ConvNets indicate classi-
cal ConvNets appeared before ViTs. Post-ConvNets denote ConvNets which integrate
merits of ViTs but still keep pure ConvNet structures.

0.9 and 0.999 respectively. We use the first 3000 iterations as warm up stage.
We adjust learning rate following the cosine schedule. For data augmentation,
we use random cropping, horizontal flipping and multi-scale sampler. We use
label smoothing [30] to regularize the networks and set smoothing factor to 0.1.
We use Exponential Moving Average (EMA) [26]. More details of the training
settings and link to source code will be provided in supplementary materials.

Comparison results. The experiment results of image classification are
listed in Figure 5. Figure 5 (a) shows that ParC-Net-S and MobileViT-S beat
other model by a clear margin. Figure 5 (b) shows comparison with more mod-
els. The proposed ParC-Net-S achieves highest classification accuracy, and have
fewer parameters than most models. Compared with the second best model
MobileViT-S, our ParC-Net-S decreases the number of parameters by 11% and
increases the top 1 accuracy by 0.2 percentage points.

Light-weight models. Table 1 shows comparison results among light-weight
models, which confirms our ideas and answers the question proposed in intro-
duction.

Firstly, comparing results of light-weight ConvNets with that of ViTs, light-
weight ConvNets show much better performance.

Secondly, comparing the popular ConvNets before ViT appears (pre-ConvNets),
ViTs and hybrid structures, hybrid structures achieve the best performance.
Therefore improving ConvNets by learning from the merits of ViT is feasible.

Finally, the proposed ParC-Net achieves the best performance among all
comparison models. So indeed by learning from ViT design, performance of pure
light-weight ConvNets can be improved significantly.
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Table 1. Comparisons of light-weight models on ImageNet-1K classification

Frameworks Models Date # params (M) Top1(%)

ShuffleNetV2(2.0×) ECCV 2018 5.5 74.5
Pre-CNNs MobileNetV3(1.0×) ICCV 2019 5.4 75.2

EfficientNet-B0 ICML 2019 5.3 76.3

ViTs T2T-ViT-7 ICCV 2021 4.3 71.7
DeiT-T ICML 2021 5.7 72.2

ViT-C NeurIPS 2021 4.6 75.3
Hybrid structures CoaT-Lite-T ICCV 2021 5.7 76.6

MobileViT-S ICLR 2022 5.6 78.4

Post-CNN ParC-Net-S - 5.0 78.6

Models # params (M) mAP
MobileNetV3
MobileNetV2
MobileNetV1
MixNet

4.9
4.3

22.0
22.1

5.1 22.2

23.0
4.5 22.3

MobileViT-XS

MobileViT-S (baseline)
ParC-Net-S (Ours)

2.7 24.8

5.7 27.7
5.2 28.8

MNASNet 4.9

25.1
ResNet50 22.9 25.2
VGG 35.6

# Params. (M)

m
A

P

ParC-Net-S

ResNet-50

MNASNet

（a） （b）

MobileViT-S

MobileViT-XS

MobileNetV1

Fig. 6. Object detection results on MS-COCO. (a) mAP vs model size. (b) Comparison
results

4.2 Object detection

We use MS-COCO [19] datasets and its evaluation protocol for object detection
experiments. Following [25][27], we take single shot object detection (SSD) [20] as
the detection framework and use separable convolution to replace the standard
convolutions in the detection head.

Experiment setting. Taking models pretrained on ImageNet-1K as back-
bone, we finetune detection models on training set of MS-COCO with AdamW
optimizer for 200 epochs. Batchsize and weight decay are set to 128 and 0.01.
We use the first 500 iterations as warm up stage, where the learning rate is
increased from 0.000001 to 0.0009. Both label smoothing and EMA are used
during training.

Comparison results. Figure 6 lists the corresponding results. Similar to
results in image classifiction, MobileViT-S and ParC-Net-S achieve the the sec-
ond best and the best in terms of mAP. Compared with the second best model,
ParC-Net-S shows advantages in both model size and detection accuracy.
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Models # params (M) mIOU
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MobileNetV2

MobileViT-XXS

MobileViT-XS

11.2
4.5

75.3
75.7

1.9 73.6

80.5
2.9 77.1

MobileViT-S (baseline) 6.4 79.1
ResNet-101 58.2

79.7ParC-Net-S (Ours) 5.8

# Params. (M)

m
IO

U

MobileNetV1
MobileNetV2

MobileViT-XS

ParC-Net-S

MobileViT-S

（a） （b）

Fig. 7. Semantic segmentation experiments on PASCAL VOC. (a) mIOU vs model
size.(b) Comparison results with more models.

Table 2. Ablation study. BK, MF, CA and PE denote big kernel, meta-former archi-
tecture, channel wise attention and position embedding. BK 1/4 and BK 1/2 means
the kernel size is set to 1/4 and 1/2 of the input features, respectively.

Row Task Kernel MF CA PE # params (M) Top1/mAP/mIOU
1 classification Baseline - - - 5.6 78.35
2 classification BK 1/4 Y Y N 5.0 78.46
3 classification BK 1/2 Y Y N 5.0 78.45
4 classification ParC N Y Y 5.3 76.00
5 classification ParC Y N Y 5.0 78.50
6 classification ParC Y Y N 5.0 78.63
7 classification ParC Y Y Y 5.0 78.63
8 detection Baseline - - - 5.7 27.7
9 detection ParC Y Y N 5.2 27.5
10 detection ParC Y Y Y 5.2 28.5
11 segmentation Baseline - - - 6.4 79.1
12 segmentation ParC Y Y N 5.8 79.2
13 segmentation ParC Y Y Y 5.8 79.7

4.3 Semantic segmentation

Experiment settings. DeepLabV3 is adopted as the semantic segmentation
framework. We fine tune segmentation models on training set of PASCAL VOC [7]
and COCO dataset, then evaluate trained models on validation set of PASCAL
VOC using mean intersection over union (mIOU) and report the final results for
comparison. We fine tune each model for 50 epochs with AdamW. Readers may
refer to more details about training settings in supplementary materials.

Comparison results. Results are summarized in Figure 7. We can see that
MobileViT-S and ParC-Net-S have the best trade-off between model scale and
mIOU. Compared with ResNet-101, MobileViT-S and ParC-Net-S achieve com-
petitive mIOU, while having much fewer parameters.
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4.4 Ablation study

Using the MobileViT as a baseline model, we further conduct ablation analysis
on three components proposed in our ParC-Net.

– Position aware circular convolution. The proposed ParC has two major
characteristics: 1) Circular convolution brings global receptive field; 2) PE
keeps spatial structure information. Experiment results confirm that both
characteristics are important. 1) Results in rows 1-3 show that, using big
kernel can also improve accuracy, but the benefit of it reaches a saturation
point when kernel size reaches a certain level. This results are consistent
with the statement claimed in [22]. Using ParC can further improve accu-
racy, as shown in rows 2-3 and 6-7. 2) Introducing PE to ParC is necessary.
As we explained in section 3.1, using circular convolution alone can indeed
capture global features but it disturbs the original spatial structures. For
classification task, PE has no impact (rows 6 and 7). However, for detection
and segmentation tasks which are sensitive to spatial location, abandoning
PE hurts performances (rows 9-10 and 12-13).

– Meta-former architecture. In experiments of abandoning Meta-former
architecture, we integrate ParC with the ResNeXt block [39] to replace Meta-
former architecture. By comparing row 4 and 7, we can see that using the
proposed pure ConvNet meta-former architecture is useful.

– Channel wise attention. Results in rows 5 and 7 show that using channel
wise attention can improves performance. Compared with ParC, channel
wise attention brings less benefit.

In summary, all three components are useful. Connecting them as a whole
achieves the best performance.

4.5 Inference speed on low power devices.

In this section, we conduct experiments to verify two points: 1) as we mentioned
in introduction, the ParC-Net is proposed for edge computing devices. To verify
whether the proposed ParC-Net meets our requirements, we deploy the proposed
ParC-Net on a widely used low power chip Rockchip RK3288 and an in house
low power neural network processor DP2000, compare it with baseline. We use
ONNX [1] and MNN[17] to port these models to chips and time each model
for 100 iterations to measure the average inference speed; 2) The proposed ParC
block is an plug-and-play block, it can be inserted into other models. We replaced
convolutions in the last few blocks of typical CNNs with our proposed ParC (with
PE and kernel generation etc.) Comparison results are listed in Table 3.

As shown in rows 1-4 of Table 3, compared with baseline, ParC-Net is 23%
faster on Rockchip RK3288 and 3.77 × faster On DP2000. Besides less FLOPs
operations, we believe this speed improvement is also brought by two factors: 1)
Convolutions are highly optimized by existing tool chains that are widely used
to deploy models into these resource constrained devices; 2) Compared with
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Table 3. Applying ParC-Net designs on different backbones. CPU used here is Xeon
E5-2680 v4. DP2000 is the code name of a in house unpublished low power neural
network processor that highly optimizes the convolutions. *denotes the models are
trained under convnext hyperparameters settings, which may not be the optimal. W
means network width. Latency is measured with batch size 1.

Row Models # param FLOPs Devices Speed (ms) Top1 (%)

1 MobileViT-S 5.6M 4.0G RK3288 457 78.4

2 ParC-Net-S 5.0M 3.5G RK3288 353 78.6

3 MobileViT-S 5.6M 4.0G DP2000 368 78.4

4 ParC-Net-S 5.0M 3.5G DP2000 98 78.6

5 ResNet50 * 26 M 4.1G CPU 98 78.8

6 ParC-ResNet50 * 24 M 4.0G CPU 98 79.6

7 MobileNetV2* 3.5M 0.6G CPU 24 70.2

8 ParC-MobileNetV2* 3.5M 0.6G CPU 27 71.1

9 ConvNext-T(0.5×W)* 7.4M 1.1G CPU 47 77.5

10 ParC-ConvNext-T(0.5×W)* 7.4M 1.1G CPU 48 78.3

convolutions, transformers are more data bandwith demanding as computing
the attention map involves two large matrices K and Q, whereas in convolutions
the kernel is a rather small matrix compared with the input feature map. In
case the bandwith requirement exceeds that of the chip design, the CPU will be
left idle waiting for data, resulting in lower CPU utilization and overall slower
inference speed;

Results in rows 3-10 show that our ParC-Net universally improves perfor-
mances of typical light weight models. MobileViT-S has much higher FLOPs
but achieves good trade-off between model size and accuracy, which excels in
its own application purpose. By applying our ParC-Net designs on MobleViT-S,
ParC-Net-S achieves better balance between model size, FLOPs and accuracy.
Results on ResNet50, MobileNetV2 and ConvNext-T shows that models which
focus on optimizing FLOPs-accuracy trade-offs can also benefit from ParC-Net
designs.

5 Conclusion

In this paper, for edge computing devices, we present ParC-Net, a pure ConvNet,
which inherits advantages of ConvNet and integrated structure characteristics
of ViT. To evaluate the performances, we apply the proposed model on three
popular vision tasks, image classification, object detection and semantic segmen-
tation. The proposed model achieves better performance on all three tasks, while
having fewer parameters compared with other ConvNet, ViT and hybrid models.
Experimental results on low power devices Rockchip RK3288 and our in house
processor DP2000 show that the proposed ParC-Net does inherit ConvNets and
it is well supported by edge computing devices.
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