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Algorithm 1: DualPrompt at training time
Input: Pre-trained transformer-based backbone f , final classification layer f�,
number of tasks T , training set {(xi,t, yi,t)}nt

i=1}
T
t=1, G-Prompt g, E-Prompt

E = {et}Tt=1, task keys K = {kt}Tt=1, startg, endg, starte, ende, prompting
function fprompt, number of training epochs of the t-th task Mt

Initialize: �, g, E, K
for t = 1, · · · , T do

Select the task-specific E-Prompt et and corresponding task key kt

Generate the prompted architecture fg,et : attach g and et to startg-th to
endg-th and starte-th to ende-th MSA layers respectively, with fprompt.

for e = 1, · · · ,Mt do
Draw a mini-batch B = {(xi,t, yi,t)}li=1

for (x, y) in B do
Calculate the prompted feature by fg,et(x)
Calculate the per sample loss Lx via equation 6

end
Update �, g, E, K by backpropagation

end

end

Algorithm 2: DualPrompt at test time
Given components: Pre-trained transformer-based backbone f , trained
classification layer f�, G-Prompt g, E-Prompt E = {et}Tt=1, task keys
K = {kt}Tt=1, startg, endg, starte, ende, prompting function fprompt

Input: test example x
Generate query feature q(x)
Matching for the index of E-Prompt via tx = argmint �(q(x),kt)
Select the task-specific E-Prompt etx

Generate the prompted architecture fg,etx
: attach g and etx to startg-th to

endg-th and starte-th to ende-th MSA layers respectively, with fprompt.
Prediction: fg,etx

(x)

A Algorithms for DualPrompt

The training and test time Algorithms for DualPrompt are illustrated in Algo-
rithm 1 and 2, respectively.

B Experimental details

For our method, DualPrompt, we use a constant learning rate of 0.005 usng
Adam [18] optimizer with �1 = 0.9 and �2 = 0.999, and a batch size of 128
for all benchmarks. For methods with the ViT architecture, all input images
are resized to 224 ⇥ 224 and normalized to [0, 1]. Otherwise, we follow their
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original implementation in their paper. We set the balancing factor � = 1
in equation 6. We train Split CIFAR-100 and 5-datasets for 5 epochs per task
and Split ImageNet-R for 50 epochs to ensure models converge properly for each
task, thus the issue of forgetting is disentangled from possible underfitting [3].
We further sample 20% of the training set of Split ImageNet-R as a validation
set for searching the optimal startg, endg, starte, ende, and empirically set
startg = 1, endg = 2, starte = 3, ende = 5 for all the setting, since we discover
they perform consistently well for all datasets. Following the suggestion of prompt
length by [59], we set Lg = 5 and Le = 20 for all datasets as well, and we further
verify the correctness of this choice in Appendix G. Note that for fair comparison,
we set M = 30, Lp = 20, N = 5 for L2P, which leads to similar amount of
parameters as DualPrompt.

To ensure fair comparison, every aforementioned methods start from the same
ImageNet pre-trained ViT-B/16 [9], following the setting in [59]. We carefully re-
implement these method and use hyper-parameters by referring to their original
source code. Moreover, we make the pre-trained model fully trainable for all
methods (except L2P and DualPrompt), as we empirically observe they could
not learn as good with a frozen backbone due to limited learning capacity.

C Evaluation metrics

Let St,⌧ be teh evaluation score, e.g., classification accuracy on the ⌧ -th task
after training on the t-th task. After the model finishes training on the t-th task,
we compute the Average Accuracy (At) and Forgetting (Ft) as follows:

At =
1

t

tX

⌧=1

St,⌧

Ft =
1

t� 1

t�1X

⌧=1

max
⌧ 02{1,··· ,t�1}

(S⌧ 0,⌧ � St,⌧ )

Note that Average Accuracy is the overall evaluation metric for continual learning,
which includes two aspects: greater learning capacity and less catastrophic
forgetting, while Forgetting only serves as a measure of catastrophic forgetting.

D Details of comparing methods

– Regularization-based methods. EWC [19] and LwF [27] are representative
regularization-based methods that are widely compared.

– Rehearsal-based methods. ER [7,13], GDumb [46], BiC [61], DER++ [3]
and Co2L [4]. As earlier methods, ER and GDumb achieve very strong
performance not only in their own work, but in later literature [34,3] as well.
BiC is also a strong method in the class-incremental learning setting. DER++
and Co2L are the latest SOTA methods. We chose a medium and a large
bu↵er size for these rehearsal-based methods, based on recommendation of
prior work [3,40,4,59].
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Fig. 5: Representative examples from Split ImageNet-R.

– Prompt-based method. L2P [59]is the current state-of-the-art prompt-
based method, we configure DualPrompt to have the similar amount of
additional parameters as L2P for fair comparison.

– Architecture-based methods. All these methods are based on ResNet-18,
as recommended in the original work. We either directly taken reported
results in their original work or strictly follow the original implementation
and hyper-parameter settings of these methods to reproduce the results. Some
other well-known methods [17,11,45] are not compared here because they
either have been outperformed by our compared methods or only verified on
simpler task-incremental setting.

E Split ImageNet-R: large intra-class diveristy

Figure 5 shows some representative examples of three di↵erent classes from Split
ImageNet-R. We can observe that although the images of the same row share
the same label, they actually di↵er a lot. This observation accords well with the
result in Figure 1 and Table 1 that rehearsal-based methods require a large bu↵er
size to perform well due to large intra-class diversity in Split ImageNet-R.

F Searching for multi-layered prompts

Based on the strategy in 4.2, we first search for the multi-layered E-Prompt
on the validation set of Split ImageNet-R. Due to the large search space, we
made a simplified assumption that the MSA layers to attach prompts should be
contiguous. Moreover, since starte = ende = 5 is the best option in the single
layer case, it is natural to include the 5-th layer when searching for multi-layered
E-Prompt. Nevertheless, we also include several cases when the 5-th layer is not
included for completeness.
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Table 5: Searching results for multi-
layered E-Prompt.

ig jg Avg. Acc

5 5 65.55
3 4 65.76
4 5 66.59
5 6 66.12
3 5 67.12
4 6 66.41
5 7 64.53
1 12 67.09

Table 6: Searching results for multi-
layered G-Prompt.

ie je Avg. Acc

2 2 67.70
1 2 68.46
1 3 67.79
1 5 67.73
6 8 65.10
1 12 63.13

We discover that starte = 3, ende = 5 yields the best performance in terms
of average accuracy. Note that when we attach E-Prompt to every MSA layer
(starte = 1, ende = 12), it actually leads to comparable accuracy. However, we
still choose starte = 3, ende = 5 since it has less additional parameters.

We then fix starte = 3, ende = 5, and search for multi-layered G-Prompt,
given that we have startg = endg = 2 yields the best performance as a single-
layered E-Prompt. We conduct similar searching process, with a preference of
including the 2nd layer. The searching results are shown in Table 6.

We discover that startg = 1, endg = 2 leads to best average accuracy.
Moreover, simply share all MSA layers results in overall negative e↵ect on the
accuracy.

Although our search strategy is not exhaustive, we find the combination of
startg = 1, endg = 2, starte = 3, ende = 5 works quite well for all benchmark
datasets.

G Searching for prompt length

Following the suggestion by [59], we use set the base length of prompts as
5, and perform grid search on the lengths of G-Prompt and E-Prompt from
{5, 10, 20, 40} ⇥ {5, 10, 20, 40}, based on the optimal positions obtained in the
previous step.

As shown in Figure 6, we indeed verify Lg = 5, Le = 20 is the optimal
choice on the validation set of Split ImageNet-R. We also empirically observe
this configuration works well on other datasets, thus we use this combination of
prompt lengths for other datasets in experiments showed in the main text.

H Additional results on 5-datasets

For completeness, we also demonstrate the e↵ectiveness of our method on 5-
datasets [11], which is a collection of five diverse image classification datasets,
CIFAR-10 [21], MNIST [23], Fashion-MNIST [62], SVHN [42], and notMNIST [2].
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Fig. 6: Grid search on prompt length.

Table 7: Additional results on 5-datasets [11].

Method Bu↵er size
5-datasets

Avg. Acc (") Forgetting (#)

ER

250

80.32±0.55 15.69±0.89

BiC 78.74±1.41 21.15±1.00

DER++ 80.81±0.07 14.38±0.35

Co2L 82.25±1.17 17.52±1.35

ER

500

84.26±0.84 12.85±0.62

BiC 85.53±2.06 10.27±1.32

DER++ 84.88±0.57 10.46±1.02

Co2L 86.05±1.03 12.28±1.44

FT-seq

0

20.12±0.42 94.63±0.68

EWC 50.93±0.09 34.94±0.07

LwF 47.91±0.33 38.01±0.28

L2P 81.14±0.93 4.64±0.52

DualPrompt 88.08±0.36 2.21±0.69

Upper-bound - 93.93±0.18 -

Despite the simplicity of each task in 5-datasets, the benchmark mimics the
real-world setting where task diversity is large, thus contributing to a more
comprehensive evaluation of CL methods. Since each task in 5-dataset is relatively
easier than that of Split CIFAR-100 and ImageNet-R, rehearsal-based methods
generally require smaller bu↵er size to perform well. However, a bu↵er size of
500 is already considered large for 5-datasets [11,40]. Although DualPrompt
still consistently outperforms competing methods, we argue that in real world
continual learning scenarios, it is rare that tasks are too diverse: for example, we
don’t expect a digit classifier to continually learn to classify animals. Thus, we
only show the performance on 5-datasets as a proof-of-concept that our method
works well when task diversity is large.
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Table 8: Comparison between DualPrompt with query strategy introduced in
Section 4.1, and with the perfect match (known test time task identity) on Split
ImageNet-R.

Method Matching Acc Avg Acc (") Forgetting (#)

DualPrompt-Query 55.8 68.13 4.68
DualPrompt-Perfect Match 100 71.97 3.95

I Relationship between query accuracy and performance

To demonstrate the relationship between query accuracy and performance, we
compare DualPrompt with the query strategy introduced in 4.1 to DualPrompt
with known test time task identity to select E-Prompt. The result is shown
in Table 8. Interestingly, although the matching accuracy is not that great,
DualPrompt is quite robust to it and still achieves an accuracy very close to
perfect match. We contribute this robustness to mismatching to the design of our
method. First, the task-invariant instruction captured in G-Prompt still remains
useful for prediction even if E-Prompt is noisy. Second, the query strategy is
based on the input feature, thus implicitly taking into account task similarity.
Even when mismatching happens, our method tends to choose the E-Prompt
from one of the most similar tasks. We also note that their is still forgetting
even if we use ground truth task identity to select the corresponding task-specific
E-Prompt. This part of forgetting results from the bias in the final softmax
classification head [34,46,67], a common issue in class-incremental learning that
could be mitigated in parallel.


