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Abstract. Continual learning aims to enable a single model to learn a
sequence of tasks without catastrophic forgetting. Top-performing meth-
ods usually require a rehearsal bu↵er to store past pristine examples
for experience replay, which, however, limits their practical value due to
privacy and memory constraints. In this work, we present a simple yet
e↵ective framework, DualPrompt, which learns a tiny set of parameters,
called prompts, to properly instruct a pre-trained model to learn tasks ar-
riving sequentially without bu↵ering past examples. DualPrompt presents
a novel approach to attach complementary prompts to the pre-trained
backbone, and then formulates the objective as learning task-invariant
and task-specific “instructions”. With extensive experimental validation,
DualPrompt consistently sets state-of-the-art performance under the chal-
lenging class-incremental setting. In particular, DualPrompt outperforms
recent advanced continual learning methods with relatively large bu↵er
sizes. We also introduce a more challenging benchmark, Split ImageNet-R,
to help generalize rehearsal-free continual learning research. Source code
is available at https://github.com/google-research/l2p.
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1 Introduction

The central goal of continual learning (CL) is to learn a sequence of tasks with a
single model without su↵ering from catastrophic forgetting [39] – a significant
deterioration in performance on previously seen data. Many existing methods
aim at preserving and extending the acquired knowledge during the continual
learning process [12,34]. Architecture-based methods assign isolated parameters
to encode learned knowledge from di↵erent tasks [26,31,36,53,58]. However, they
often introduce a substantial number of additional parameters and sometimes
involve simplified assumption like known test time task identity [11,36,35], which
falls into the setting of task-incremental learning. However, the task-incremental
setting is usually considered over-simplified [3,34,37], since task identity is not
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Fig. 1: The average accuracy comparison on Split ImageNet-R, suggesting that the
accuracy degradation is significant for representative rehearsal-based methods like
DER++ [3] and ER [7] when bu↵er size shrinks. Notably, they require a large rehearsal
bu↵er (5000 images ⇡ 20% of the whole training set) to close the gap to our method. In
contrast, GDumb [46] matches their result by training only on the i.i.d sampled bu↵er,
without continual learning. The additional parameters size required by DualPrompt is
only about the bytes of one 224⇥224 RGB image. See Experiments section for discussion
on compared methods.

known at test time in the real world. Our work focuses on more di�cult class-
incremental setting with unknown test-time task identity. Another line of work,
rehearsal-based CL methods, preserve past knowledge directly by keeping data
from prior tasks in a rehearsal bu↵er [3,4,44]. Due to their conceptual simplicity,
generalizability to various settings, and superior ability to mitigate catastrophic
forgetting, rehearsal-based methods have been widely recognized as the reigning
state-of-the-art [5,3] in the challenging class-incremental setting. Nevertheless, the
dependence on rehearsal bu↵er has been criticised in the community [53,12,46,30].
While the performance of these methods is sensitive to the size of the bu↵er,
GDumb [46] argues that performing supervised training directly on a relatively
large bu↵er already surpasses most recent CL methods. Critically, these methods
cannot be used in applications with privacy concerns [54] or when memory
budget is highly constrained [55]. Thus, it is desirable to develop a parsimonious,
rehearsal-free continual learning method that can achieve similar or higher level
of performance.

A recent method, Learning to Prompt (L2P) [59] approaches this problem
from a brand-new perspective – it proposes to leverage learnable prompt pa-
rameters to encode knowledge in a much more succinct way (i.e. prompt pool)
than bu↵er, thus a rehearsal bu↵er is no longer necessary. Prompt techniques are
originally introduced in natural language processing (NLP) for task adaptation
[28] of large-scale pre-trained models by attaching fixed or learnable “instruc-
tions”, since prompts are designed to instruct the model to properly reuse learned
representations, instead of learning new representations from scratch. L2P suc-
cessfully formulates the problem of learning new tasks as training small prompt
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parameters attached to a pre-trained frozen model. L2P takes an exciting step
towards rehearsal-free continual learning, although the performance is still lower
than rehearsal-based methods.

In L2P, one single prompt pool is designed to transfer knowledge from one task
to another without distinguishing between the common features among all tasks
versus the features that are unique to each task. We argue such a design could be
sub-optimal from the perspective of theory of Complementary Learning Systems
(CLS) [38,22], an intuition that many recent advanced CL methods are based on
[7,44,3]. CLS suggests that humans learn continually via the synergy between
two learning systems: the hippocampus focuses on learning pattern-separated
representation on specific experiences, and the neocortex focuses on learning more
general and transferable representation from past experience sequences. Thus,
they are able to learn task-specific knowledge separately without interference
while leveraging task-invariant knowledge to have greater learning capacity to
learn future tasks better. However, previous CLS-driven methods still decouple
or expand the backbone parameters learn the two kinds of knowledge [11,44,45].
Thus, they still rely on constructing a rehearsal bu↵er repeatedly to consolidate
decoupled knowledge to prevent catastrophic forgetting.

In this paper, we present DualPrompt, a rehearsal-free continual learning
approach to explicitly learn two sets of disjoint prompt spaces, G(eneral)-Prompt
and E(xpert)-Prompt, that encode task-invariant and task-specific instructions,
respectively. DualPrompt directly decouples the higher-level prompt space, which
turns out to be more e↵ective and memory e�cient that conventional methods
which focus on the lower-level latent representation space. We further explore
where and how to attach both types of prompts is crucial to steer the backbone
model to learn with less forgetting and to achieve e↵ective knowledge sharing,
thus significantly enhancing the e↵ectiveness of continual learning.

Moreover, we introduce Split ImageNet-R, a new CL benchmark based on
ImageNet-R [15] to the community. The intra-class diversity for each task in
Split ImageNet-R is large (see Appendix E for representative examples), thus a
small bu↵er is not su�cient to represent past experiences. Figure 1 showcases
that the size of rehearsal bu↵er needed is non-trivial for even advanced methods
to perform well. While rehearsal-based methods require a large bu↵er (up to 20%
of total training data) to achieve a competitive average accuracy, our method
DualPrompt shows superior performance despite not using any rehearsal bu↵er.

In summary, our work makes the following contributions:

– We propose DualPrompt, a simple and e↵ective rehearsal-free CL method,
comprised of G-Prompt and E-Prompt for learning task-invariant and task-
specific knowledge, respectively. The method is fairly simple to apply without
data or memory access concerns which is favorable for real-world CL scenarios.

– DualPrompt explores various design choices to incorporate these two types
of prompts into the pre-trained models. For the first time, we empirically
discover that properly attaching prompts to the backbone model is crucial to
the e↵ectiveness of continual learning.
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– We introduce a new CL benchmark, Split ImageNet-R to help validate
the method. DualPrompt sets new state-of-the-art performance on multi-
ple benchmarks under the challenging class-incremental setting, and beats
rehearsal-based methods with relatively large bu↵er size.

2 Related work

Continual learning. We discuss three related categories of continual learning
methods: regularization-based, rehearsal-based and architecture-based methods.

Regularization-based methods [19,66,27,1] address catastrophic forgetting by
regularizing important parameters for learned tasks. Although these methods
mitigate forgetting under simpler task-incremental setting, their performance
under more challenging class-incremental setting [34], or more challenging datasets
[61] is not satisfactory.

Architecture-based methods assign isolated parameters for each task. These
methods can be further categorized as expanding the model [52,64,26,31,68], or
dividing the model [36,53,58,17,11]. However, a major part of the work is limited to
the task-incremental setting [53,36,35,17], while other work only considers specific
convolutional-based architectures [60,45,11]. However, DualPrompt aims at more
challenging class-incremental setting, and focus on pre-trained transformer-based
models. Moreover, architecture-based method generally require substantially
large amount of additional parameters to assist model separation [58,17,63]. On
the contrary, DualPrompt is much lightweight and only require negligible amount
of parameters (0.2%� 0.6% of full model size).

Rehearsal-based methods save data from learned tasks in a rehearsal bu↵er
to train with the current task. Although these methods share this quite sim-
ple idea, they are very e↵ective even in the class-incremental setting. Several
advanced rehearsal-base methods achieve state-of-the-art performance [3,4]. How-
ever, rehearsal-based methods deteriorates when bu↵er size [4] decreases, and are
eventually not applicable to data privacy sensitive scenarios [54]. Some recent
methods are inspired from the Complementary Learning Systems (CLS). However,
ACL [11] is limited to the task-incremental setting, DualNet [44] requires specific
architecture design, and both methods still rely on a rehearsal bu↵er to work well.
Our DualPrompt tackles continual learning from a rehearsal-free perspective,
standing upon a wise utilization of pre-trained models, thus getting rid of the
shortcomings of rehearsal-based methods.
Prompt-based learning. As an emerging transfer learning technique in natural
language processing (NLP), prompt-based learning (or prompting), applies a
fixed function to condition the model, so that the language model gets additional
instructions to perform the downstream task. However, the design of a prompting
function is challenging and requires heuristics. To this end, recent work propose
to apply prompts as learnable parameters, achieving outstanding performance
on transfer learning [24,25]. Prompts capture task-specific knowledge with much
smaller additional parameters, than its competitors, such as Adapter [57,43]
and LoRA [16]. As discussed above, L2P [59] is the only work that connects
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prompting and continual learning. Di↵erently, DualPrompt takes inspiration from
CLS and presents a di↵erent approach to attach complementary prompts to the
pre-trained backbone to learn task-invariant and task-specific instructions. We
show DualPrompt outperforms L2P consistently.

3 Prerequisites

3.1 Continual learning problem setting

Continual learning is defined as training machine learning models on a continuum
of data from a sequence of tasks. We denote the sequence of tasks as D =
{D1, · · · ,DT }, where the t-th task Dt = {(xi,t, yi,t)}nt

i=1 contains tuples of the
input sample xi,t 2 X and its corresponding label yi,t 2 Y . The model f✓ : X ! Y
is parameterized by ✓, such that it predicts the label y = f✓(x) 2 Y given an
unseen test sample x from arbitrary tasks. Data from the previous tasks is not
available when training future tasks.

We use the widely-adopted assumption that the task boundaries are clear
and the task switch is sudden at training time [6,44]. Moreover, we consider
the more challenging class-incremental learning [6] setting, i.e., task identity is
unknown for each example at test time. Also, following the settings in prior work
[59], we assume a pre-trained sequence model, e.g., a vision transformer (ViT)
[9] on ImageNet, is available, a wide-used assumption in recent literature of the
computer vision community. Unlike many rehearsal-based methods [7,3], we do
not assume any form of rehearsal bu↵er as a prerequisite.

3.2 Prompt-based learning

Prompt-based learning (or prompting) was first proposed in NLP for transfer
learning. The main idea of prompting is to add extra instruction for pre-trained
models to perform downstream tasks conditionally [28]. Prompt Tuning [24], one
of the recent emerging techniques, proposes to attach a set of prompt parameters
to frozen transformer-based language models [47] to perform downstream NLP
tasks. The prompts are usually prepended to the input sequence to instruct the
model prediction. We briefly illustrate the idea of Prompt Tuning below.

As we mainly focus on vision-related continual learning setting, here we
introduce the definition of Prompt Tuning using the vision transformer (ViT)
based sequence models [10,56]. In ViT, the input embedding layer transforms
the input image into a sequence-like output feature h 2 RL⇥D, where L is the
sequence length and D is the embedding dimension. When solving downstream
tasks, the pre-trained backbone is kept frozen as a general feature extractor, and
the prompt parameters p 2 RLp⇥D with sequence length Lp and embedding
dimension D are prepended to the embedding feature along the sequence length
dimension to form the extended embedding feature. Finally, the extended feature
is sent to the rest of the model for performing classification tasks. Prompt serves
as a lightweight module to encode high-level instruction to instruct the backbone
to leverage pre-trained representations for downstream tasks.
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Fig. 2: Overview of DualPrompt. Left: At test time, an input is transformed by a query
function to match the closest task key kt and the corresponding E-Prompt et. Then
the shared G(eneral)-Prompt g and the matched E(xpert)-Prompt et are attached to
multiple MSA layers of a pre-trained transformer. At training time, the E-Prompt is
selected by task identity and the selected E-Prompt and G-Prompt are trained together
with the classifier. Right: A prompting function is illustrated where the G-prompt
is split equally and attached to the key and value replicas of the hidden feature (see
Section 4.2) before passing them to the preceding MSA layer.

4 DualPrompt

Our proposed method, DualPrompt is illustrated in Figure 2. We first introduce
the complementary learning components, G- and E-prompts, in Section 4.1 by
showcasing how they work with a single multi-head self-attention (MSA) layer.
We then explore design choices of attaching prompts to the backbone Section 4.2.
We finally present the overall objective for DualPrompt in Section 4.3.

4.1 Complementary G-Prompt and E-Prompt

Given a pre-trained ViT f with N consecutive MSA layers, we further extend
the notations introduced in 3.2 by denoting the input embedding feature of the
i-th MSA layer as h(i), i = 1, 2, · · · , N .

G-Prompt: g 2 RLg⇥D with sequence length Lg and embedding dimension
D, is a shared parameter for all tasks. Suppose we would like to attach G-Prompt
to the i-th MSA layer, G-Prompt transforms h(i) via a prompting function:

h(i)
g

= fprompt

⇣
g,h(i)

⌘
, (1)

where fprompt defines the approach how to attach the prompts to the hidden
embeddings. Section 4.2 discusses the details.

E-Prompt: E = {et}Tt=1 is a set of task-dependent parameters, where et 2
RLe⇥D has a sequence length of Le and the same embedding dimension D as
the G-Prompt, and T is the total number of tasks. Di↵erent from the shared
G-Prompt, each et is associated with a task-specific key kt 2 RD, which is also a
learnable parameter that aims to capture representative features of a task. For
an input example from the t-th task, to attach E-Prompt to the j-th MSA layer,
we apply the prompting function in a similar way:

h(j)
e

= fprompt

⇣
et,h

(j)
⌘
. (2)
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Moreover, we update the corresponding kt to match the feature of the input
instance via a matching loss Lmatch, such that kt becomes “closer” to examples
from the t-th task than other keys. At test time, inspired by the strategy proposed
in [59], we propose to adopt a query function q on the test sample to search for
the best match from the task keys, and select the corresponding E-Prompt to
use. Although it is interesting to design various matching and query strategies by
introducing additional components, it actually violates the principle of parsimony
in continual learning [12,58]. Fortunately, as suggested in [59], we can directly use
the whole pre-trained model as the query function: q(x) = f(x)[0] (the feature
vector corresponding to [class] token [10]), and cosine similarity as �. Thus,
the matching loss takes the following form:

Lmatch(x,kt) = �(q(x),kt), x 2 Dt. (3)

For a test example x, we simply choose the best matched task key index via
argmint �(q(x),kt). We show the relationship between query accuracy and final
performance in Appendix I. We empirically discover this matching loss and the
corresponding query mechanism works fairly well for all benchmarks.

4.2 Prompt attaching: where and how?

G- and E-prompts encode respective type of instructions during training with the
backbone and cooperatively instruct the model to make predictions at inference.
We have showcased how to attach them to a single MSA layer in Section 4.1. Most
existing prompt-related work simply place prompts only at the first MSA [59,24],
or at every MSA layer [25,29]. However, we argue that it is crucial to explore
where and how to attach both types of prompts.

Where: Decoupled prompt positions. Intuitively, di↵erent layers of the
backbone have di↵erent levels of feature abstraction [48]. Therefore, when learning
tasks sequentially, some layers of representations can have higher responses to
task-specific knowledge than others, vise versa for task-invariant knowledge. This
motivates us to give the two types of prompts more flexibility to attach to the
most proper positions in a decoupled way, thus di↵erent instructions can interact
with the corresponding representations more e↵ectively.

With a slight abuse of notation, we introduce the multi-layered extension of
both types of prompts: g = {g(l)}endg

l=startg
, where g(l) 2 RLg⇥D is the G-Prompt

to be attached to the l-th MSA layer. We also define et = {e(l)
t
}ende
l=starte

similarly.

In this way, we are able to attach the G-Prompt g(l) from the startg-th to the

endg-th MSA layers, and attach the E-Prompt e(l)
t

from the starte-th to the
ende-th MSA layers. And most importantly, (startg, endg) and (starte, ende)
could be totally di↵erent or non-overlapping. In our experiments, we empirically
search for a certain set of startg, endg, starte, ende on a validation set and
discover that it performs consistently well across di↵erent benchmarks. Note that
we make a simplified assumption that the chosen indices of MSA layers to attach
prompts are contiguous, which already achieves state-of-the-art performance
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in our empirical evaluation. However, there could be more advanced ways to
auto-search the configuration, which we treat as valuable future work.

How: Configurable prompting function. The prompting function fprompt

controls the way we combine prompts with the embedding features. From another
perspective, fprompt directly a↵ects how the high-level instructions in prompts
interact with low-level representations. Thus, we believe a well-designed prompting
function is also vital for the overall continual learning performance. Although
DualPrompt is compatible with various prompting functions, here we exemplify
and study two mainstream realizations in the NLP community - Prompt Tuning
(Pro-T) [24] and Prefix Tuning (Pre-T) [25].

Specifically, applying a prompting function can be viewed as modifying the
inputs of the MSA layers [56]. Let the input to the MSA layer be h 2 RL⇥D,
and we further denote the input query, key, and values for the MSA layer to be
hQ,hK ,hV , respectively. Recall that the MSA layer is proposed by [56]:

MSA(hQ,hK ,hV ) = Concat (h1, . . . , hm)W
O

where hi = Attention
⇣
hQW

Q

i
,hKWK

i
,hV W

V

i

⌘
,

where WO, WQ

i
, WK

i
, and WV

i
are projection matrices. m is the number of heads.

In ViT, hQ = hK = hV . For simplicity, we define a unified prompt parameter
p 2 RLp⇥D (p could be either single-layered G or E-Prompt).

Prompt Tuning (Pro-T) prepends prompts to the input tokens, which is
equivalent to concatenate the same prompt parameter p to hQ, hK , and hV ,

fPro-T
prompt(p,h) = MSA([p;hQ], [p;hK ], [p;hV ]), (4)

where [·; ·] defines the concatenation operation along the sequence length dimen-
sion. The output length increases, resulting the output dimension as R(L+Lp)⇥D.
The operation is equivalent to how [class] is added [10] at the first MSA layer.

Prefix Tuning (Pre-T) splits p into pK ,pV 2 RLp/2⇥D, and prepends
them to to hK and hV respectively, while keep hQ as-is:

fPre-T
prompt(p,h) = MSA(hQ, [pk;hK ], [pv;hV ]). (5)

Compared with Pro-T, the output sequence length remains the same as input h 2
RL⇥D. Section 5.4 studies both versions empirically and discusses the intuition
behind their di↵erence in performance from a continual learning perspective.

4.3 Overall objective for DualPrompt

The full picture of DualPrompt at training and test time is described in Al-
gorithm 1 and 2, respectively, in Appendix A. Following the design patterns
discussed in Section 4.2, we denote the architecture with prompts attached by
fg,et . Then we transform our input x from the t-th task via fg,et and send it to
the classification head f� parametrized by � for prediction. Finally, we train both
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types of prompts, the task keys, as well as the newly-initialized classification
head in an end-to-end fashion:

min
g,et,kt,�

L(f�(fg,et(x)), y) + �Lmatch (x,kt) , x 2 Dt, (6)

where L is the cross-entropy loss, Lmatch is the matching loss defined in equation 3,
and � is a scalar balancing factor.

5 Experiments

5.1 Evaluation benchmarks

Split ImageNet-R. The Split ImageNet-R benchmark is build upon ImageNet-
R [15] by dividing the 200 classes randomly into 10 tasks with 20 classes per
task. We split the dataset into training and test set with 24,000 and 6,000 images
respectively. We further sample 20% from the training set as validation data
for prompt attaching design search. The original ImageNet-R includes newly
collected data of di↵erent styles, such as cartoon, gra�ti and origami, as well
as hard examples from ImageNet [8] that standard models, e.g., ResNet [14],
fail to classify. We believe the Split ImageNet-R is of great importance to the
continual learning community, for the following reasons: 1) Split ImageNet-R
contains classes with di↵erent styles, which is closer to the complicated real-
world problems. 2) The significant intra-class diversity (see Appendix E) poses
a great challenge for rehearsal-based methods to work e↵ectively with a small
bu↵er size (see Figure 1), thus encouraging the development of more practical,
rehearsal-free methods. 3) Pre-trained vision models are useful in practice for
many fields [51,20], including continual learning. However, their training set
usually includes ImageNet. Thus, Split ImageNet-R serves as a relative fair and
challenging benchmark, and an alternative to ImageNet-based benchmarks [50,61]
for continual learning that uses pre-trained models.

Split CIFAR-100. Split CIFAR-100 is a widely-used benchmark in continual
learning literature. It splits the original CIFAR-100 [21] into 10 disjoint tasks, with
10 classes per task. Although it is a relatively simple task for image classification
under the i.i.d. setting, it su�ciently makes advanced CL methods expose large
forgetting rate in class-incremental learning.

We use Split ImageNet-R and Split CIFAR-100 to demonstrate our main
results in Section 5.2, and additionally conduct experiments on 5-datasets for
completeness in the Appendix H.

5.2 Comparison with state-of-the-arts

We compare DualPrompt against representative baselines and state-of-the-art
methods. Please refer to Appendix B for experimental details. We use the widely-
used Average accuracy (higher is better) and Forgetting (lower is better) [32,6,34]
as our evaluation metrics. The definitions of both metrics are in Appendix C.
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Table 1: Results on class-incremental learning (i.e., task identity is unknown at test
time). We compare and group methods by bu↵er sizes. 0 means no rehearsal is used,
when most SOTA methods are not applicable anymore. Note that the chosen bu↵er
sizes here are considered su�ciently large sizes that are used in prior works for Split
CIFAR-100 [6,3]. They are large enough even for training a supervised counterpart –
e.g. GDumb [46] trains on the i.i.d sampled bu↵er with this size and demonstrated
competitive results, making continual training unnecessary.

Method Bu↵er size
Split CIFAR-100

Bu↵er size
Split ImageNet-R

Avg. Acc (") Forgetting (#) Avg. Acc (") Forgetting (#)

ER [7]

1000

67.87±0.57 33.33±1.28

1000

55.13±1.29 35.38±0.52

BiC [61] 66.11±1.76 35.24±1.64 52.14±1.08 36.70±1.05

GDumb [46] 67.14±0.37 - 38.32±0.55 -
DER++ [3] 61.06±0.87 39.87±0.99 55.47±1.31 34.64±1.50

Co2L [4] 72.15±1.32 28.55±1.56 53.45±1.55 37.30±1.81

ER [7]

5000

82.53±0.17 16.46±0.25

5000

65.18±0.40 23.31±0.89

BiC [61] 81.42±0.85 17.31±1.02 64.63±1.27 22.25±1.73

GDumb [46] 81.67±0.02 - 65.90±0.28 -
DER++ [3] 83.94±0.34 14.55±0.73 66.73±0.87 20.67±1.24

Co2L [4] 82.49±0.89 17.48±1.80 65.90±0.14 23.36±0.71

FT-seq

0

33.61±0.85 86.87±0.20

0

28.87±1.36 63.80±1.50

EWC [19] 47.01±0.29 33.27±1.17 35.00±0.43 56.16±0.88

LwF [27] 60.69±0.63 27.77±2.17 38.54±1.23 52.37±0.64

L2P [59] 83.86±0.28 7.35±0.38 61.57±0.66 9.73±0.47

DualPrompt 86.51±0.33 5.16±0.09 68.13±0.49 4.68±0.20

Upper-bound - 90.85±0.12 - - 79.13±0.18 -

To make the comparison fair and precise, we first compare DualPrompt with
regularization-, rehearsal- and prompt-based methods, which are compatible
with transformer-based models, in Table 1. We then compare DualPrompt with
architecture-based methods, which are mostly compatible with ConvNets, using
a di↵erent protocol in Table 2.

– Comparing methods. We select representative methods including EWC
[19], LwF [27], ER [7,13], GDumb [46], BiC [61], DER++ [3], Co2L [4] and
L2P [59], from all categories. Please see Appendix D for details.

– Naive baselines. For better demonstration of the relative e↵ectiveness of
all methods, we also include: FT-seq, the naive sequential training, and
Upper-bound, the usual supervised finetuning on the i.i.d. data of all tasks.

Table 1 reports the performance of all comparing methods on Split CIFAR-
100 and Split ImageNet-R. Our proposed method, DualPrompt, outperforms all
methods consistently, including non-rehearsal based methods and rehearsal-based
methods with a large bu↵er size. When the bu↵er size is 5000 (10% of the CIFAR-
100 training set and >20% of the ImageNet-R training set), all rehearsal-based
methods are fairly close to GDumb, indicating that performing rehearsal-based
continual learning likely provide no performance gain than supervised training
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Table 2: Comparison with architecture-based methods on Split CIFAR-100. We use
Diff = Upper-Bound Acc - Method Acc (lower is better), to measure how close the
performance to the upper-bound of the used backbone.

Method Backbone Avg. Acc (") Di↵ (#) Bu↵er size
Additional Parameters

MB %

Upper-bound

ResNet18

80.41† - - - -
SupSup [60] 28.34±2.45‡ 52.07 0 3.0 6.5%
DualNet [44] 40.14±1.64‡ 40.27 1000 5.04 10.9%
RPSNet [49] 68.60† 11.81 2000 181 404%
DynaER [63] 74.64† 5.77 2000 19.8 43.8%

Upper-bound
ResNet152

88.54† - - - -
DynaER [63] 71.01±0.58‡ 17.53 2000 159 68.5%

Upper-bound
ViT-B/16

90.85±0.12‡ - - - -
L2P [59] 83.86±0.28

‡ 6.99 0 1.94 0.56%
DualPrompt 86.51±0.33 4.34 0 1.90 0.55%

†Reported by the original papers. ‡ Reproduced using their original codebases.

on the bu↵ered data as GDumb does. DualPrompt achieves better performance
without any bu↵ered data. Moreover, from Table 1, as well as Figure 1, we can
observe the performance of rehearsal-based methods drops sharply when the
bu↵er size shrinks. This again suggests the clear advantage of DualPrompt as a
rehearsal-free method. For the non-rehearsal based methods, only L2P performs
close to our methods. Nevertheless, DualPrompt still beats L2P significantly by
a 3%-7% margin on Average accuracy, thanks to our novel design of the two
complementary prompts, which successfully reduces catastrophic forgetting.

Architecture-based methods. We compare against representative class-
incremental learning methods, including DualNet [44], SupSup [60], DynaER [63]
and RPSNet [49]. Please see Appendix D for details.

Prior architecture-based methods, which are based on ConvNet, are not
trivial to migrate to transformer-based models. Moreover, di↵erent architecture-
based methods usually add di↵erent amount of additional parameters. To enable
a relative fair comparison between these methods, we introduce a metric to
measure how close the performance of a certain method is to the upper-bound
performance, i.e. trained under the i.i.d. setting, of a given architecture. Table 2
shows the results on Split-CIFAR100. DualPrompt achieves the best accuracy and
its di↵erence to upper-bound is only 4.34%, with minimal additional parameters
and no bu↵er. The strongest competitor on ResNet, DynaER, on the contrary,
requires a bu↵er of 2, 000 images and include 43.8% additional parameters.

5.3 Does stronger backbones naively improve CL?

Our method builds upon more advanced yet bigger backbones than many previous
methods. We think understand this question is very important for fair comparison
and future research. Although pre-trained ViT is a stronger backbone than com-
mon ConvNets, it is not necessarily translate to continual learning performance.
The observations we shown here are similar to what reported in a very recent
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Fig. 3: E↵ects of position to attach
prompts on Split ImageNet-R validation
set. We empirically observe that attach-
ing G- and E-Prompts to the 2nd and 5th
MSA layer results in the best performance.

Fig. 4: t-SNE visualization of G- and E-
prompts. Each point represents a prompt
vector of dimension 768. E-Prompts are
taken from the final model, while G-
Prompts are taken from model snapshots
after trained on each task.

study about how large architecture help continual learning [41]. First, this fact
can be seen from Table 1, where well-known general methods still su↵er large
forgetting rate given this backbone. We have tried to use ImageNet pre-trained
ResNet for competing methods in Table 2, which leads to no improvement upon
the reported numbers in Table 2. This further indicates that a pre-trained model
is not a “panacea” for continual learning without being leveraged properly. We
also equip best-performing DynaER [63] with ImageNet pre-trained ResNet152
(60M parameters), which has close upper-bound performance to ViT-B/16 (86M).
DynaER learns weight masks, a popular strategy for architecture-based methods
[60], to dynamically expand architectures. However, results in Table 2 show
worse performance (we sweep their suggested hyper-parameters to report the
best performance), a similar observation is shown in their original paper when
scaling DynaER to ResNet32. That being said, how to e↵ectively utilize large
models under traditional architecture-based methods remains an open question.
DualPrompt is novel at wisely leveraging the state-of-the-art vision backbones to
solve challenges in continual learning.

5.4 Exploration of where and how to attach prompts

We have shown the best performing model of DualPrompt in Section 5.2. In this
section, we explore where and how to attach prompts and enhance their influences
to the overall performance. We also present critical empirical observations that
lead to interesting future research.
Position of prompts. To explore the most proper position to insert the G-
Prompt and E-Prompt, we use a heuristic search strategy on the validation set
of Split ImageNet-R. We first set starte = ende, i.e., only insert E-Prompt at
a single MSA layer. The lower line of Figure 3 shows that placing E-Prompt
at the 5th MSA layer leads to the best performance. We then search extend
E-Prompt to multi-layer and found that starte = 3, ende = 5 performs the best



Complementary Prompting for Rehearsal-free Continual Learning 13

Table 3: Comparison of di↵erent prompt-
ing functions: Prompt Tuning (Pro-T) v.s.
Prefix Tuning (Pre-T).

Prompting function Pro-T Pre-T

Split Avg. Acc (") 83.81 86.51
CIFAR-100 Forgetting (#) 5.94 5.16

Split Avg. Acc (") 64.99 68.13
ImageNet-R Forgetting (#) 6.81 4.68

Table 4: Ablation study on Split
ImageNet-R. ML means multi-layered.

G-P E-P ML
Split ImageNet-R

Avg. Acc (") Forgetting (#)

27.01 7.57
X 63.41 6.52

X 65.10 5.52
X X 66.77 5.74
X X 63.85 7.50

X X 66.91 4.77
X X X 68.13 4.68

(see Appendix F). We then study the case of startg = endg based on the optimal
setting of E-Prompt. Interestingly, the upper line of Figure 3 shows that placing
G-Prompt at the 2nd MSA layer leads to the best performance. We also extend
G-Prompt into its multi-layered counterparts and conduct searching experiments
and find the best choice to be startg = 1, endg = 2 (see Appendix F).

Interestingly, we observe that the best depth are di↵erent, and the final
layers to attach G- and E-Prompts are non-overlapping. In particular, startg >
starte, which suggests that G-Prompt captures task-invariant knowledge better
at shallower layer, while E-Prompt captures task-specific knowledge better at
deeper layer. This observation also fits the intuition that di↵erent layers in deep
learning models capture di↵erent types of knowledge [48,65], and thus naturally
fit di↵erent prompts. This also justifies decoupling positions of G- and E-Prompts
as a reasonable option. Moreover, when attaching them to top layers, both E-
Prompt and G-Prompt exhibit the worst performance. We speculate prompts
need to be attached to shallower layers in order to condition more layers of the
pre-trained model and thereby o↵er e↵ective instructions.
Prompting function: Prompt v.s. Prefix. We further study the role of
prompting function on Split CIFAR-100 and Split ImageNet-R. In prior prompt-
based CL work, L2P, only Pro-T is applied without further investigation. In
Table 3, we observe that Pre-T version leads to a better performance on both
datasets. Besides its empirically better performance, Pre-T is actually more scal-
able and e�cient when attached to multiple layers, since it results in unchanged
sequence length. Nevertheless, prompting function is a flexible component of
our method, and designing better prompting function is also an open research
question, so we can easily plug-in any newly proposed prompting function to
DualPrompt and evaluate its e↵ectiveness on given continual learning tasks.

5.5 Ablation study

Based on the optimal parameters searched in the previous section, we present
the ablation study results in Table 4 to show the importance of each component
of DualPrompt on Split ImageNet-R. Note that G-P (G-Prompt) and E-P (E-
Prompt) alone represent the optimal single-layered version for each type of
prompts (startg = endg = 2, starte = ende = 5), while ML represents the
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optimal multi-layered version (startg = 1, endg = 2, starte = 3, ende = 5).
When all components are absent, we simply have a naive baseline with a frozen
pre-trained backbone and trainable classification head.

In general, all components contribute to the final performance. Interestingly,
adding a single-layered G-Prompt alone brings substantial improvement upon
the baseline, indicating that the task-invariant knowledge obtained by G-Prompt
generalizes pretty well across tasks. However, simply sharing knowledge between
tasks introduces inevitable forgetting, due to the fact that task-specific knowledge
is not properly decoupled. Thus, E-Prompt alone consistently outperforms G-
Prompt alone, since E-Prompt mitigates forgetting by separating knowledge
learned from di↵erent tasks. However, only applying E-Prompt ignores the
task-invariant knowledge, which helps to learn future tasks. Thus, when adding
G-Prompt and E-Prompt together to the backbone, it further enhances the
overall performance by selectively decoupling the task-invariant knowledge into
G-Prompt and task-specific knowledge into E-Prompt. We also observe that
extending both prompts to its multi-layered counterparts helps consistently in
all cases, due to the fact that properly adding more prompt parameters through
di↵erent layers o↵ers more representation power.

Visualization of G- and E-prompts. To further understand di↵erent types
of instructions learned within G- and E-prompts, we visualize these two types of
prompts using t-SNE [33] in Figure 4. For a prompt with shape L⇥D, we treat it
as L prompts with dimension D. E-Prompts are taken from the final model after
trained on the sequence of all tasks, while the G-Prompts are taken from di↵erent
model snapshots after training on each task. We can observe that E-Prompts are
well-separated, indicating they are learning task-specific knowledge. Meanwhile,
the G-Prompts are quite centered and only di↵er slightly between tasks, which
suggests they are learning task-invariant knowledge.

6 Conclusion

In this paper, we present a novel method, DualPrompt, that achieves rehearsal-free
continual learning under the challenging class-incremental setting. DualPrompt
presents a novel way to attach complementary prompts to a pre-trained model to
learn decoupled knowledge. To comprehensively validate the proposed method, we
propose a new continual learning benchmark, Split ImageNet-R, besides study on
the widely-used benchmarks. DualPrompt sets state-of-the-art performance in all
metrics, surprisingly needs much lower additional memory compared with previous
architecture-based and rehearsal-based methods. Empirical investigations are
conducted to understand the inner-workings. Since large-scale pre-trained models
are widely used in practice for their great representation power, we believe
DualPrompt serves as a starting point for real-world rehearsal-free continual
learning systems. Moreover, we recommend DualPrompt as a unified framework
for future prompt-based continual learning research, for its simplicity, flexibility,
and strong performance.
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