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Abstract. Recent contrastive based unsupervised object recognition
methods leverage a Siamese architecture, which has two branches com-
posed of a backbone, a projector layer, and an optional predictor layer in
each branch. To learn the parameters of the backbone, existing methods
have a similar projector layer design, while the major difference among
them lies in the predictor layer. In this paper, we propose to Unify exist-
ing unsupervised Visual Contrastive Learning methods by using a GCN
layer as the predictor layer (UniVCL), which deserves two merits to
unsupervised learning in object recognition. First, by treating differ-
ent designs of predictors in the existing methods as its special cases,
our fair and comprehensive experiments reveal the critical importance
of neighborhood aggregation in the GCN predictor. Second, by viewing
the predictor from the graph perspective, we can bridge the vision self-
supervised learning with the graph representation learning area, which
facilitates us to introduce the augmentations from the graph represen-
tation learning to unsupervised object recognition and further improves
the unsupervised object recognition accuracy. Extensive experiments on
linear evaluation and the semi-supervised learning tasks demonstrate the
effectiveness of UniVCL and the introduced graph augmentations.

1 Introduction

Self-supervised learning (SSL) [1, 36, 11, 23, 28, 62, 54, 50] has recently attracted
much research interest in the computer vision community. Contrastive learn-
ing [20, 18, 7, 9, 5, 51, 65, 16, 59, 8], which is an important framework of recent
unsupervised learning methods, aims to reduce the distance between augmented
views from the same image (positive samples) and push apart views from dif-
ferent images (negative samples). It has shown the potential to extract powerful
visual representations that are competitive with supervised learning and deliv-
ered superior performance on multiple visual tasks when models are pre-trained
without labels.
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Fig. 1. (a-d): Existing self-supervised learning methods share the similar encoder de-
signs, but have highly different designs in their predictors. The encoder in the picture
includes a backbone and a projector. (e): Our UniVCL unifies different designs by a
GCN layer, which has a neighborhood aggregation term and a self-loop term. The ar-
row denotes the aggregation operation. Specifically, the MLP predictor and Softmax
predictor are the self-loop terms with different activation functions. The nearest neigh-
bor retrieval can be viewed the neighborhood aggregation term in GCN layer.

Recent contrastive-based SSL methods leverage a Siamese architecture, which
has two branches, i.e., an online branch and a target branch. Each branch is com-
posed of a backbone, a projector layer, and an optional predictor layer. While
the processes in the backbone and projector layer are similar for these works,
there are major difference in their predictor layer designs as shown in Fig. 1(a-d).
Specifically, there are four types of predictor layers.1) SimCLR [5], MOCOv1 [18],
MOCOv2 [7] do not have any operation after the projector layer, which is math-
ematically equivalent to using an identity layer as the predictor. 2) BYOL [16],
SimSiam [8], and MOCOv3 [9] use a MLP predictor on the online branch; 3)
DINO [4], SEED [14], and TWIST [49] leverage a softmax layer on both online
branch and target branch; 4) recent states-of-the-art methods, e.g., NNCLR [13]
and MSF [27], retrieve the K nearest neighboring samples (K-nearest neighbor
layer) in the feature space on the target branch for contrastive learning. While
these designs seem to be highly different in how to learn representations, we
advocate that they can be viewed as a unified framework by simply modifying
the predictor design from the perspective of graph neural network.

In this work, we propose a Unified Vison Contrastive Learning (UniVCL)
framework that is a unified representation of the aforementioned four typical
types of contrastive-based SSL methods from a graph perspective. By modeling
the projection feature and its K nearest neighbors in the feature space as the
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graph nodes, Graph Convolution Network (GCN) layer [24, 46, 55], which con-
sists of a self-loop term and a neighborhood aggregation term, can formulate
different predictor designs as its special variant (see the second row of Fig. 1).
Specifically, the identity mapping, the MLP layer, and the softmax layer can be
viewed as the self-loop term only with different activation functions, and the K-
nearest neighbor retrieval can be viewed as the neighborhood aggregation term in
the GCN layer. From this perspective, we benchmark different predictor designs
in existing methods under the same learning schedules, data augmentations, and
objective functions. Our detailed and fair experiments lead to three interesting
observations. Firstly, the neighborhood aggregation term in the GCN layer can
significantly improves the linear evaluation performances by +2.1%. Secondly,
the activation function can fairly influence the linear evaluation performance.
The non-linear activation function can boost about +0.4% performance gain
than identity activation function. Thirdly, the performance difference between
different non-linear activation functions are quite small if other GCN layer com-
ponents are well-designed, indicating the non-linear activation function selection
to be a less important factor.

With this unified framework from the graph perspective, we can further link
vision SSL with graph SSL, another active SSL research topic, and explore the
effectiveness of different pretext tasks in graph SSL for vision SSL. Specifically,
the new data augmentation, i.e. graph augmentation, found to be effective in
graph SSL can be leveraged for vision SSL. Graph augmentation adds variations
to features according to the graph structure to regularize the network optimiza-
tion. Our studies on ImageNet-1K uncover that the graph augmentation that
uses message passing throughout the network can improve the self-supervised
learning methods in image classification by +1.0%. Our in-depth analysis by
the purity metric [27] verifies that these augmentations can add the edge noise in
the GCN predictor, and regularize the encoder to learn more robustness image
features.

To conclude, our contributions are three-folds: (1) We propose a general
framework (UniVCL) to unify recent states-of-the-art contrastive learning meth-
ods in the vision SSL domain. (2) We illustrate the importance of neighborhood
aggregation term and the non-linear activation function of GCN layer in UniVCL
by conducting fair and detailed experimental comparisons. (3) Owing to graph
design of UniVCL, we bridge vision SSL and graph SSL, and introduce typical
graph augmentations into self-supervised image classification, which is empiri-
cally verified to be beneficial to linear evaluation and semi-supervised learning
performances.

2 Related work

2.1 Self-supervised Learning on Vision

A typical unsupervised learning framework for contrastive learning consists of a
Siamese network. The two branches of the Siamese network are named as the
online branch and the target branch [16, 5] (also named as the query branch and
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the key branch in some literature [18, 7, 13]), respectively, where each includes a
backbone, a projector layer and an optional predictor layer. Recent states-of-the-
art vision SSL methods share similar designs of backbone network and projector
layer, but they differs in the predictor designs. Typical predictor designs can be
divided into four categories. The first type of the predictor layer is the identity
mapping, which is adopted in SimCLR [5], MOCOv2 [7], and the target branch
of MOCOv3 [9], BYOL [16], and other self-supervised contrastive learning meth-
ods [59]. The second type is the MLP predictor. The MLP predictor is initially
proposed to avoid network collapse by BYOL. Some following contrastive learn-
ing based papers, e.g., MOCOv3, also append the predictor layer after the pro-
jector layer to improve the self-supervised learning performance instead of avoid
network collapse. The third type of the predictor is the softmax layer, which is
a softmax activation function applied in methods equipped with KL-divergence
loss. The representative methods include DINO [4], SEED [14], and TWIST [49].
The recent states-of-the-art methods retrieve the k-nearest sample in the feature
space. Experimental results illustrate the contrastive learning by using nearest
samples as the positive sample can improve the linear evaluation compared with
using the different augmented view of the same sample as its positive samples.
Although these methods have highly different designs for predictors, our method
unifies them with a Graph Convolution Layer, which can 1) represent lots of ex-
isting works and 2) include graph self-supervised learning designs (unification of
self-loop and neighborhood aggregation and graph augmentation) that are not
covered in these works.

2.2 Self-supervised Learning on Graph

Recent years witness the development of deep learning on graphs [58, 33, 21, 48,
25], since the graph-structured is ubiquitous in numerous domains, including
e-commence [31], traffic [52], and knowledge base [32]. The biggest challenge of
self-supervised learning on graphs lies in learning the topology information in
the existing network. Contrastive learning methods are also cornerstones for self-
supervised learning on graphs [41, 40, 47, 2, 37]. In particular, the contrastive loss
uses two different augmented views of the same graph as the positive samples
to maximize their mutual information. Typical augmentation methods include
Node Feature Masking [21, 64], Edge Modification [22, 57], and Graph Diffu-
sion [26, 17]. However, self-supervised Learning on graph has not been investi-
gated for unsupervised object recognition. In this paper, by incorporating GCN
layers as the predictor in the deep models for object recognition, we can intro-
duce and verify the effectiveness of graph augmentations that are widely adopted
in the graph self-supervised learning on the unsupervised object recognition.

3 UniVCL

We are interested in using the Graph Convolution Network (GCN) to unify dif-
ferent predictor designs in different methods. Specifically, we maintain a support
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Fig. 2. The framework of UniVCL. It includes four steps. First, Given an image
x, two augmented views v1 and v are generated. Then the features z1 and z2
are extracted by encoder Q(∗, θ) and Q(∗, θ′), respectively. Second, we retrieve the
K nearest neighborhood samples of z1 and z2 from the support queue S, form-
ing graph G(z1) and G(z2) respectively. Then, we implement the graph augmen-

tation on G(z1) and G(z2), generating augmented graphs G̃(z1) and G̃(z2). Third,
we input the augmented graph into the GCN predictor layer, generating the pre-
dicted features q1 and q2. Last, we compute the alignment loss based on q1 and q2.
The encoder denotes both the backbone network and the projector layer.

queue S = {si|i ∈ [1, · · · ,m]} ∈ Rm×d in the same way as [13], where m is the
size of the support queue, and d is the feature dimension. We only use embed-
dings from the target view to update the support set. As shown in Fig. 2, our
proposed UniVCL has the following steps.

Step1 : Transform Image to Features. Specifically, given two different aug-
mented views (v1,v2) of an image x, the features of two views can be computed
by z1 = Q(v1, θ) and z2 = Q(v2, θ

′), respectively. Following [18, 16, 7, 9], the
online branch Q(∗, θ) is a neural network updated by backward propagation,
while the target branch Q(∗, θ′) is a network with the same architecture as the
online branch but with parameters obtained from the moving average of Q(∗, θ).

Step2: Graph Construction and Augmentation (Sec. 3.3). Give z1 and z2
from Step 1, we respectively construct the fully connected graph G(z1) and
G(z2), where nodes in G(z1) and G(z2) are K nearest neighbors of z1 and z2 in
support queue S, respectively. Then we implement typical graph augmentations
(Sec. 3.3) to generate the augmented graphs G̃(z1) and G̃(z2).

Step 3 : GCN Predictor (Sec. 3.1). The augmented graphs G̃(z1) and G̃(z2)
are respectively transformed to prediction features q1 and q2 through GCN
predictors P(∗, ξ) and P ′(∗, ξ′).

Step 4 : Backward propagation using the alignment loss. Given the prediction
features q1 and q2, the parameters θ in Q(∗, θ) and the parameters ξ, ξ′ in
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P(∗, ξ), P ′(∗, ξ′) are learned by using alignment loss. In our design, the alignment
loss is implemented as the contrastive, i.e.,

L = − log
exp(q⊤

1 q2)

exp(q⊤
1 q2) +

∑m
i=1 exp(q

⊤
1 si)

, (1)

where si is the feature stored in the support queue S.

3.1 General Predictor Layers as GCNs

Since UniVCL appends the GCN predictor after the encoder Q and Q′, we
only analyze the GCN predictor P on the online branch. All analysis below is
applicable to the GCN predictor P ′ on the target branch.

Given the feature z1 obtained by Q, the input of the GCN layer is defined as

G(z1) = (z1,N1(z1),N2(z1), ...,NK(z1)) (2)

where K is the number of samples retrieved from S, and Ni(z1) denotes the
features of the i-th nearest neighbor in the support queue S. The GCN predictor
q1 = P(G(z1)) can be represented as a stack of graph convolution layers Fl,
where l is the layer index, i.e., P(G(z1), θ) = FL(FL−1 · · · (F2(F1(G(z1))))),
where L is the number of stacked GCN layers. Here, Fl is presented as

Fl+1 = Fl(Fl) = σl( WlAFl︸ ︷︷ ︸
neighborhood aggregation

+ W′
lFl︸ ︷︷ ︸

self-loop

), (3)

where the affinities A = {ai,j} ∈ R(K+1)×(K+1), 0 ≤ i, j ≤ K are defined as

ai,j =

{
Ni(z1)

⊤Nj(z1), i ̸= j,

0, i = j,
(4)

where ei,j is the affinity between Ni(z1) and Nj(z1), and we denote N0(z1) = z1.

3.2 Unifying unsupervised contrastive learning methods in UniVCL

As UniGrad [42] has explored the equivalence of different objective functions
in the existing methods both theoretically and experimentally, we focus on the
predictor designs among these different self-supervised learning methods.

As shown in Tab. 1 and Fig. 1(a-d), the predictor designs of different self-
supervised learning methods can be categorized into four types: the identity
predictor, the MLP predictor, the Softmax predictor, and the nearest neighbor
predictor. Based on the the formal formulation of a graph convolution layer in
Eq. 3, Tab. 2 shows that these different designs are special cases of Eq. 3. The
detailed derivation for Tab. 2 is presented below.
The Identity Predictor (Fig. 1(a)). SimCLR [5] and MOCOv2 [7] do not ap-
pend an explicit predictor after the projector, which is mathematically equivalent



UniVCL 7

Table 1. The implementation of predictor layer the existing self-supervised learning
methods. We omit the comparison of objective functions in different methods because
they are not the focus of our paper. The type number here denotes one of the four
types described in Sec. 1 and Fig. 1(a-d).

Method Venue Type Online Branch Target Branch

MOCOv2 Arxiv’21 a identity identity
SimCLR ICML’20 a identity identity
Barlow Twins ICML’21 a identity identity
MOCOv3 ICCV’21 b MLP identity
BYOL NeurIPS’20 b MLP identity
SimSiam CVPR’21 b MLP identity
DINO ICCV’21 c softmax softmax
SEED ICLR’21 c softmax softmax
TWIST Arxiv’21 c softmax softmax
NNCLR ICCV’21 d MLP K nearest
MSF ICCV’21 d MLP K nearest

Table 2. Illustrate the simplification to different predictor layers based the formal
formulation of Graph Convolution predictor in Eq. 3.

Method

activation neighborhood aggregation self-loop
σ existence A W existence W′

Identity I x - 0 ✓ I
Percepton ReLU(BN) x - 0 ✓ train
fc I x - 0 ✓ train
softmax Softmax x - 0 ✓ I
nearest neighbors I ✓ 1 I x 0

to appending an identity predictor. In this case, the predictor can be formulated
as

Fl+1 = Fl. (5)

The formulation above can be obtained by setting σl = I, Wl = 0, W′
l = I

in Eq. 3 for our unified graph convolution predictor. In this case, the neighbor-
hood aggregation term is ignored, and the self-loop term is exactly the identity
mapping.

The MLP Predictors (Fig. 1(b)). Popular unsupervised learning methods
such as MOCOv3 [9], BYOL [16] and Simsiam [5] use MLP layers as predictors.
The typical MLP is a stack of fc-bn-relu layers (perception layer), where fc-bn-
relu layer can be formulated as

Fl+1 = ReLU(BN(W′
lFl)). (6)

The fc-relu-bn above can be obtained by setting σl = ReLU(BN) in Eq. 3. In
this case, the neighborhood aggregation term is also ignored and only the self-
loop term is presented. Some unsupervised learning methods such as MOCOv3,
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BYOL and Simsiam uses the fully-connected layer as the last layer in the con-
structed MLP predictor, which can be obtained by setting the activation function
as the identity matrix, i.e., σl = I.
The Softmax Predictors (Fig. 1(c)). DINO presents a softmax predictor to
obtain the logits for the following KL-divergence loss. The softmax operation
can be presented as

Fl+1 = Softmax(W′
lFl). (7)

The softmax predictor above can be achieved by setting σl = Softmax for the
graph convolution predictor (Eq. 3). In this case, the neighborhood aggregation
term is ignored and only the self-loop term is presented.
The K Nearest Neighbors Predictors (Fig. 1(d)). Recent states-of-the-art
methods treats the sample and itsK nearest neighbors in the feature space as the
positive samples. Given Fl = (f0l , f

1
l , ..., f

K
l ). The K nearest neighbor predictor

can be presented as

f il+1 =
1

K
(N1(f

i
l ) +N2(f

i
l ) + ...+NK(f il ))

=
1

K
(0, 1, 1, ..., 1)⊤(f il ,N1(f

i
l ),N2(f

i
l ), ...,NK(f il ))

=
1

K
(0, 1, 1, ..., 1)⊤(f0l , f

1
l , ..., f

K
l )

=
1

K
(0, 1, 1, ..., 1)⊤Fl.

(8)

Therefore, the output of the l-th GCN predictor can be formulated as

Fl+1 =
1

K
(0,1,1, ...,1)⊤(f1l+1, f

2
l+1, ..., f

K
l+1) =

1

K
(0,1,1, ...,1)⊤Fl+1. (9)

Compared with typical graph convolution layer (Eq. 3), the K-nearest-neighbor
layer can be obtained by setting σl = I and the affinity matrixA = 1

K (0,1,1, ...,1)⊤ ∈
R(K+1)×(K+1). In this case, only neighborhood aggregation term is considered
and the self-loop term is ignored.

3.3 Graph Augmentations for Unsupervised Visual Learning

To better take advantage of pretext tasks in graph contrastive learning, the pro-
posed GCN predictor layer leverages an augmented graph G̃(z1) as the input [37,
63, 2, 47]. Given an input graph G(z) defined by Eq. 2, we implement the typi-
cal graph augmentations in self-supervised graph contrastive learning on G(z1),
achieving G̃(z1) = (Ṽ, Ã) = (t(V), s(A)), where t and s are augmentations on
the node features V and affinities A, respectively. After graph augmentation, we
will change the input node features and affinity as Ṽ and Ã in Eq. 3 as the input
of the GCN predictor.
Node feature masking (NFM). As shown in Fig. 3, Node Feature Masking
(NFM) randomly masks the features of a portion of nodes within G(z). In par-
ticular, we can completely mask seleceted feature vectors with zeros, or partially
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Fig. 3. Graph augmentations. There are three typical graph augmentations, i.e., node
feature masking (NFM), edge modification (EM), and graph diffusion (GD).

mask a number of selected feature channels with zeros. This operation can be
formulated as

Ṽ = t(V) = Mf ◦ V, Ã = s(A) = A, (10)

where Mf is the feature masking matrix with the same shape of V, and ◦ denotes
the Hadamard (element-wise) product. The elements in Mf are initialized to one
and masking entries are 30% randomly assigned to zero.
Edge modification (EM). Edge modification (EM) randomly drops the affini-
ties, which means setting the affinities to zeros. This process is formulated as

Ṽ = t(V) = V, Ã = s(A) = Me ◦A, (11)

where Me is the edge dropping matrix, and ◦ denotes the Hadamard product.
Graph diffusion (GD). Graph diffusion is also a type of affinity augmenta-
tions, which injects the global affinity information to the given affinity by re-
computing the affinity with diffusion operations. The overall diffusion operation
can be formulated as

Ṽ = t(V) = V, Ã = s(A) =

∞∑
n=0

ΘnT
n, (12)

where Θn and T are weighing coefficient and transition matrix, respectively.
The diffusion above have two common instantiations: heat diffusion [26, 43] and

PPR diffusion [12, 15]. The heat diffusion formulates Θn = exp(−η)tn

n! , and T =

AD−1, achieving Ã = exp(ηAD−1 − η)A, where A is the affinity matrix, D is
the diagonal degree matrix, η ∈ (0, 1) is the diffusion time. The PPR diffusion

formulates Θn = γ(1− γ)n, and T = D−1/2AD−1/2, achieving Ã = γ(I− (1−
γ)D−1/2AD−1/2)A, where γ ∈ (0, 1) is the teleport probability in random walk.

4 Experiment

4.1 Implementation Details

Architecture. Our architecture is similar to MOCOv2. Specifically, we use
ResNet-50 as our backbone following the common implementations in the self-
supervised literature. We spatially average pool the output of ResNet-50 which
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Table 3. Ablation of the importance of parameters in the GCN predictor. I∗ denotes
the centering operation proposed in DINO which is used to avoid network collapse.
“train” denotes the trainable parameters. “ema” denotes exponential moving average
of the parameters in the online branch.

Method

Online Branch Target Branch

Linear
Act. Neigh. Agg. Self-loop Act. Neigh. Agg. Self-loop
σ A W W′ σ A W W′

Baseline

MOCOv2 I - 0 I I - 0 I 68.6

Effectiveness of Activation Function

Exp.(a) I - 0 train I - 0 I 68.5
Exp.(b) Re(BN) - 0 train I - 0 I 69.3
Exp.(c) Re(BN) - - I I - - I 67.5
Exp.(d) Softmax - 0 I Softmax - 0 I 69.3
Exp.(e) Softmax - 0 train Softmax - 0 I∗ 69.4

Effectiveness of neighborhood aggregation

Exp.(f) Re(BN) - 0 train I 1 I 0 71.4
Exp.(g) Re(BN) - 0 train I 1 I I 71.8
Exp.(h) Re(BN) 1 train train I 1 I ema 71.9

makes the output of the feature transformation a 2048-dimensional embedding.
The projection layer is composed of 3 fully connected layers having output sizes
[2048, 4096, d], where d is the feature dimension applied in the loss and d =
2048 if not specified. Besides, batch normalization and ReLU activation function
is employed in the projection layer following other SSL works [9, 8, 16]. The
architecture of the predictor is the GCN layers, which is formulated in Eq. 3.
Training. For a fair comparison, we train our method on the ImageNet2012
dataset, which contains 1,281,167 images without using any annotation or class
labels. In the training stage, we train for 200 and 800 epochs with a warm-
up of 10 epochs and cosine annealing schedule using the LARS optimizer. The
base learning rate is set to 0.3. Weight decay of 10−6 is applied during training.
As is common practice, we do not use weight decay on the bias. The training
details above are the same as MOCOv2. We also use the basic data augmentation
scheme (i.e., random crop, color jittering) as MOCOv2 and do not include the
multi-crop strategy [3] for a fair comparison with the most majority of works.

4.2 Ablation study

Exploring the critical factors in GCN predictor. Previous self-supervised
learning methods have different predictor designs in activation functions, and the
using of neighborhood aggregation. For example, MOCOv2 [7] and SimCLR [5,
6] uses the linear activation, MOCOv3 [9] and BYOL [16] use the ReLU(BN) as
the activation function in the online branch, DINO [4] uses Softmax layer as the
activation function. Furthermore, the recent state-of-the-art methods, i.e., MSF
and NNCLR, retrieve the nearest neighbors in the feature space in the target
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branch, which can be mathematically viewed as the neighborhood aggregation
as analyzed in Tab. 1. To strictly ablate the importance of different components
in the GCN predictor layer, we keep the batch size, objective function, learning
rate schedule, optimizer exactly the same, and then train the ImageNet-1K for
200 epochs. For the MLP predictor, we stack three GCN layers as the common
practice with ReLU(BN) being its activation function except the last GCN layer.

Effectiveness of activation function σ.We have three findings from Tab.. 3. First,
comparing Exp. (a) and Exp. (b,e), we can see that with a learnable transforma-
tion matrix W′, the non-linear activation is better than the identity activation
by about +0.9%, which is consistent with the finding in MOCOv3 [9]. Second,
the trainable transformation W′ plays an important role when the activation
function is ReLU(BN), but plays an unimportant role when the activation func-
tion is Softmax and Identity mapping. We consider the difference may result
from the information loss of ReLU. Third, comparing Exp. (b) and Exp. (e),
we find the performance between the GCN layer with different activation func-
tions are quite small if other components are well-designed, which indicates the
activation function is a less important factor.

Effectiveness of neighborhood aggregation. Different from self-supervised learn-
ing methods that do not use supervision from other samples, neighborhood based
methods usesK nearest neighbors as their positive samples. This can be achieved
by using the neighborhood aggregation term in Eq. 3 in GCN predictor. As shown
in Tab. 3, we have three findings. First, the linear evaluation performances of
using neighboring information on the target branch are significantly higher than
those self-supervised learning methods by a considerable 2.1% gain by compar-
ing Exp.(b) and Exp. (f) . Second, comparing Exp.(f) and Exp.(g), we can see
adding the self-loop term in the target branch can only boost the performance
by 0.4%. Third, when adding the neighborhood aggregation and self-loop term
in both online branch and the target branch, the performance can be further
improved by 0.1%, which is not significant by comparing Exp.(g) and Exp.(h).

Evaluating graph augmentation in unsupervised image classification.
Owing to the GCN predictor, we can naturally bridge the vision SSL with graph
SSL, which benefit us to introduce the graph augmentations on the constructed
graph G(z) before the GCN predictor. Refer to Tab. 3, we use the Exp (h) as
the baseline (using a GCN predictor in both online branch and target branch)
in this part and extend it with diverse graph augmentations. Specifically, we
explore the effectiveness of three common graph augmentations in the following.

Node feature masking (NFM) and Edge masking (EM). According to the mech-
anism of NFM and EM described in [33], we randomly remove the node features
or edges in both G(z) and G(z′) with different drop probabilities. As shown in
Tab. 4, the performance first increases from 71.9 to 72.1 with NFM and 72.2
with EM, respectively, when we increase the dropping probability from 0 to 0.3.
Further increasing the drop probability (e.g., to 0.7) will harm the performance.
The results demonstrate that both node and edge masking graph augmentations
are beneficial for vision SSL with a proper drop probability.
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drop probability NFM EM

0 71.9 71.9
0.1 72.1 72.0
0.3 72.1 72.2
0.5 71.3 71.7
0.7 70.1 70.5

Table 4. Ablation study of
node feature masking and
edge modification with differ-
ent drop probabilities.
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no graph aug. EM+ppr diffusion aug.

Fig. 4. Top-5 neighbor purity evolu-
tion by graph augmentations.

Table 5. Ablation study of different graph diffusion methods on the online branch and
the target branch.

Method online branch target branch Linear eval

Exp. (i) No No 72.2
Exp. (j) No Heat Diffusion 72.6
Exp. (k) No PPR Diffusion 72.8
Exp. (l) Heat Diffusion Heat Diffusion 72.4
Exp. (m) PPR Diffusion PPR Diffusion 72.5
Exp. (n) Heat Diffusion PPR Diffusion 72.9
Exp. (o) PPR Diffusion Heat Diffusion 72.8

Graph diffusion (GD). The graph diffusion propagates the global information in
the graph to affinities by diffusion. Based on the results about masking-based
augmentations, we further integrate the diffusion-based augmentations with EM
(drop probability is 0.3) and explore the influence of heat diffusion and PPR
diffusion on both online and target branches. The experimental results are pre-
sented in Tab. 5. We can observe that using graph diffusion to incorporate the
graph information can significantly improve the the performance baseline by
0.9%. In detail, both heat diffusion and PPR diffusion can benefit vision SSL
above the EM augmentation. Besides, using graph diffusion in both branches is
more powerful than only using the diffusion in the target branch.

Analysis. In this section, we explain why the graph diffusion operation can im-
prove the unsupervised learning performance empirically. We find the graph
diffusion operation can correct the affinity of some visually different but seman-
tically same samples in G(z). To better illustrate this, we utilize the setting in
Exp.(e). Inspired by [39], we compare the top-5 purity in different epochs be-
tween the original 10-nearest graph G(z2) and the 10-nearest augmented graph

G̃(z2). The purity for a single feature z is the percentage of N1 to NK in the top-
K nearest neighbors which have the same class as z. Final purity is calculated
by averaging the purities of all samples. The results are presented in Fig. 4. We
find the purity of top-5 nearest neighbor in the augmented graph is higher than
that in the original graph. By using affinity as the aggregation weight in GCN
layer, we can conclude that the features can be aggregated with more accurate
neighbors by using graph augmentations and therefore provided better target
predictions for the online branch to learn.
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Table 6. Comparison with other self-supervised learning methods under the linear
evaluation protocol [18] on ImageNet. We omit the result for SwAV with multi-crop
for fair comparion with other methods.

Method Architecture epochs Top1 Top5

ODC [61] ResNet-50 100 57.6 -
InstDisc [51] ResNet-50 200 58.5 -
LocalAgg [65] ResNet-50 200 58.8 -
MOCOv2 [7] ResNet-50 200 68.6 -
MSF [39] ResNet-50 200 71.4 -
MSF w/s [39] ResNet-50 200 72.4 -
CPC v2 [19] ResNet-50 200 63.8 85.3
DINO [19] VIT-S/16 300 72.5 -
CMC [44] ResNet-50 240 66.2 87.0
Adco [36] ResNet-50 200 68.6 -
NNCLR [13] ResNet-50 200 70.7 -
UniVCL ResNet-50 200 72.9 -
PIRL [34] ResNet-50 800 63.6 -
MOCOv2 [7] ResNet-50 800 71.1 -
SimSiam [8] ResNet-50 800 71.3 90.7
SimCLR [5] ResNet-50 800 69.3 89.0
SwAV [3] ResNet-50 800 71.8 -
InfoMin Aug. [45] ResNet-50 800 73.0 91.1
BYOL [16] ResNet-50 1000 74.3 91.6
Adco [36] ResNet-50 800 72.8 -
Barlow Twins [59] ResNet-50 1000 73.2 91.0
MoCov3 [9] ResNet-50 800 73.8 -
NNCLR [13] ResNet-50 800 75.4 92.4
UniVCL ResNet-50 800 75.7 93.1

4.3 Comparison with State-of-the-art Methods

In this section, we utilize the optimal hyperparameters explored in the previous
sections. Specifically, we apply the edge masking, followed by heat diffusion on
the online brach and PPR diffusion on the target branch. For GCN predictor,
we apply the setting in Exp. (h), where we add a GCN predictor in both online
branch and target branch, and the parameters of GCN layers in the target branch
are updated from the online branch in a momentum update manner. The results
of transfer experiments are presented in supplementary materials.
Linear evaluations Following the standard linear evaluation protocol [51, 65,
18, 7], we train a linear classifier for 90 epochs on the frozen 2048-dimensional
embeddings from the ResNet-50 encoder using LARS [56] with cosine annealed
learning rate of 1 with Nesterov momentum of 0.9 and batch size of 4096. Com-
parison with state-of-the-art methods is presented in Tab. 6. Firstly, UniVCL
achieves better performance compared to the state-of-the-art methods, using a
ResNet-50 backbone without multi-crops augmentations. In 200 epochs train-
ing setting, UniVCL improves MOCOv2 by 4.3%, which uses the identity layer
in both online branch and target branch. UniVCL still improves the DINO by
0.4% although standard DINO [4] leverages more powerful backbone (VIT-S/16)
and more training epochs (300 epochs). The significant improvements by Uni-
VCL verifies the significance of our GCN predictor in the unsupervised vision
contrastive learning. Secondly, MSF and NNCLR also leverage the neighboring
information, but not in a GCN way. The results of our UniVCL is also higher
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Table 7. Comparison with the state-of-the-art methods for semi-supervised learning.
Pseudo Label, UDA, FixMatch and MPL are semi-supervised learning methods. † de-
notes using random augment [10]. We follow the exact data split in SwAV [3].

Method
ImageNet 1% ImageNet 10%

Top1 Top5 Top1 Top5

Supervised baseline [60] 25.4 48.4 56.4 80.4

Pseudo label [29] - - 51.6 82.4
UDA [53] - - 68.8† 88.5†
FixMatch [38] - - 71.5† 89.1†
MPL [35] - 73.5† - -

InstDisc [51] - 39.2 - 77.4
PIRL [34] - 57.2 - 83.8
PCL [30] - 75.6 - 86.2
SimCLR [5] 48.3 75.5 65.6 87.8
BYOL [16] 53.2 78.4 68.8 89.0
SwAV (multicrop) [3] 53.9 78.5 70.2 89.9
Barlow Twins [59] 55.0 79.2 69.7 89.3
NNCLR 56.4 80.7 69.8 89.3
UniVCL 58.6 81.8 71.8 91.4

than MSF and NNCLR [13] by 0.5% and 2.2%, respectively, because of grpah
formulation and the introducing of graph augmentations from the graph SSL
domain with negligible additional computational cost (less than 2%).
Semi-Supervised Learning Evaluations. We conduct experiments in a semi-
supervised setting on ImageNet following the standard evaluation protocol [6, 5],
which fine-tunes the whole base network on 1% or 10% labeled ImageNet data
without regularization after unsupervised pre-training. The experimental results
are presented in Tab. 7.

5 Conclusions and Discussions

In this paper, we unify the recent state-of-the-art methods in our proposed Uni-
VCL. Specifically, we propose the GCN predictor to unify the diverse structural
designs of predictor layers in various self-supervised learning methods. Then,
fairly and comprehensively experiments are conducted to explore the critical
factors in the GCN predictor, revealing the key point of a good predictor is to
aggregate neighboring information in the feature space. Owing to the graph per-
spective, we further verify the effectiveness of graph augmentations in the vision
contrastive learning. In the future, we will extend UniVCL from two perspectives,
1) further link the graph self-supervised learning and vision self-supervised learn-
ing by exploring other non-contrastive frameworks with graph self-supervised
learning, such as reconstruction, attribute prediction, and 2) validating the ef-
fectiveness on other vision tasks, e.g., detection, segmentation.
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