
The Challenges of
Continuous Self-Supervised Learning

(Supplementary Material)

Senthil Purushwalkam1⋆, Pedro Morgado1,2⋆, and Abhinav Gupta1

1 Carnegie Mellon University
2 University of Wisconsin-Madison

www.senthilpurushwalkam.com/publication/continuousssl/

A Ethics and Societal Impact

Research on self-supervised learning has been making progress towards building
systems that can continually learn from data in our world without human
supervision. In this work, we propose a problem setup that evaluates the challenges
faced when such methods are truly deployed in-the-wild. As these systems start
being deployed without supervision, there are numerous possibilities for biases to
emerge based on the statistics of data consumed. These biases could potentially
have a negative impact on our society. Therefore, it is important to exercise
caution when deploying such systems and relying on them for downstream
applications. Before deploying such systems it is also important to thoroughly
study and implement approaches to mitigate such emergent biases.

In our work, apart from working with existing datasets, we gather a collec-
tion of 100M images by downloading images from Flickr that have the Creative
Commons license. While this license permits usage in our application, we do not
plan to redistribute the images since they have not been thoroughly scanned
for privacy concerns. The models trained in this work also have not been exam-
ined for potential societal biases or other spurious correlations that might have
emerged from the data. While we plan to release the models trained here for
research purposes, we would strongly advise against using them for any real-world
applications.

B Implementation details

B.1 SimSiam

The experiments conducted in this paper make extensive use of SimSiam, a
contrastive learning algorithm for self-supervised visual representation learning.
We closely follow the official SimSiam implementation available at https://
github.com/facebookresearch/simsiam.

⋆ Equal contribution.

www.senthilpurushwalkam.com/publication/continuousssl/
https://github.com/facebookresearch/simsiam
https://github.com/facebookresearch/simsiam

2 S. Purushwalkam et al .

In all experiments, we used ResNet-18 with synchronized batch-norm as
the backbone. All models were trained on 4 GPUs using stochastic gradient
descent (SGD) with a batch size of 256, learning rate of 0.05 with a cosine decay,
momentum of 0.9, and weight decay of 0.0001. LIFO buffers are updated by
always removing the oldest images. MinRed buffers are maintained by removing
the most redundant images. Pseudo-code for the Buffered SSL with MinRed
buffers is provided in Algorithm 1.

We follow the same evaluation protocol as in prior work, and use linear probes
on the learned features to recognize classes of three datasets. The linear probes
on ImageNet and iNaturalist were trained using the entirety of the datasets. On
ImageNet, we trained the linear classifier using SGD+LARS for 10 epochs with
a batch size of 1024, learning rate of 3.0 with cosine decay, momentum of 0.9,
and no weight decay. On iNaturalist, the classifier was trained for 20 epochs
with learning rate of 12.0. Contrarily to ImageNet and iNaturalist, evaluations
conducted on the full ImageNet dataset (14M images) only used a subset of
the data (using only 50 images per class for training and 25 for evaluation). We
trained the linear probe on this data using SGD+LARS for 30 epochs and a
learning rate of 3.0.

B.2 Sampling and Splits for Lifelong Learning

In Section 6 of the main text, we construct a dataset with non-stationary semantic
distributions to evaluate lifelong learning i.e. learning without forgetting. Here
we describe the process of construction of this dataset.

First, we performed a depth-first search (DFS) on the Wordnet hierarchy. We
split the sequence of DFS nodes (or classes) uniformly into four groups. Each
such group contains classes that are close to each other in the Wordnet hierarchy
and hence, semantically similar. In order to create the sequence of samples for
lifelong learning, we could sequentially sample images from one split after the
other. However, for future approaches, such hard boundaries in the sequence
as we move from one split to the other could be easy to trivially identify and
leverage to minimize forgetting. To make the setup more realistic, we create
a smooth transition between one split to the other. The smooth transition is
created by mixing the last 10% of each split with the first 10% of the next split.
More concretely, we linearly decrease the likelihood of sampling from the first
split and linearly increase the likelihood of sampling from the second split.

C Additional results

C.1 Generalization towards unseen categories

To assess the open set generalization ability of models trained with Minimum
Redundancy (MinRed) buffers, we extended the continual learning experiment
described in Section 6.2 and Figure 7 of the main paper, and further evaluate
on future data partitions, i.e., data partitions containing categories yet unseen

The Challenges of Continuous Self-Supervised Learning 3

Algorithm 1: Buffered SSL with MinRed buffer. PyTorch pseudo-code.

1 def train(f, SimSiam, stream, num_updates):
2 B = [] # Init empty buffer
3 for ims in stream: # Load batch from stream
4 Add2Buffer(B, ims)
5

6 # Hyper-sampling: Update num_updates times
7 for _ in range(num_updates):
8 # Sample batch from buffer
9 x = RandomSample(B)

10 x1, x2 = aug(x), aug(x)
11 z1, z2 = f(x1), f(x2)
12

13 # Track features
14 TrackRepresentations(B, x, (z1+z2)/2)
15

16 # Compute loss and update models
17 L = SimSiam(z1, z2)
18 L.backward() # Back-propagation
19 update(f, SimSiam) # SGD update
20

21 def Add2Buffer(B, ims):
22 n_excess = len(B) + len(ims) - maxlen(B)
23 if n_excess > 0: # If full, remove n_excess.
24 for _ in range(n_excess):
25 # Pairwise dist
26 d = pdist(B.feat, B.feat)
27

28 # Distance to nearest neig
29 d_nneig = d.min(dim=1)
30

31 # Remove sample with smallest d_nneig
32 i_redundant = d_nneig.argmin(dim=0)
33 B.remove(i_redundant)
34

35 # Add new images to buffer
36 for x in ims:
37 B.add(x)
38

39 def TrackRepresentations(B, x, z, alpha=0.5):
40 # EMA update
41 B.feat[x] = alpha*B.feat[x] + (1 - alpha)*z

in the training sequence. The results are shown in Fig. 1. Training models with
MinRed buffers also lead to better generalizable towards unseen categories. This
is likely explained by the fact that MinRed buffers maintain higher semantic

4 S. Purushwalkam et al .

Dp1 Dp2 Dp3 Dp4
Training Progress

14
12
10

8
6
4
2
0

P
er

ce
nt

ag
e

[%
]

Relative Acc. Drop on Dp2

MinRed Buffer
FIFO Buffer
Conventional

Dp1 Dp2 Dp3 Dp4
Training Progress

Relative Acc. Drop on Dp3

Dp1 Dp2 Dp3 Dp4
Training Progress

Relative Acc. Drop on Dp4

Fig. 1: Open set generalization. While training on the data stream used for assessing
continual learning, we also evaluated the models on future data partitions, which contain
images from images from categories not yet seen during training. By training models
with MinRed buffers, we can learn representations the can better generalize to unseen
categories.

Start Dp1 Dp2 Dp3 Dp4
Training progress

0

1K

4K

16K

64K

Im

ag
es

 in
 b

uf
fe

r
pe

r p
ar

tit
io

n
D

pi

Buffered (MinRed)

Start Dp1 Dp2 Dp3 Dp4
Training progress

Buffered

Start Dp1 Dp2 Dp3 Dp4
Training progress

Conventional

Dp1
Dp2
Dp3
Dp4

Fig. 2: Contents of 64K buffers as the data distribution shifts over the course of training.
For Conventional SSL (which has no buffer), we count images in a sequence of training
batches totaling the same 64K images. Buffered SSL with a Minimum Redundancy
(MinRed) buffer retains a significant number of images from previous data distributions.
This is in contrast to Buffered SSL with LIFO buffers or Conventional SSL which have
no ability to retain images for long periods of time.

diversity in the training data, which encourages the model to learn more general
representations, likely to generalize better to unseen categories.

C.2 Buffer contents during lifelong learning

To understand why MinRed buffers allow SimSiam to learn from non-stationary
distributions with less forgetting (Section 6 of the paper), we analysed the
contents of the buffer used to generate training samples. Figure 2 shows the
number of images in the buffer from each of the Dp1, . . . , Dp4 partitions, as
training progresses from Dp1 to Dp4. As can be seen, only MinRed buffers are
capable of retaining images from prior distributions. Since these images can
then be sampled for training, MinRed buffers enable continual training with less
forgetting.

The Challenges of Continuous Self-Supervised Learning 5

0 20 40 60 80 100 120 140
Data Streamed (Millions of Images)

15

20

25

30

35

40

45

D
ow

ns
tre

am
Im

ag
eN

et
 A

cc
ur

ac
y

[%
]

Cos (25M)

Cos (50M)

Cos (100M)

Constant

Const+Decay (100M)
Const+Decay (50M)

Const+Decay (25M)

Cos (25M)
Cos (50M)
Cos (100M)
Cte+Decay
Cte

Fig. 3: Downstream performance on ImageNet throughout self-supervised training with
various learning rate schedules. “Cos (xM)” stands for cosine decay ending at iteration
x/batch size. “Const+Decay (xM)” represents a learning rate schedule with a constant
start (for about 80% of the total training time), followed by a short cosine decay for
the remainder of training.

C.3 Learning rate schedules for continual learning

The cosine learning rate schedule is not applicable to continuous SSL, as it
requires a pre-determined end. We tested several learning rate schedules. Results
are shown in Figure 3. With a simple constant learning rate, models can still
learn from a continuous (non-stationary) data stream, while still being able to
achieve similar performances in the static case, when combined with a short
learning rate decay before evaluation.

