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Abstract. Conventional de-noising methods rely on the assumption
that all samples are independent and identically distributed, so the re-
sultant classifier, though disturbed by noise, can still easily identify the
noises as the outliers of training distribution. However, the assump-
tion is unrealistic in large-scale data that is inevitably long-tailed. Such
imbalanced training data makes a classifier less discriminative for the
tail classes, whose previously “easy” noises are now turned into “hard”
ones—they are almost as outliers as the clean tail samples. We intro-
duce this new challenge as Noisy Long-Tailed Classification (NLT). Not
surprisingly, we find that most de-noising methods fail to identify the
hard noises, resulting in significant performance drop on the three pro-
posed NLT benchmarks: ImageNet-NLT, Animal10-NLT, and Food101-
NLT. To this end, we design an iterative noisy learning framework called
Hard-to-Easy (H2E). Our bootstrapping philosophy is to first learn a
classifier as noise identifier invariant to the class and context distribu-
tional changes, reducing “hard” noises to “easy” ones, whose removal
further improves the invariance. Experimental results show that our
H2E outperforms state-of-the-art de-noising methods and their abla-
tions on long-tailed settings while maintaining a stable performance on
the conventional balanced settings. Datasets and codes are available at
https://github.com/yxymessi/H2E-Framework.
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1 Introduction

Any visual model should learn to co-exist with noise because any real-world
dataset is imperfect [33]. During data collection, noise such as sensory failure
(e.g., low-quality or corrupted images) and human error (e.g., mislabeling or
ambiguous annotation) may hurt model training. In general, noise can be un-
derstood as a small population of training samples whose image contents differ
from the ground-truth classes [13]. Therefore, if the data is independent and
identically distributed (IID) regardless of class [36,12,38], noise samples can be

https://github.com/yxymessi/H2E-Framework
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Fig. 1. (a) Large-scale datasets are both long-tailed and noisy. For instance, a head
category “cat” may contain noisy samples such as “leopard” and “cartoon tiger” while
noise like “porcupine” and “spiny horse” in tail category “hedgehog” (b) The identifi-
cation of noise based on classifier confidence (or training loss) is no longer applicable
in tail classes for most de-noise algorithms

identified as the outliers of the classifier confidence [15,9,8]. Specifically, we first
learn the classifier on noisy data, then identify the noises as outliers, and fi-
nally remove them for a cleaner data that improves the classifier—a virtuous
cycle [25,52]. In particular, we term the noise that can be identified as outliers
as “easy” noise.

On a dataset with the balanced number of diverse training samples per
class—the conventional settings as in most de-noise literature [25,32,10]—the
IID assumption is easy to be satisfied. The key reason is that such dataset can
guarantee a robust classifier that only focuses on the context-invariant class
feature (or causal feature) [3,37,34,45]. Therefore, after learning to exclude all
the varying contexts (non-causal features), the class features of clean and noisy
samples are indeed different. For example, even if the noise is as tricky as a
“leopard” sample mislabeled as “cat” that is visually similar to “leopard”, af-
ter removing the context, “cat” feature is still different from “leopard” feature,
who is an “easy” outlier of “cat”. So, the premise of the IID assumption is the
disentanglement of the class and context features.

However, should a dataset be at scale, long-tailed distribution will be in-
evitable [55,23], and thus disentangling class and context becomes challenging.
The reasons are due to the following two folds that make the classifier dependent
on class prior and context distribution. First, as head has more samples than
tail, the classifier will be biased to head [44]. Second, head samples have more
diverse contexts than tail, i.e., contexts are not shared by all the classes and
some contexts are unique to certain tail classes due to sample scarcity. So, the
resultant classifier fails to learn context-invariant class features, but entangling
context with class [46]. As shown in Fig. 1(a), the “spine” context is highly corre-
lated to “hedgehog” and thus “spine” is a confusing context to mis-recognize the
noise “porcupine” and “spiny horse” as “hedgehog”. Thus the long-tailed distri-
bution will turn “easy” noise into “hard”, especially for the tail classes. Fig. 1(b)
illustrate such an example: the noises in tail class are almost as outliers as the
tail samples. We leave a more detailed analysis in Section 3.
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In this paper, we present a new challenge for noisy learning at scale, called
Noisy Long-Tailed classification (NLT), which unifies the long-tailed distribution
with realistic noisy data, completing the pioneering work with only synthetic
noise on imbalanced data [50,6,21]. For rigorous and reproducible evaluations in
the community, we introduce three benchmarks: ImageNet-NLT, Animal10-NLT,
and Food101-NLT, with various noise and imbalance ratio for comprehensive
diagnosis (Section 5). Not surprisingly, most of the existing de-noise methods
degrade significantly on the benchmarks, especially for those who heavily rely
on outlier detection [19,52,25,51].
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Fig. 2. The comparison
of CE (cross-entropy) [39]
and Logit-Adjustment [31]
in CIFAR-100 with different
noise ratios.

One may wonder if we could first learn a balanced
classifier on the noisy data by using long-tailed clas-
sification methods [56,44,20], and then apply the con-
ventional outlier detection for noise identification. The
answer is “No” because those methods can only mit-
igate the class bias but not the context bias in long-
tailed data. Fig. 2 demonstrates that with the increase
of noise ratio, the performance of a SOTA long-tailed
method [31] decreases significantly.

To this end, we propose an iterative Hard-to-Easy
(H2E) framework for NLT. It has two stages: 1) A noise
identifier that is invariant to the class and context dis-
tributional change caused by long-tailed distribution
(Section 4.1). Such invariance can reduce “hard” noises
to “easy” ones. Specifically, we sample three data dis-
tribution: long-tailed, balanced, and reversed long-tailed, as three context en-
vironments, and then apply Invariant Risk Minimization (IRM) [3] to learn a
long-tailed classifier as the noise identifier invariant to these environments. Note
that this stage is iterative as “clearner” data improves training better backbones.
2) Thanks to the noise identifier, we can eventually learn a robust classifier.

Our contributions are summarized as follows:

– We present the task: Noisy Long-Tailed classification (NLT) with non-synthetic
real-world noises. NLT is challenging because it turns “easy” noises into
“hard” ones that cannot be identified by prior work.

– We propose a strong NLT baseline: Hard-to-Easy (H2E) noisy learning frame-
work. The success of H2E is based on learning a noise identifier invariant to
the class and context changes introduced by long-tailed data.

– We introduce three NLT benchmarks: ImageNet-NLT, Animal10-NLT, and
Food101-NLT. Extensive experimental results on them show the limitations
of existing de-noise method and the potential of learning invariance for noisy
learning.

2 Related Work

Long-Tailed Classification. Most existing long-tailed methods can be cat-
egorized into three types: 1) class-wise re-balancing using re-sampling strate-
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gies [56,20], re-weighted losses [35,17,40], and post-hoc adjustments [31,44], 2)
data augmentation [11,27], and 3) model ensembling [54,47]. Since the latter two
aim to boost the overall performance by directly increasing the model capabil-
ity, which is generally suitable for all classification tasks, rather than focusing on
tackling the imbalance between head and tail, we mainly focus on the class-wise
re-balancing methods in this paper. Besides, the performance of conventional
long-tailed algorithms may significantly degrade in the noisy environment, as
they assume the training samples to be annotated correctly, which is impracti-
cal in real-world images at scale.
Noisy Learning. The previous learning with noise algorithms can be sum-
marized into 1) the noisy sample selection [19,15,25] and 2) the regulariza-
tion [28,22,1]. Since the latter methods are generally applicable for all classi-
fication tasks, we mainly investigate the former in this paper, as they are more
related to the proposed H2E framework. Most of the noisy sample selection meth-
ods filter out noisy samples by adopting the small-loss trick, which treats samples
with small training losses as correct-annotated. In particular, Co-teaching [15]
trains two networks simultaneously where each network selects small-loss sam-
ples in a mini-batch to train the other. Beta Mixture Model (BMM) [2] separates
the clean and noise samples during training based on the loss value of each sam-
ple. Similarly, Divide-Mix [25] fits a Gaussian mixture model on per-sample loss
distribution to divide the training samples into clean set and noisy set. However,
in the existence of the class imbalance, most of these methods may not work
well since the training loss converges easier in major classes than minor classes,
resulting in the risk of discarding most samples in the minor classes.

3 Noisy Long-Tailed Classification

The classification of an image x as class c can be defined as predicting p(y = c|x)
based on a dataset of image and ground-truth label pairs {(x, y)} [14], where the
noise is caused by the wrong label assignment ỹ → x ( ỹ ̸= y). By Bayes theo-

rem [4], we can decompose the predictive model as p(y = c|x) = p(x|y=c)·p(y=c)
p(x) ,

where p(y = c) is the class distribution, p(x) is the marginal distribution of im-
ages. In the independent and identical distribution (IID) assumption of uniform
p(x) and p(y = c), it is relatively easy to obtain an ideal noise identifier: the
classifier p(y = c|x) per se, which will be explained later.

Unfortunately, the IID assumption is not practical in general as large-scale
dataset is usually imbalanced in not only class distribution, but also context
distribution. We assume that any image x is generated by a set of hidden se-
mantics z = {z1, z2, z3, ...}, which includes two disjoint subsets: class-specific
attributes zc (e.g., the cat-like shape in the “cat” category) and context-specific
environmental attributes ze (e.g., the fur color). So, we can further decompose
the predictive model p(y = c|x = (zc, ze)) as follows:

p(y = c|zc, ze) =
p(zc|y = c)

p(zc, ze)
·

context bias︷ ︸︸ ︷
p(ze|y = c, zc) ·

class bias︷ ︸︸ ︷
p(y = c) . (1)
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From Eq. (1), the noise identifier p(y = c|zc, ze) is affected by the variations of
1) class bias p(y = c): the distribution shift caused by class imbalance, and 2)
context bias p(ze|y = c, zc): spurious correlation 4 between context attributes
and class. Such negative effect motivates us to introduce the concept of “hard”
and “easy” noise, which has not been addressed in the de-noise literature yet.
Noise is defined as training samples with a mismatch between the ground-truth
label y and class-specific (causal) features zc.
“Easy” Noise could be easily detected by the ideal identifier p(y = c|zc, ze),
regardless of the influence by p(ze|y = c, zc) · p(y = c). That is to say ze is inde-
pendent of y, i.e., p(ze|y = c, zc) approaching p(ze|zc) and ze can be eliminated
by p(ze|zc)/p(ze, zc) = 1/p(zc). Meanwhile, p(y = c) is uniformly distributed
under IID assumption in the conventional de-noise setting [19,15,25]. Since the
above 1/p(zc) and p(y = c) could be both considered as constant, noise can
be easily identified because p(y = c|zc, ze) is directly calculated through the
observation of p(zc|y = c).
“Hard” Noise is elusive as p(y = c|zc, ze) is affected by the negative impact of
p(ze|y = c, zc) · p(y = c), leading to erroneous abnormal identification.

The proposed Noisy Long-Tailed classification aims to learn from the train-
ing data that possesses two joint phenomena: 1) the class distribution p(y = c)
is long-tailed; 2) part of the training samples (noise) are wrongly annotated.
Some previous “easy” noises are thus turned into “hard” ones, resulting in that
most of the conventional noise removal algorithms [33,2,9] are no longer reliable
in NLT since the outlier samples can be either caused by the noisy labels with
lower p(zc|y = c) or rare contexts and classes with lower p(ze|y = c, zc) ·p(y = c).
Therefore, we propose the following Hard-to-Easy framework, aiming to learn a
fair noise identifier invariant to the change of p(ze|y = c, zc) · p(y = c), so the
“hard” noises can thus be converted into “easy” ones.

4 Hard-to-Easy (H2E) Framework

As shown in Algorithm 1, our H2E framework is composed of two stages with
an initial warm-up stage, where Stage 1 (Section 4.1) obtains a fairer identifier
by turning “hard” noise into “easy” through invariant muti-environment learn-
ing, thus obtaining a “cleaner” representation by removing the identified “easy”
noise. An iterative virtuous circle is conducted to progressively identify “harder”
noises and learn better representations. Eventually, in Stage 2 (Section 4.2), a
long-tailed loss, e.g., a balanced loss [35], is attached to the clean backbone from
Stage 1 to learn a robust classifier.

4.1 Stage 1: Hard-to-Easy Noise Converter

Input : An initialized model containing backbone Φ(·) and projection layer f(·),
the training dataset {(x, y)}.
4

For a thought example based on Eq. (1), if a class-specific attribute “body” and a context-specific
attribute “spine” have strong co-occurrence under the “hedgehog” class, the wrong annotation
“hedgehog” of a “porcupine” image with “spine” could be imperceptible for the identifier due to
the high spurious correspondence p(ze = “spine”|y = “hedgehog”, zc = “body”).



6 X. Yi et al.

Algorithm 1 H2E Framework
Input: NLT-Dataset {(x, y)}, # Iteration T , Confidence Threshold τ .

1: Stage0 (Input: {{(x, y)}, τ}) → Output: {Φ0(·), f0(·)}
Initialize backbone Φ0(·), linear classifier f0(·) by Part A in Appendix.

2: for t = 1, 2, . . . T do
3: Stage1 (Input: {{(x, y)}, Φt−1(·),ft−1(·), gt−1(·)}) → Output: {Φt(·), ft(·), gt(·)}

// Learn Noise Identifier.
{e1, e2, · · · } generated multiple environments with Sec. 4.1.
gt(·) ← gt−1(·) by learning parameters w through IRM with Eq.(2).

// Easy Noise Removal.
{(x̃, ỹ)} ← {(x, y)} by commensurate Mixup with Eq.(3).
Φt(·) ← Φt−1(·), ft(·) ← ft−1(·) by fine-tuning on {(x̃, ỹ)}.

4: end for

5: Stage2 (Input: {{(x, y)}, ΦT (·), fT (·), gT (·) ) → Output: updated fT (·)
// Robust classifier tackling class imbalance.
Update fT (·) by reweighted Balance-softmax from Eq.(4).

Output: The final robust model fT (ΦT (·)) .

Output : A fair noise identifier g(·) invariant to environments, a fine-tuned
cleaner backbone Φ(·) and projection layer f(·).

As we discussed in Section 3, the imbalanced p(ze|y = c, zc) · p(y = c) turns
“easy” noise into “hard”, since the noise identifier p(zc|y = c) cannot be dis-
entangled from the context and class bias. To better adapt to the long-tailed
classification, the proposed noise identifier combines the previous LWS [20] and
Logit Adjustment [31] classifiers as g(·) = f(Φ(·)) − w · log π, where Φ(·) is the
frozen backbone extracting the image feature; f(·) projects feature vectors to the
logit space; w is learnable parameters; π is the class distribution p(y). However,
the above g(·) can only remove the class bias p(y = c) but not the context bias
p(ze|y = c, zc).

Intuitively, the crux for mitgating context bias p(ze|y = c, zc) is to directly
eliminate the impact of certain context ze distribution, making g(·) an invariant
identifier by capturing the class-specific attributes zc. Inspired by Invariant Risk
Minimization (IRM) [3], we construct a set of environments E = {e1, e2, ...},
ensuring the diverse p(ze|y = c, zc) in different environments. Then, IRM essen-
tially regularizes g(·) to be equally optimal across environments with different
context-distribution, thus removing the influence of context bias. The objective
function of the proposed noise identifier invariant across E is thus defined as
follows:

min
g

∑
e∈E

Re(x, y; f(Φ(·)), g)

subject to g ∈ argmin
g

Re(x, y; f(Φ(·)), g) for all e ∈ E,
(2)

whereRe(x, y; f(Φ(·)), g) is the risk under environment e; g ∈ argming R
e(x, y;M, g) for all e ∈

E means that the invariant identifier g should minimize the risk under all en-
vironments simultaneously. The implementation of IRM loss is in Appendix.
Detailed process of Hard-to-Easy transformation is as below :
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Fig. 3. Multi-environment with diverse
class and context distributions are built,
then an IRM optimization [3] is applied to
obtain an invariant identifier across envi-
ronments

Environment Construction. A set of
diverse environments {e1, e2, ...} are con-
structed which ensure the variance of
p(ze|y = c, zc). The criterion of ideal en-
vironment construction is the orthogonal-
ity of context distribution; however, con-
sidering the computation consumption, we
only construct three learning environments
with classical sampling strategies and pro-
vide further ablations of the settings of en-
vironment construction in Sec. 5.4. As il-
lustrated in Fig. 3, each learning environ-
ments adopts a different class-wise sampling
strategy: 1) the instance-balanced sampler
maintains the raw distribution of dataset,
2) the class-balanced sampler ensures the
equal probability of being selected for each class, and 3) the class-reversed sam-
pler aims to over-correct the imbalanced p(y) by deliberately picking samples
of class y = c with the probability negatively correlated with class size. Then,
in order to generate diverse distributions of p(ze|y = c, zc) to avoid the over-
sampling that generates a lot of duplicate samples (especially in tail categories),
we adopt different data augmentation methods for each environment: e3 with
class-reversed sampler is equipped with the “Strong” augmentation [11] as it
has the most number of duplicate samples, e2 with class-balanced sampler uses
“Simple” Random Flip and Resized Crop, as it has less duplicates, and e1 is
without augmentation (“OFF”) as it has no duplicate samples.
Easy Noise Removal. After obtaining the robust noise identifier g(·), in order
to learn a better backbone with less contamination from the noise and prevent
those clean images from being mistakenly penalized, we adopt a soft noisy re-
moval strategy that uses Mixup [53] to dynamically augment samples according
to the confidence generated by the noise identifier g(·). Specifically, we fine-tune
Φ(·) and f(·) with the generation of training pair (x̃ij , ỹij) through conducting
linear mixture of each two images as follows:

x̃ij = δijxi + (1− δij)xj ,

ỹij = δijyi + (1− δij)yj ,
(3)

where xi and xj are two images with labels yi and yj , respectively; δij is the de-
noise weight in proportion to the confidences g(xi)/g(xj). Intuitively, the sample
with a higher probability of being noise will have smaller weight in the mixed
image x̃ij . Such commensurate Mixup strategy alleviates the noise memorization
effect[26] and prevent the overfitting of the already-detected easy noises. More-
over, the long-tailed effect can also be better eliminated by the Mixup, compared
with other noise identification methods [19,15,25].
Iterative Refinement As both the noise identifier and the easy noise removal
can benefit from the improvement of each other, we introduce an iterative frame-



8 X. Yi et al.

work to progressively identify “harder” noises and learn better representations,
refers to (Φt−1, ft−1, gt−1) → (Φt, ft, gt) in Algorithm 1. It’s worth noting that
the iterative framework needs an initial step to learn a relatively pure feature rep-
resentation by filtering the “simplest” noises, i.e., those samples that both class-
specific contents p(zc|y = c) and context-specific environments p(ze|y = c, zc) are
obvious outliers of the corresponding class y = c. Due to the model memoriza-
tion effect[26], those “simplest” noises can be identified by a commonly adopted
warm-up stage when the noisy data haven’t affected the learning of generalized
patterns yet. The detailed implementation of this step is in Appendix.

4.2 Stage 2: Robust Classifier

Input : The last-iteration model f(Φ(·)) in Stage 1, noise identifier g(·), and
training dataset {(x, y)}.
Output : The final robust model f(Φ(·)).

For the sake of simplicity of symbol, we omit all the subscript in this section.
After obtaining purified representation from the iterative H2E, we assume the
network has already modeled the underline p(x|y = c). Therefore, we only need
to tackle the class bias p(y = c) in the cleaner data by any existing long-tailed
classification algorithms. Without loss of generality, we resort to the balanced
softmax loss [35], which can be defined as: L(x, y) = −y logCE (f(Φ(x)) + log π)
, where CE denotes the cross-entropy loss; π is the distribution of p(y) in the
training data; f(·) is the learnable linear classifier initialized from the last-
iteration in Stage 1. Noted that the noise identifier g(·) is not directly selected
as the initialized classifier since there is a trade-off between the robustness of
noise identification and performance of classification.

Besides, to eliminate all the noises detected by g(·), the final robust classifier
is thus optimized by re-weighting all samples from the training data according
to θ(x, y) as follows:

Loverall =
1

N

∑
(x,y)

θ(x, y) · L(x, y), (4)

where N refers to the batch size, θ(x, y) is the weight parameter generated
by gI(·); θ(x, y) = p(y|x) when p(y|x) is larger than any other p(y′|x) and
θ(x, y) = η, a hyper-parameter threshold otherwise in order to make noisy sam-
ples contribute less to the loss.

5 Experiments

5.1 Benchmarks

We constructed three benchmarks for Noisy Long-Tailed (NLT) classification
using both synthetic and realistic noise with class imbalance to imitate the real-
world dataset at scale. As conventions [18], we call them blue (synthetic) and
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red (realistic), respectively. Our benchmarks: ImageNet-NLT, Animal10-NLT
and Food101-NLT are built on top of three standard image classification dataset
: Red Mini-ImageNet [18], Animal-10N [41] and Food-101N [24].

Dataset Construction. During the dataset construction, we adopted the stan-
dard rule of first building a balanced but noisy dataset and then transforming
them into the long-tailed distribution to simulate the real distribution of noisy
labels. To be specific, as for ImageNet-NLT, we augmented the vanilla Mini-
ImageNet by adding correct-annotated samples from ImageNet with the same
taxonomy. Then we followed the construction of Red Mini-ImageNet to replace ρ
proportion of the original training images with noisy images from the web where
ρ denotes the noise rate that is uniform across classes. Blue noises in ImageNet-
NLT were generated by randomly sampling ρ training images from each class
and substituting their labels uniformly drawn from other classes. The above pro-
cess is not necessary for the construction of Animal10-NLT and Food101-NLT
since their original datasets have already contained various real-world noises.
After obtaining the balanced but noisy datasets, we simulated the long-tailed
distribution in the real-world following the same setting as LDAM [7] to clip
the size of each class: the long-tailed imbalance follows an exponential decay in
the number of training samples across different classes. The imbalance ratio η
denotes the ratio between the size of the maximum and minimum class.

Before sampling the long-tailed subsets of the original datasets, the balanced
Red Mini-ImageNet contains 60,000 images from the original Mini-ImageNet [42]
and 54,400 images with incorrect labels collected from the web. Animal-10N is
a real-world noisy dataset of human-annotated online images of ten bewildering
animals, with 50,000 training and 5,000 testing images in an estimated 8 % noise
rate. Food-101N is a webly noisy food dataset containing 310,000 images from
Google, Yelp, Bing and other search engines using the Food-101 [5] taxonomy.
Table 1 summarizes our benchmarks and further description are in Appendix.

Table 1. Overview of three NLT benchmarks with controlled noise level and imbalance ratio

Dataset #Class Train Size Val Size Noise Levels(%) Imbalance Ratio
Red ImageNet-NLT 100 31,817 5,000 10,20,30 0,20
Blue ImageNet-NLT 100 31,817 5,000 10,20,30 0,20
Food101-NLT 101 63,460 25,000 ≃8.0 20,50,100,200
Animal10-NLT 10 17,023 5,000 ≃18.4 20,50,100,200

5.2 Implementation Details

We compared the proposed H2E with previous state-of-the-art methods in both
fields of learning with noise and long-tailed classification. Moreover, since noisy
long-tailed classification is rarely explored and the number of algorithms designed
to fit our setting is small, we further proposed several joint algorithms that
combine both long-tailed algorithms and de-noise methods for ablation.
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LT Baselines: 1) LWS [20] decouples the learning procedure into representa-
tion learning and classifier fine-tuning, that re-scales the magnitude of classifier
after obtaining the model capable of recognizing all classes; 2) The post-hoc logit
adjustment (LA) [31] is another widely-used algorithm to compensate the long-
tailed distribution by adding a class-dependent offset to each logit; 3) BBN [56]
uses a framework of Bilateral-Branch network with a cumulative learning strat-
egy; 5) LDAM [7] is a label-distribution-aware margin loss designed to re-balance
the distribution.

De-noise Baselines : 1) Co-teaching+ [52] trains two networks then predict
first, and selects small-loss data to teach its peer by keeping the data with
prediction disagreement only; 2) Nested Co-teaching (N-Coteaching) [10] con-
ducts adaptive data compression to train two separate networks and is further
fine-tuned with Co-teaching (iii). 3) Co-Learning [43] further predigests these
co-training methods through a shared feature encoder; 4) MentorMix [18] min-
imizes the empirical risk using curriculum learning to overcome both synthetic
and realistic web noises; 5) Normalized Loss (NL) [30] combines passive and ac-
tive loss to prevent over-fitting to noise labels. 6) Confident Learning (CL) [33]
is a muti-round learning method which refines the selected set of clean samples
by repeating the training round. (7) Two well-known SOTA denoise algorithms
JoCoR [48] and DivideMix [25] are also included.

Joint Baselines: 1) HAR [6] is the first algorithm to tackle the long-tailed dis-
tribution with label noises (synthetic ones), that applies a Lipschitz regularizer
with varying regularization to deal with noisy and rare examples in a unified
way; 2) Co-teaching-WBL (Co-WBL) conducts a temperature weight to offset
the tail classes in the procedure of Co-teaching [15] and fine-tunes with the
balanced softmax loss [35]; 3) We also intuitively add Re-sampling strategy into
the MentorMix [18], denoted as MentorMix-RS, to re-balance before curricu-
lum learning; 4) A distribution-robust loss function [7] and a noise-robust loss
function [30] is also combined, denoted as LDAM+NL.

Experimental Details. ResNet-18 [16] backbone was adopted for all methods
in ImageNet-NLT and Animal10-NLT, and ResNet-50 [16] for Food101-NLT.
They were all trained from scratch by SGD with weight decay of 1×10−4 and mo-
mentum of 0.9. All models were implemented in PyTorch and on NVIDIA Tesla
A100 GPUs for 200 epochs with batch size of 512, except for Co-teaching+ [52]
and Co-teaching-WBL with the batch size of 256. The initial learning rate was
set to 0.2 and the default learning rate decay strategy is Cosine Annealing sched-
uler except for [56], [7], [18], which we followed the original setting to apply the
multi-step scheduler, and we also maintained the warm-up stage and their back-
bone variations based on the corresponding papers. It’s worth noting that we
reported the version of single iteration H2E as well for fair comparison, which is
conducted straightforwardly with 200 epochs. Further experiment on the abla-
tion of iteration is included in Appendix.
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Fig. 4. The example of iterative hard-to-easy transformation on Red ImageNet-NLT,
presenting H2E gradually detects harder noises and improve overall robustness

5.3 Main Results

Evaluation on ImageNet-NLT. We conducted extensive experiments on ImageNet-
NLT with three different noise ratios including both synthetic noises and realistic
web noises, denoted as blue noises and red noises, respectively, following the set-
ting of Jiang et al [18]. Fig. 4 presents that the iterative noise detection can
better transfer hard noises into easy ones thus improving the model robust-
ness step by step. We compared our method with several popular LT, de-noise
baselines and a few joint baselines were also proposed in our experiments to
intuitively combine LT algorithms with de-noise methods. As presented in Ta-
ble 1, the proposed H2E consistently outperforms the baseline methods across
different noise rates and noise types (red and blue). In particular, compared with
MentorMix [18], which achieves the best performance among selected de-noise
methods, H2E improves the test accuracy by 6.1% on average.

Besides, we can see from Table 2 that vanilla long-tailed methods outperform
de-noise baselines in most lower noisy situations, while their performance gap
is narrowed in a higher noise level. Intriguingly, some de-noise methods such as
CL [33] and Co-teaching+ [52] are built upon the strong assumption of class
balance and highly rely on the small-loss trick, so their performance degrades
dreadfully in NLT, even worse than Cross-Entropy in many cases. As for the com-
bined methods, we intuitively followed the essence of de-noise and long-tailed al-
gorithms, and proposed MentorMix-RS and Co-teaching-WBL that outperform
their counterparts and each individual component in most cases. However, for
other strategies such as NL+LA, the improvement is limited and unstable with
the contradiction of their re-balance strategies.

Not surprisingly, when we compared results between the red and blue noise
settings under the same ratios, all the methods perform much better in red
than blue noise except for Co-teaching+ [52], which applies strong intervention
on blue noises. This finding is consistent with Jiang et al [18]’s conclusion and
extends it into a more realistic situation. We believe the underlying reason behind
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Table 2. The evaluation (Top-1 Accuracy%) on ImageNet-NLT: we reported both blue
(synthetic) and red (realistic) noises with three different noise rates: 10%, 20%, and
30%. Experiments demonstrate the effectiveness of the proposed H2E on all settings.
The reported H2E-iter has the same number of total epochs with others

Category Methods
10% ρ 20% ρ 30% ρ

red blue red blue red blue

Baseline CE 54.36 45.80 50.20 40.66 46.90 34.80

Denoise

Co-teaching+ [52] 45.58 53.16 44.14 49.43 43.16 37.47
CL [33] 52.44 48.26 51.42 44.23 48.62 38.21
MentorMix [18] 59.26 54.60 55.18 50.20 54.68 45.84
NL [30] 56.36 52.48 53.84 44.80 51.28 39.14
Co-learning [43] 50.19 49.72 48.77 42.65 44.37 37.20

LT

LWS [20] 57.05 52.36 53.62 44.78 49.15 36.54
LA [31] 58.92 51.34 54.50 45.24 51.94 37.86
BBN [56] 57.83 52.24 54.88 45.76 51.58 41.35
LDAM [7] 59.24 53.02 55.98 46.60 54.38 42.76

Joint

HAR [6] 57.14 53.24 54.04 47.14 52.13 43.92
NL+LA 59.80 51.88 57.21 46.52 53.56 37.40
Co-WBL 61.44 54.98 57.62 52.40 54.08 45.81
LDAM+NL 60.06 52.90 56.24 48.14 54.03 43.62
MentorMix-RS 62.20 55.44 56.14 52.85 55.91 48.27

Ours
H2E 64.86 58.12 60.92 55.84 58.38 51.52
H2E-iter 65.29 59.42 62.12 56.31 60.66 52.57

is that blue noises corrupted by label flipping hurts the representation of the
DNN more seriously than those open-set [49] and label-dependent red noises,
which share more context-specific and class-related attributes. Further analysis
of the combination of realistic noise and synthetic noise is given in Appendix.
Evaluation on Animal10-NLT and Food101-NLT. We further investigated
the performance of H2E and other methods in Animal10-NLT and Food101-NLT
with various imbalance ratios η ∈ {10, 20, 50}. As shown in Table 3, our method
retains the most robust performance and outperforms other approaches in most
cases as the imbalance ratio increase while most de-noise methods [10,30] suffer
from class imbalance and even perform worse than the Cross-Entropy. Long-
tailed methods [56,7] perform much better than de-noise methods in Animal10-
NLT, attributes to the relatively low noise rate (estimated as 8%) and their
specific design on network structures, e.g. cosine classifier in LDAM [7] and
extra blocks in BBN [56]. Note that H2E is still comparable with state-of-art
de-noise algorithms in a strictly balance training set, with 85.1% test accuracy
in Animal-10N [41] and 73.4% test accuracy in Food-101N [24] from scratch.

5.4 Ablation Studies and Further Analysis

Q1: Why H2E outperforms other methods in NLT? To better diagnose
the improvement of H2E, we followed [29] and further recorded test accuracy
and the precision of noise identification on three splits of classes: Many-shot(the
top 25%), Medium-shot(the middle 50%) and Few-shot(the last 25%).
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Table 3. Evaluations (Top-1 Accuracy%) on Food101-NLT and Animal10-NLT

Dataset Food101-NLT Animal10-NLT

Methods/ η 20 50 100 20 50 100

CE 57.21 49.94 44.71 66.10 59.94 53.02

NL [30] 60.13 53.42 46.29 48.20 33.46 22.08
N-Coteaching [10] 52.44 40.21 29.78 57.54 41.40 39.04
DivideMix [25] 69.46 57.15 42.80 72.43 65.77 47.60
Co-learning [43] 53.76 45.92 35.10 61.70 52.76 43.23

JoCoR [48] 49.07 32.98 33.49 51.29 44.02 37.19

LDAM [7] 61.35 59.29 48.61 75.40 72.82 68.21
LA [31] 62.81 55.42 52.30 69.08 67.78 61.89
BBN [56] 63.44 57.89 53.16 72.14 70.26 60.08
LWS [20] 61.29 54.42 51.10 71.16 69.35 62.40

CL +LA 50.16 42.18 39.13 54.14 46.23 41.92
HAR [6] 59.95 52.45 46.12 71.92 68.43 62.19

Co-teaching-WBL 58.04 52.12 53.97 72.43 71.06 66.60

H2E 70.35 63.69 58.66 77.04 74.94 66.58

A1: Specifically in Fig. 5(b), the proposed H2E surpasses MentorMix[18] and
LDAM[7] in few-shot by 20 % and 8% on average, which concretely demonstrates
the robustness of H2E under imbalance distribution. It is clear from Fig. 5(a) that
considering the precision of noise detection, H2E outperforms all of the selected
methods in tail classes, which highlights its power to identify hard noises. From
these two aspects, we could give a conclusion: the higher performance of H2E
indeed attributes to its comparatively better hard noise identification capability
and less hurt on correct-annotated but rare samples, especially on tail classes.

Table 4. Ablation studies of env

Settings/ ρ 10% 20% 30%

#env Aug red blue red blue red blue
2 61.40 54.68 57.78 55.18 55.78 48.22
2 ✓ 62.15 55.70 59.66 55.38 56.02 49.10
3 62.79 57.40 60.64 55.06 57.14 49.38
3 ✓ 64.86 58.12 60.92 55.84 58.38 51.52
4 62.49 55.78 60.18 55.40 56.22 49.30
4 ✓ 65.38 56.52 60.42 55.96 57.56 49.78

Table 5. Effectiveness for each component

Component/ ρ 10% 20% 30%

Stage1 Stage2 red blue red blue red blue

CF CE+RW 56.54 48.40 51.29 43.60 48.09 38.77
CF H2E 63.90 56.10 60.08 54.76 57.80 49.30
LDAM H2E 61.94 56.42 57.10 55.69 54.31 48.46
H2E ERM+RW 60.20 57.02 58.54 50.94 56.27 46.24

Q2: What impact performance of H2E considering environment con-
struction? We conducted two ablation experiments on ImageNet-NLT: one is
to analyze the number of environments and the other is to unify the augmenta-
tion strategies in each environment to so-called “OFF” augmentation.

A2: From Table 4, we found out that the overall improvement is converged to the
number of environments when e > 2 ; Moreover, H2E will averagely degrade by
1.14% without handling the duplication in tail classes , i.e., not augmentations,
but it still largely outperforms other baselines in most settings comparing with
the result in Table. 2, which shows the power of the proposed H2E.
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proposed H2E indeed significantly improves the Few-shot(tail) categories by better identifying hard
noises. (b)Evaluations (Top-1 Accuracy%) on Red ImageNet-NLT. We compare test accuracy in
Many, Medium and Few shots among different methods

Q3: How effective is each individual component in H2E? In Table 4, we
replaced and modified each individual stage in H2E with other feasible methods
to examine the effectiveness of the each stage.
A3: Considering a muti-stage framework, substituting any part of H2E caused
the performance dropping to some extent. In detail, if we replace one component
with other baselines, the Top-1 Accuracy will averagely degrade by 2.81%.
Q4: What’s the justification of augmentation strategies in environ-
ment construction?
A4: (1) All methods in Section 5 contains the so-called strong augmentation
in the stage of data prepossessing for fair comparison, so we don’t take any
unfair advantage. (2) Different augmentations are introduced only to construct
environments with context-wise distribution shift. It’s directly derived from our
formulation, so IRM can focus on class-specific attributes, making it easier to
converge and avoid both class and context bias.

6 Conclusion

We presented a novel noisy learning algorithm, Hard-to-Easy (H2E) for Noisy
Long-Tailed Classification (NLT). We motivated from the observation that the
tail class confidence boundary between clean and noisy samples are not clear, ren-
dering conventional noise identification methods ineffective. Our analysis shows
that it is because the class and context imbalance in long-tailed data that turn
the “easy” noises into “hard” ones. The highlight of H2E is that it learns a ro-
bust noise identifier invariant to the class and context environmental changes.
On three newly proposed NLT benchmarks: ImageNet-NLT, Animal10-NLT, and
Food101-NLT, we demonstrated that H2E significantly outperforms existing de-
noise methods, which do not take the imbalance into account. In future, we
will conduct further analysis on NLT settings and more effective environment-
invariant learning algorithms.
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