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1 Mathematical Analysis of Relative Contrastive Loss

1.1 Detailed Formulation Analysis of Relative Contrastive Loss.

We start by denoting two different images x and x′. Given a criteria Mi, we
define their label as Yi(x) and Yi(x

′), respectively. Inspired by BYOL [5] and
Simsiam [3], the predictor layer aims to predict the expectation of projections
z under transformation Ti, i.e., ETi(z), where Ti is semantic-invariant on Mi,
i.e., Yi(Ti(x)) = Yi(x).

To analyze the formulation of our relative contrastive loss given two images
x and x′, we start with its individual component in Eq. (2) of the main paper,
i.e.,

LRCL

(
x,x′, θ; {Mi}Hi=1

)
=

H∑
i=1

αiL(x,x′, θ;Mi), (1)

where αi is the trade-off parameter among different criteria. The loss L(x,x′, θ;Mi)
for criterion Mi can be defined as

L(x,x′, θ;Mi) = − log

[
I [Yi(z) = Yi(z

′)]× exp (q⊤
Mi

z′/τ) + I [Yi(z) ̸= Yi(z
′)]

exp (q⊤
Mi

z′/τ) +
∑K

k=1 exp (q
⊤
Mi

sk/τ)

]
.

(2)

When Yi(z) = Yi(z
′),

L+(x,x′, θ;Mi) = − log

[
exp (q⊤

Mi
z′/τ)

exp (q⊤
Mi

z′/τ) +
∑K

k=1 exp (q
⊤
Mi

sk/τ)

]
, (3)

which pulls the query predictions qMi
and projection z′ together.

When Yi(z) ̸= Yi(z
′),

L−(x,x′, θ;Mi) = − log

[
1

exp (q⊤
Mi

z′/τ) +
∑K

k=1 exp (q
⊤
Mi

sk/τ)

]
, (4)

which pushs the query predictions qMi
and projection z′ apart.
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Given a query-key pair (z, z′) and a set of semantic criteria {M1,M2, ...,MH},
if Yi(z) ̸= Yi(z

′) for i < h and Yi(z) = Yi(z
′) for i ≥ h, the relative contrastive

loss becomes

LRCL

(
x,x′, θ; {Mi}Hi=1

)
=

h−1∑
i=1

αiL−(x,x′, θ;Mi) +

H∑
i=h

αiL+(x,x′, θ;Mi), (5)

where the positive-negative relation of (z, z′) is relative and depends on the
particular semantic criterion Mi.

1.2 Derivative of Gradients of Relative Contrastive Loss.

We calculate the gradient of relative contrastive loss L+(x,x′, θ;Mi) when
Yi(x) = Yi(x

′) and L−(x,x′, θ;Mi) when Yi(x) ̸= Yi(x
′), respectively. Specifi-

cally,

∂L+(x,x′, θ;Mi)

∂z
= − ∂

∂z

[
q⊤
Mi

z′

τ
− log

[
exp (q⊤

Mi
z′/τ) +

K∑
k=1

exp (q⊤
Mi

sk/τ)

]]

= −∂qMi

∂z

z′

τ
+

exp (q⊤
Mi

z′/τ)
∂qMi

∂z
z′

τ
+

∑K
k=1 exp (q

⊤
Mi

sk/τ)
∂qMi

∂z
sk
τ

exp (q⊤
Mi

z′/τ) +
∑K

k=1 exp (q
⊤
Mi

sk/τ)
,

∂L−(x,x′, θ;Mi)

∂z
= − ∂

∂z

[
− log

[
exp (q⊤

Mi
z′/τ) +

K∑
k=1

exp (q⊤
Mi

sk/τ)

]]

=
exp (q⊤

Mi
z′/τ)

∂qMi
∂z

z′

τ
+

∑K
k=1 exp (q

⊤
Mi

sk/τ)
∂qMi

∂z
sk
τ

exp (q⊤
Mi

z′/τ) +
∑K

k=1 exp (q
⊤
Mi

sk/τ)
.

(6)

Denote

P
(
z′|qMi

)
=

exp (q⊤
Mi

z′/τ)

exp (q⊤
Mi

z′/τ) +
∑K

k=1 exp (q
⊤
Mi

sk/τ)
, (7)

P (sk|qMi) =
exp (q⊤

Mi
sk/τ)

exp (q⊤
Mi

z′)/τ) +
∑K

k=1 exp (q
⊤
Mi

sk/τ)
, (8)

where P (z′|qMi
) and P (sk|qMi

) are always non-negative and P (z′|qMi
) +∑K

k=1 P (sk|qMi) = 1. Therefore, P (z′|qMi) can viewed as a valid probabil-
ity of assigning the query prediction qMi

to the label of projection z′ and the
label of negative samples sk, respectively.

After substituting Eq. 7 and Eq. 8 into Eq. 6, we get

∂L+(x,x′, θ;Mi)

∂z
=

[
P
(
z′|qMi

)
− 1

] ∂qMi

∂z

z′

τ
+

K∑
k=1

∂qMi

∂z
P (sk|qMi)

sk
τ
,

∂L−(x,x′, θ;Mi)

∂z
=

[
P
(
z′|qMi

)] ∂qMi

∂z

z′

τ
+

K∑
k=1

∂qMi

∂z
P (sk|qMi)

sk
τ
.

(9)
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Then ,we get the gradient of L(x,x′, θ;Mi) in Eq. 2 as Eq. 4 in the main
text, i.e.,

∂L(x,x′, θ;Mi)

∂z
=

∂qMi

∂z

∂L(x,x′, θ;Mi)

∂qMi

=
[
P
(
z′|qMi

)
− I

[
Yi(z) = Yi(z

′)
]] ∂qMi

∂z

z′

τ
+

K∑
k=1

∂qMi

∂z
P (sk|qMi)

sk
τ
.

(10)

Finally, the gradient of relative contrastive loss LRCL is (discard negative
samples {sk}Kk=1 in the support set S)

∂LRCL

∂z
=

H∑
i=1

αi
∂qMi

∂z

(
P(z′|qMi)− I

[
Yi(z) = Yi(z

′)
]) z′

τ
. (11)

1.3 Visualization of Relative Contrastive Loss

The relative contrastive loss considers the positive-negative relation depending
on a set of criteria M = {M1,M2, ...,MH}. According to Eq. 11, we define
the attractor A(z, z′) and repellor R(z, z′) to describe the relativeness between
the features of a given query-key pair (z, z′). Without the loss of generality,
we add only one predictor P(∗, θp) instead of multiple predictors {P(∗, θip)}Hi=1

after query projection in our experiments for visualization, and set the weight
αi =

1
H . The number of criteria H is set to be 3. For ease of our visualization,

we only visualize the pull-push dynamics between query prediction q and the
key projection z′, i.e.,

∂LRCL

∂q
=

H∑
i=1

αi

(
P(z′|qMi)− I

[
Yi(z) = Yi(z

′)
]) z′

τ
, (12)

Concretely, the attractor A(q, z′) and the repellor R(q, z′) can be defined as

A(q, z′) =

H∑
i=1

αiP(z′|qMi) (13)

R(q, z′) =

H∑
i=1

αiI
[
Yi(z) = Yi(z

′)
]

(14)

S-Figure 1(a) shows a query image (the first image in the column and row),
two images that share the same label with the query image in the hierarchical
label bank at all levels h = 1, 2, 3, three images that share the same label in the
hierarchical label bank at level h = 2, 3, two images that only share the same
label in hierarchical label bank at level h = 3, and two images that are not
labeled the same with query image in the hierarchical label bank at any level.
The results in S-Figure 1(c) show that the final decision on pull (greater than 0)
and push (smaller than 0) is continuous, different from the designs in [6, 2, 4, 1,
5], that are discrete. Besides, the continuous values reflect relative semantic and
visual similarities among samples.
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𝒟 𝐪, 𝐳! = 𝒜 𝐪, 𝐳! −ℛ 𝐪, 𝐳! , 𝒰 𝐪, 𝐳! = 𝐬𝐢𝐠𝐧 𝒟 𝐪, 𝐳!

(a) Attractor Map 𝒜(𝐪, 𝐳′) (b) Repellor Map ℛ(𝐪, 𝐳′)

(c) Dynamical Map 𝒟 𝐪, 𝐳! (d) Pull (1) or Push (0) Map 𝒰(𝐪, 𝐳′)

S-Figure 1: Visualization of relative contrastive loss. (a) Attractor Map A(q, z′)
in Eq. 13: Attractive map denotes the attractive force of relative contrastive loss
that pulls query-key pair (q, z′) together. (b) Repellor Map R(q, z′) in Eq. 14:
Repellor map denotes the repulsive force of relative contrastive loss that pushes
query-key pair (q, z′) apart. (c) Dynamical Map D(q, z′) = A(q, z′)−R(q, z′):
the difference of the attractor map and the repellor map. Positive value means
the query-key pair (q, z′) should be pulled together, the negative value means the
query-key pair (q, z′) should be pushed apart. The absolute value of dynamical
map means the strength of force. (d) Pull or Push Map U(q, z′) = sign (D(q, z′)):
Pull or Push map denotes the final attractive or repulsive force between a query-
key pair (q, z′). 0 denotes pushing two features apart and 1 denotes pulling two
feature together.
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Method
Object Detection Instance Segmentation

AP-all bb AP-50 bb AP mk AP-50 mk

Supervised 38.2 58.2 33.3 54.7
MoCo v2 39.3 58.9 34.4 55.8
SwAV 37.9 57.6 33.1 54.2
Simsiam 39.2 59.3 34.4 56.0
Barlow Twins 39.2 59.0 34.3 56.0
RCL 39.3 59.1 34.3 56.1

S-Table 1: Transfer learning from ImageNet with standard ResNet50 to COCO
object detection and instance segmentation. All methods are evaluated on the
test-dev dataset. bb: bounding box. mk: segmentation mask.

2 Transfer to Detection and Segmentation Tasks

In this section, we provide the detection and segmentation results5, when we
transfer our model to detection and segmentation tasks. We strictly follow the
evaluation protocol in MOCO [6]. Specifically, we do not freeze the batch nor-
malization layer, and finetune the whole network by the COCO training set. We
report the results on the COCO evaluation dataset in S-Table 1.

3 Hierarchical Clustering

In this paper, hierarchical clustering is a natural instantiation for multiple cri-
teria. To elaborate the process of hierarchical clustering, we first describe two
implementations, i.e., label propagation and average linkage, for deciding two
clusters to merge or not.

3.1 Label Propagation

Label Propagation [7] is a widely-adopted method of computing the possibility
that two samples/clusters belong to the same class. Given n units U = {Ui}ni=1,
i.e., clusters or samples to be split/merged, we first estimate its pairwise similar-
ities by the dot product of the unit prototypes U = (u1,u2, ...,un), i.e., features
for single images or cluster feature centers. Mathematically, it can be formulated
as

A = U⊤U. (15)

Following [7], we can obtain the normalized affinity matrix Â by

Â = D−1/2AD1/2, (16)

5 These experiments are not the improved version of the method RCL, just the gen-
eralization ability evaluation of the method.
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where D is a diagonal matrix with elements Dii =
∑n

j=1 Aij . We denote the

predicted probabilities of samples/clusters as Pt = (pt
1,p

t
2, ...,p

t
n) ∈ Rn×k after

t-th propagation (defined in Eq. 18), where k is the number of classes (clusters)
that n units may belong to, pt

∗ = (pt∗,1, p
t
∗,2, ..., p

t
∗,k) and pt∗,k′ denotes the prob-

ability of the sample belong to the k′-th class. For the i-th unit, we would like
to propagate the class predictions from other units j as

pt+1
i = γ

∑
j ̸=i

Âijp
t
j + (1− γ)p0

i = γÂiP
t + (1− γ)p0

i , (17)

where γ is a propagation strength parameter, P0 = (p0
1,p

0
2, ...,p

0
n), p

0
i is the

initial label prediction of the i-th unit that we will specifically define in the
following cluster split and cluster merge.

Intuitively, if the i-th sample and the j-th sample are similar with a high
affinity Â(i, j), the prediction pt

j of the jth sample would have a larger weight

to be propagated to the prediction pt+1
i of the i-th sample. Propagating the

predictions between all samples in parallel can be formulated as

Pt+1 = γÂPt + (1− γ)P0, (18)

which is an iterative algorithm. The closed solution P∞ after conducting Eq. 18
for multiple times until convergence is

P∞ = (I− γÂ)−1P0. (19)

For each unit to be split or merged, we estimate its class prediction p∞
i =

(p∞i,0, p
∞
i,1, ..., p

∞
i,k) by propagating the neighboring information with Eq. 19, which

is used to merge the i-th unit to j-th cluster when p∞i,j > σm. Here σm is the
manually designed threshold for cluster merge.
Initialize P0 in Cluster Split. As described in Cluster Split part in Sec. 4.3
in the main text, we split a cluster Ch+1

i into m clusters, and uses the clusters at
h-th level at its split units, i.e., Uh+1

i = {Ch
j |Ch

j ⊂ Ch+1
i , j = 1, 2, ..., kh}, where

kh is the number of clusters at h-th level. We re-denote Uh+1
i = {O1,O2, ...,On},

where n = |Uh+1
i |. We first select m the most dissimilar split units in Uh+1

i as
the prototypes of each class. Then, we initialize (p0

jk) as 1 if Oj is selected as
the prototype of the k-th class, and as 0 otherwise, i.e.,

p0
jk =

{
1, if Oj is selected as the prototype of the k-th class,
0, otherwise,

(20)

Initialize P0 in Cluster Merge. We treat every cluster in the merge units
Vh+1
i in Sec. 4.3 Cluster merge in the main text as an individual class, and

then use label propagation to determine to merge two clusters if their prediction
belonging to the same class is larger than σm. Specifically, we initialize P0 as

P0 = In′×n′ , (21)

where n′ = |Vh+1
i | is number of merge units in Vh+1

i .
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Effectiveness of Label Propagation. Label propagation serves as a corner-
stone in cluster split and cluster merge for estimating the possibility that two
samples/clusters labeled the same. To evaluate the effectiveness of label propa-
gation in hierarchical clustering, we replace the label propagation by typical im-
plementation, i.e., feature similarity, in hierarchical clustering to justify whether
two units belong to the same class. Average linkage based hierarchical cluster-
ing [8] determines merge and split by pairwise similarity only, thus can not con-
sider the neighboring information in the data distribution. The detailed imple-
mentation of hierarchical clustering by average linkage is specifically described in
supplementary materials. Comparing Exp. 2 with Exp. 3 and comparing Exp. 4
with Exp. 5 in S-Table 2, we find the accuracy with label propagation is about
6% higher than that clustered by average linkage if we set the hierarchy of clus-
tering to 3. Comparing Exp 3, 5 and Exp 1, 2, 4 in S-Table 2, we find different
trends when implementing the label propagation and average linkage, i.e., the
accuracy increases as the number of hierarchies increases for label propagation
(Exp 1, 2, 4) but obviously drops for average linkage (Exp 3, 5). We attribute
this to the failure of average linkage based clustering, and therefore the criteria
by hierarchical clustering with label propagation determine query-key pair posi-
tive and negative incorrectly. This analysis shows the potential of designing more
appropriate criteria as the future work when implementing relative contrastive
loss in the feature.

3.2 Clusters with Different Epochs.

To explore how the number of clusters changes with the increase of training
epochs, we depict the number of clusters in the support set S with different
training epochs in S-Figure 2(left). We find the number of clusters decreases
consistently during the network training, which demonstrates that the network
can learn semantic knowledge from the dataset. Besides, with the increase of hi-
erarchical level, the number of clusters decrease, which obeys the cluster preserve
property of the hierarchical label.

To further understand the process of hierarchical clustering, we illustrate the
clustering results of the support set S in S-Figure 2(right). As shown in the figure,
positive samples at lower hierarchical level (e.g. H = 1) are more similar to each
other, while positive samples at higher hierarchical level (e.g. H = 3) are more
dissimilar to each other visually and semantically. For example, at epoch 200, the
H = 1 positives share the same color, shape, and semantic meaning (mushroom)
with query image, but the H = 3 positives only share the similar shape with the
query image but have different colors and possibly different semantic meanings
(mushroom v.s. rockets). With the increase of training epochs, samples in the
same hierarchical level are more similar to each other visually and semantically,
because the CNN features are learned better.
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query image
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Epoch 200
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S-Figure 2: Left: Number of classes with different epochs. Blue line, orange line
and gray denote the number of clusters in the hierarchical label bank at H = 1,
H = 2 and H = 3, respectively. Right: Visualization of positives samples at
different levels in the hierarchical label bank. Comparing with images in the
hierarchical label at different epochs (epoch=30, 100, 200), the samples in the
hierarchical label bank at all levels are becoming more and more visually similar
with the query image. When we focus on the samples in only one epoch, we
find that with the increase of level of the hierarchical label bank, the number
of images increases, the images are less visually similar to the query image than
those in the hierarchical label bank at relative low levels. Specifically, we find
H = 1, 2 positives are more similar to the query image than H = 3 positives.
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S-Table 2: The effectiveness of using label propagation and number of hierachies.

No. #Predictors #Hierarchies LP Acc

1 1 1 Yes 70.2
2 1 2 Yes 71.3
3 1 2 No 68.5
4 1 3 Yes 71.8
5 1 3 No 65.5
6 1 4 Yes 71.4
7 1 4 No 67.8
8 3 3 Yes 72.6

S-Table 3: Sensitivity of Cluster Merge Threshold σm

σm num of clusters (H=3) linear evalutaion

0.10 32 15.4
0.30 565 37.2
0.40 2752 43.2
0.50 5253 64.3
0.55 8795 70.9
0.60 9321 72.6
0.70 23246 72.3
0.80 38842 72.2
0.90 89642 71.5

3.3 Sensitivity of the Cluster Merge Threshold σm.

The cluster merge threshold is a hyper-parameter and determines when two clus-
ters can be merged. In this part, we analysis the influence of σm to the model’s
performance under the linear evaluation setting. To ease the hyper-parameter
tuning process, we simply set the merge threshold the same throughout all levels
in the hierarchical clustering. As can be observed in S-Table 3, when σm is small,
there are only a few clusters in the last level and the linear classification results
are very bad. We attribute the failure to too many samples wrongly grouped in
same cluster. Even when we set σm = 0.4 (the number of clusters equal to 2752),
when linear evaluation results are still poor, which indicates the large number of
noisy labels in the hierarchical label bank. The model achieves best performance
when setting σm to 0.6, which leads to a moderate cluster size compared to
σm = 0.1 and σm = 0.9. The results demonstrate that it is important to make
a good balance between learning more diverse semantic variance and maintain
suitable discriminative ability. Besides, we also observe that the accuracy change
is small when the threshold σm is larger than 0.55, showing that the model is
not sensitive to the value of σm when it is large enough.
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