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Abstract. Defining positive and negative samples is critical for learn-
ing visual variations of the semantic classes in an unsupervised manner.
Previous methods either construct positive sample pairs as different data
augmentations on the same image (i.e., single-instance-positive) or es-
timate a class prototype by clustering (i.e., prototype-positive), both
ignoring the relative nature of positive/negative concepts in the real
world. Motivated by the ability of humans in recognizing relatively pos-
itive/negative samples, we propose the Relative Contrastive Loss (RCL)
to learn feature representation from relatively positive/negative pairs,
which not only learns more real world semantic variations than the single-
instance-positive methods but also respects positive-negative relativeness
compared with absolute prototype-positive methods. The proposed RCL
improves the linear evaluation for MoCo v3 by +2.0% on ImageNet.

1 Introduction

Recent progresses on visual representation learning [1, 36, 15, 26, 28, 53, 48, 40]
have shown the superior capability of unsupervised learning (also denoted as self-
supervised learning in some works [7, 21, 46]) in learning visual representations
without manual annotations. Contrastive learning [24, 21, 9, 11, 7, 46, 57, 19, 50,
10], which is the cornerstone of recent unsupervised learning methods, optimizes
the deep networks by reducing the distance between representations of positive
pairs and increasing the distance between representations of negative pairs in
the latent feature space simultaneously. As an amazing achievement, it is shown
in [24, 19, 50] that the pretrained feature representation with recent contrastive
learning methods is comparable with supervised learning in image classification.

One of the critical components for contrastive learning methods is construct-
ing positive pairs and negative pairs. In particular, single-instance-positive meth-
ods, such as MoCo [21, 9], SimCLR [7, 8], and BYOL [19], apply random image
augmentations (e.g., random crops, color jittering, etc) on the same sample (im-
age) to obtain different views of the same sample as positive pairs and optionally
take the augmentations of other samples as negative pairs. Though demonstrated
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Fig. 1: Motivation of the Relative Contrastive Loss. Left : Blue, purple and, orange
rectangles denote vehicles, sailing vessel, and trimaran, respectively. The concepts of
vehicles, sailing vessels, and trimarans show that the concepts of two images belonging
to the same category depend on the level of hyponymy, motivating us to conduct the
relative contrastive learning in this paper. Right: Any image pair in relative contrastive
loss are determined postive or negative by multiple criteria.

effective, such augmentations are insufficient to provide positive pairs with natu-
ral intra-class variances such as different camera viewpoints, non-rigid deforma-
tions of the same object, or different instances of the same category. Clustering-
based methods [5, 3] and neighborhood-based methods [16, 39] can handle the
above problems in single-instance-positive methods by using the prototypes of
pseudo-classes generated by clustering [5, 3, 2] or k nearest neighbors in the fea-
ture space [16, 39] as the positive samples. Despite their great success, all these
unsupervised learning methods define positive and negative pairs absolutely, ig-
noring the relative nature of positive and negative concepts in the real world.

Instead of constructing positive and negative pairs categorically in previous
self-supervised learning methods, human beings have the relative recognition
ability. In biotaxonomy, the Swedish botanist Carl Linnaeus described the rel-
ative similarity of biological organisms under seven hierarchies, i.e, Kingdom,
Phylum, Class, Order, Family, Genus, Species, forming the current system of
Linnaean taxonomy [17]. Popular benchmarks in computer vision such as Im-
ageNet [14], iNat21 [45], and Places365 [56], also respect the positive-negative
relativeness and include hierarchical labels. For example, in ImageNet, trimaran
and boats all belong to sailing vessels (more general concept) and vehicles (the
most general concept in Fig. 1(left)). However, trimaran and boats are different
classes when we aim to specify different sailing vessels.

In this paper, we respect the nature of relativeness in human recognition
and propose a new relative contrastive loss by recognizing a given sample pair
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partially positive and negative based on a set of semantic criteria to capture
real world instance variation of a class in a relative way (Fig. 1(right)). Given
two images, i.e., query and key, we feed them into the encoder and momentum
encoder to get their features, respectively. Then, the relatively positive-negative
relations among them are determined by a set of criteria, which are instantiated
by hierarchical clustering. Each level in hierarchical clustering is considered as a
specific criterion. The proposed relative contrastive loss leverages the query fea-
ture, the key feature and their relatively positive-negative relations to supervise
the training process.

In summary, our main contributions are introducing the general idea of rel-
ative contrastive loss for self-supervised learning, and accordingly designing a
framework incorporating the online hierarchical clustering to instantiate it. The
effectiveness of our proposed method is demonstrated via extensive experiments.
For instance, on ImageNet linear evaluation, our method well boosts the top-1
accuracy of ResNet-50 by +2.0% gain (73.8% → 75.8%) compared with Mo-
Cov3. Experimental results also validate the effectiveness of our method for
semi-supervised classification, object detection, and instance segmentation.

2 Related Work

Single-instance-positive Methods. Instead of designing new pre-text tasks [15,
54, 33, 34, 3], recent unsupervised learning methods are developed upon con-
trastive learning, which tries to pull the representations of different augmented
views of the same sample/instance close and push representations of different
instances away [7, 24, 21, 9, 16, 12, 25, 20]. Contrastive methods require to define
positive pairs and negative pairs in an absolute way, which violates the relative-
ness of human recognition. This issue of previous contrastive methods strongly
motivates the need for relative-contrastive approaches that can reflect the nature
of relativeness when human recognize objects. We achieve this goal by introduc-
ing a new relative contrastive loss. Instead of defining positive and negative pairs
according to one absolute criterion, we assign a sample pair positive or negative
by a set of different criteria to mimic the relative distinguish ability.
Clustering-based Methods. Instead of viewing each sample as an independent
class, clustering-based methods group samples into clusters [3, 5, 52, 57]. Along
this line, DeepCluster [3] leverages k-means assignments of prior representations
as pseudo-labels for the new representations. SwAV [5] learns the clusters online
through the Sinkhorm-Knopp transform [27, 6]. Our method is also related to
these clustering-based methods in that we instantiate our relative contrastive loss
with an online hierarchical clustering. [4] leverages the hierarchical clustering to
tackle non-curated data [41], instead of tackling curated data, i.e., ImageNet-
1K, in our paper. However, these clustering-based methods define positive and
negative pairs absolutely. In our method, a pair of samples can be partially
positive, respecting the relativeness of similarity between a pair of samples.
Neighborhood-based Methods. Neighborhood-based methods stand the re-
cent states-of-the-art methods in unsupervised learning. NNCLR [16] replaces
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one of the views in single-instance-positive methods with its nearest neighbor
in the feature space as the positive sample. MSF [39] makes a further step
by using the k nearest neighbors in the feature space as the positive samples.
Neighborhood-based methods perform better than single-instance-positive meth-
ods because they can capture more class-invariances that can not be defined by
augmentations and better than clustering methods because the query and the
positive samples are more likely to belong to the same class. Our work also
consider neighbors, but in a relative way.

3 Background: Contrastive Learning

Given an input image x, two different augmentation parameters are employed to
get two different images/views: image v and image v′ for the query and the key
branch, which output q = P(Q(v, θ), θp) and z′ = K(v′, ξ), respectively. Here,
Q and K respectively denote feature transformations parameterized by θ and ξ.
P is an optional prediction [10, 19, 36] of z = Q(v, θ) implemented by MLP. The
contrastive loss is presented in InfoNCE [23], i.e.,

Lctr(x, θ) = − log

[
exp (q⊤z′)/τ

exp (q⊤z′/τ) +
∑K

k=1 exp (q
⊤sk/τ)

]
, (1)

where S = {sk|k ∈ [1,K]} is a support queue storing negative features and
τ =0.1 is the temperature. Contrastive loss pulls the features of the query-key
pair (q, z′) together and pushes features of the query-negative pairs (q, sk) apart.

4 Relative Contrastive Learning

We are interested in defining a query-key pair (q, z′) positive or negative rela-
tively. Therefore we propose a relative contrastive loss and present an instan-
tiation by online hierarchical clustering method to achieve it. Specifically, we
generate a set of semantic criteria M = {M1,M2, ...,MH} (H denotes the
number of criteria) to define (q, z′) positive or negative by online hierarchical
clustering (Sec. 4.3), and then compute our relative contrastive loss (Sec. 4.1).
This loss (defined in Eq. 2) is obtained by aggregating the vanilla contrastive
losses in Eq. 1 with (q, z′) defined as positive or negative by every semantic
criterion Mi in M.
Overview. As shown in Fig. 2, the relative contrastive learning has the following
steps.

Step 1: Image x to features z and ẑ′. Specifically, given two different views
(v,v′) of an image x, their projections can be computed by z = Q(v, θ) and ẑ′ =
K(v′, ξ). Following [21, 19], the query branch Q(∗, θ) is a deep model updated
by backward propagation, while the key branch K(∗, ξ) is the same deep model
as the query branch but with parameters obtained from the moving average of
Q(∗, θ).
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Fig. 2: The pipeline of relative contrastive learning. In the key branch, the feature
ẑ′ after projection is used to search the relative keys z′from the support queue by
hierarchical clustering. For the feature z after projection in the query branch, we feed it
into criterion-specific projectors to generate multiple predictions {qM1 ,qM2 , ...,qMH}.
Multiple predictions, z and z′ are then fed into the relative contrastive loss LRCL.

Step 2: Key-branch features ẑ′ to retrieved features z′. On the key branch,
we retrieve key features z′ from the support queue S with multiple criteria M
implemented by hierarchical clustering (Sec. 4.3). On the query branch, simi-
lar to [19, 10], we add criterion-specific predictors {P1,P2, ...,PH} on z to get
{qM1

,qM2
, ...,qMH

}.
Step 3: Backpropagation using the relative contrastive loss. The retrieved fea-

ture z′, multiple predictions {qM1
,qM2

, ...,qMH
}, and whether (z, z′) is positive

or negative according to semantic criteria M (designed by online hierarchical
clustering in Sec. 4.3) are then fed into the relative contrastive loss (Eq. 2).

4.1 Relative Contrastive Loss

In the conventional contrastive learning, the positive-negative pairs are defined
absolutely, i.e., only augmentations of the same image are considered as positive
pair. Motivated by the relative recognition ability of human beings, we introduce
a relative contrastive loss to explore the potential of relative positive samples
defined in diverse standards.
Semantic criteria for assigning labels. For a set of semantic criteria {M1,
M2, ...,MH}, relative contrastive loss determines any given query-key pair (z, z′)
as positive or negative based on the criteria Mi for i = 1, . . . ,H. Denote Yi(z)
and Yi(z

′) respectively as the labels of z and z′ generated using criterion Mi.
The query-key pair (z, z′) is defined positive under Mi if Yi(z) = Yi(z

′), and
negative under Mi if Yi(z) ̸= Yi(z

′). Different from the vanilla contrastive loss
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Fig. 3: Analysis of the relative contrastive loss with multiple criteria. Both P(z′|q) and
Pc represent the probability that z′ and q have the same label. The difference is that
P(z′|q) is based on the cosine similarity of z′ and q, and Pc is based on the set of defined
semantic criteria. Whether to pull (q, z) together or push (q, z) apart is determined
by P(z′|q)−Pc. If P(z′|q)−Pc < 0, (q, z) should be pulled together. If P(z′|q)−Pc>0,
(q, z) should be pushed apart.

in Eq. 1, where z and z′ are generated by different views of the same sample
and naturally a positive pair, the z and z′ in the relative contrastive loss can be
generated by different samples and are considered positive or negative relatively.
As an example in Fig. 1, the bicycle and the sailing ship have the same label
when the semantic criterion is whether they are vehicles, but they have different
labels when the semantic criterion is whether they are sailing vessels.

With the semantic criteria and their corresponding labels defined above, the
relative contrastive loss is defined as

LRCL

(
z, z′, θ; {Mi}Hi=1

)
=

H∑
i=1

αiL(z, z′, θ;Mi), (2)

where αi is trade-off parameter among different criteria. αi = 1/H in our imple-
mentation. Loss L(z, z′, θ;Mi) in Eq. 2 for criterion Mi can be defined as

L(z, z′, θ;Mi)

= − log

[
I [Yi(z) = Yi(z

′)] · exp (q⊤
Mi

z′/τ) + I [Yi(z) ̸= Yi(z
′)]

exp (q⊤
Mi

z′/τ) +
∑K

k=1 exp (q
⊤
Mi

sk/τ)

]
,

(3)

where z = Q(v, θ), z′ = K(v′, ξ), sk is the feature in the support queue S, K is
the size of S and I(x) is an indication function, I(x) = 1 when x is true, while
I(x) = 0 when x is false. qMi

= P(z, θip) is the output of the criterion-specific

predictor P(∗, θip) for the query projection z, which is explained in the following.
Criterion-specific predictor. Inspired by BYOL [19] and Simsiam [10], the
predictor layer aims to predict the expectation of the projection z under a spe-
cific transformation. Therefore, we propose to use the multiple criterion-specific
predictors, each of which is to estimate the expectation of z under its corre-
sponding semantic criterion. Specifically, we add H MLPs, forming predictors
{P(∗, θ1p), P(∗, θ2p), ..., P(∗, θHp )} after the projectors in the query branch.
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4.2 Analysis of Relative Contrastive Loss

In this section, we mathematically illustrate how relative contrastive loss super-
vises the feature distance between a query-key sample pair. We will show the
feature distance of a image pair with higher possibility of being positive should
be smaller than that with lower possibility of being positive.

We derive the gradient of our relative contrastive loss. The gradient of
L(z, z′, θ;Mi) in Eq. 3 is

∂L(z, z′, θ;Mi)

∂z
=

∂qMi

∂z

∂L(z, z′, θ;Mi)

∂qMi

=
(
P
(
z′|qMi

)
−I

[
Yi(z) = Yi(z

′)
]) ∂qMi

∂z

z′

τ

+

K∑
k=1

∂qMi

∂z
P (sk|qMi)

sk
τ
,

(4)

where

P
(
z′|qMi

)
=

exp (q⊤
Mi

z′/τ)

exp (q⊤
Mi

z′/τ) +
∑K

k=1 exp (q
⊤
Mi

sk/τ)
, (5)

P (sk|qMi) =
exp (q⊤

Mi
sk/τ)

exp (q⊤
Mi

z′)/τ) +
∑K

k=1 exp (q
⊤
Mi

sk/τ)
. (6)

The P (z′|qMi
) and P (sk|qMi

) above are the conditional probabilities of as-
signing the query prediction qMi

to the label of projection z′ and the label of
negative samples sk. We skip the analysis to the query-negative pair (z, sk) and
focus on analyzing the dynamics between query-key pair (z, z′). Therefore, we
drop the terms (qMi , sk) in Eq. 4. When the gradient above for L is considered
for the loss LRCL defined in Eq. 2, z is optimized by gradient descent with the
learning rate γ as

z← z− γ

τ

H∑
i=1

αi
∂qMi

∂z

(
P(z′|qMi)− I

[
Yi(z) = Yi(z

′)
])

︸ ︷︷ ︸
η

z′.
(7)

When η > 0, z and z′ will be pushed apart, and when η < 0, z and z′ will be

pulled together. Following [44], we assume that
∂qMi

∂z is positive definite. Because
γ, τ and αi are positive, we define

η′ =

H∑
i=1

(
P(z′|qMi)− I

[
Yi(z) = Yi(z

′)
])

, (8)

which is the only term that determines the sign of η.
In the following, we focus on η′ for analyzing the dynamics of relative con-

trastive loss on network optimization in Eq. 7. We will reveal that the relativeness
of positive-negative samples is based on 1) the probability P(z′|qMi

) of assigning
the query prediction qMi

to the label of projection z′, and 2) the constructed
criteria that determines the labeling function Yi(·).
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Single Criterion. When there is only one criterion for determining query-
key pairs positive or negative, i.e., η′ = (P(z′|qM1

)− I [Y1(z) = Y1(z
′)]), our

method collapses to the typical contrastive loss which pulls positive pairs close
(I[Y1(z)=Y1(z

′)] = 1, η′<0) and pushes negative pairs apart (I [Y1(z) = Y1(z
′)] =

0 and η′>0).
Multiple Criteria. When there are multiple criteria, to facilitate analysis, we
assume the criterion-specific predictors are identical Pi = P, i ≤ H and thus
predictions qMi

= q, i ≤ H are the same. With these assumptions, Eq. 8 is
modified as

η′ = H(P(z′|q)− Pc), (9)

where Pc =
∑H

i=1 I [Yi(z) = Yi(z
′)] /H is possibility of (z, z′) being labeled by

the H criteria as positive pair. We show the difference between the probability
Pc define by the criteria and the probability P(z′|q) estimated from the model,
i.e., P(z′|q) − Pc, will adaptively determine the relative decision of pushing or
pulling. We use three different cases for illustration (Fig. 3). (1) P(z′|q) = 0.50
and Pc = 0.66; (2) P(z′|q) = 0.75 and Pc = 0.66; (3) P(z′|q) = 0.50 and
Pc = 0.05. In case (1), Pc is large, i.e. most of the criteria label two samples
as belonging to the same class. But P(z′|q) = 0.5, i.e. the probability estimated
from the learned features for z and z′ belonging to the same class is not so high.
In this case, because the term η′ = H(P(z′|q)−Pc) is negative, gradient descent
will pull z towards z′. In case (2), since η′ = H(P(z′|q) − Pc) > 0, the loss
will pull z and z′ together. Comparing cases (1) and (2), the loss changes its
behavior from pushing samples away to pulling together because of the change
of P(z′|q). Cases (1) and (3) have the same estimated probability P(z′|q). In
case (3), most of the criteria label the two samples as not belonging to the same
class, i.e. Pc = 0.05, and the loss will push z and z′ away. Comparing cases (1)
and (3), if the probability Pc defined by the criteria changes from high to low,
the loss changes its behavior from pulling feature close to pushing features away.

4.3 Criteria Generation

In this section, we introduce an implementation of the semantic criteria M1:H =
{M1,M2, ...,MH} used in the relative contrastive loss, where Mh is used for
defining query-key pair (z, z′) to be positive or negative. The criteria are imple-
mented by online hierarchical clustering, which constrains the relativeness among
different criteria with a hierarchy relationship, i.e., M1 ⊂ M2 ⊂ ... ⊂ MH (if
Yh(x) = Yh(x

′), then Yj(x) = Yj(x
′), ∀j > h). At hierarchical clustering level

h, a query-key pair (x,x′) in the same cluster are consider to be positive pair,
Yh(x) = Yh(x

′). Inspired by [55], the implementation of hierarchical clustering
is required to conform with the following property.
Cluster preserve property: samples in the same cluster at the low level are
also in the same cluster at higher levels.

There are two stages in the online hierarchical clustering: 1) warm-up stage
to obtain the initial clustering results, 2) online cluster refinement stage along
with feature learning.
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Fig. 4: Online hierarchical clustering. The label refinement at (h+1)-th level from the
t-th to the (t+1)-th iteration is constrained by labels at h-th level and (h+2)-th level.
The clusters at the h-th level are the basic units for cluster split at the (h+1)-th level,
and the clusters at the (h+2)-th level provides a boarder to identify clusters at the
(h+1)-th level that may be merged.

Warm-up Stage. Following other clustering-based methods [57], we train our
model with the contrastive loss in Eq.1 for 10 epochs. Then, the extracted fea-
tures of all samples in the dataset are clustered by DBSCAN [18] to obtain initial
clusters in level 2 to H. We use each sample as a cluster at level 1.

Online Cluster Refinement Stage. Initial clusters are not accurate due to
the poor representations, and therefore need to be progressively adjusted along
with the feature optimization. As illustrated in Fig. 4, for each training iteration
t, the cluster refinement is conducted from the bottom to the top level, where a
cluster contains the most samples. We take i-th cluster Ch+1

i at (h+1)-th level
to elaborate the process of cluster split and merge.

Cluster Split. Cluster split aims to divide a cluster Ch+1
i into several smaller but

more accurate clusters. To conform with the cluster preserve property, the basic
units considered for splitting Ch+1

i are clusters in h-level whose samples all belong
to Ch+1

i , i.e, Uh+1
i = {Ch

j |Ch
j ⊂ Ch+1

i , j = 1, . . . , kh}, where kh is the number of

clusters in Hh. Each unit in Uh+1
i is a cluster. When splitting Ch+1

i into m smaller
clusters (m < kh), m most dissimilar split units in Uh+1

i are selected using the
density peak selection algorithm [37] as the prototype of m different clusters,
each of which contains one selected unit. The remaining units in Ui are merged
to the m clusters according to their nearest prototype or label propagation [31]
(detailed in supplementary materials). With this procedure, cluster Ch+1

i is split
into a set containing m divided clusters, denoted by Dh+1

i = {D′h+1
i,j }mj=1.

Cluster Merge. Cluster merge aims to merge the divided clusters Dh+1
i and clus-

ters at level h+1 if they are highly possible to one cluster. To conform with the
cluster preserve property, we can only try to merge the clusters belonging to the
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same cluster Ch+2
pa(i) at the (h+2)-th level, where Ch+2

pa(i) ⊃ Ch+1
i (clusters circled by

the merge boarder in Fig. 4). Therefore, we construct a set of clusters that may

be merged as Vh+1
i =

{⋃
j C

h+1
pa(j)=pa(i)

}⋃
Dh+1

i , and all elements in Vh+1
i belong

to the same cluster Ch+2
pa(i). As shown in Fig. 4(Cluster merge), to merge clusters

in Vh+1
i , we compute the possibility of two clusters belonging to the same class,

i.e., according to the distance of cluster centers or label propagation [23] (in
supplementary materials). Clusters whose possibilities of belonging to the same
cluster are larger than a hyper-parameter σm will be merged.

5 Experiment

5.1 Implementation Details

Architecture. Our architecture is similar to MoCo-v2 and MoCo-v3. Compared
with MoCo-v2, we use the symmetric loss proposed in BYOL [19] and add pre-
dictors after the projector in the query branch. Compared with MoCo-v3, we
construct a negative queue as MoCo-v2. Specifically, we use ResNet-50 as our
encoder following the common implementations in self-supervised learning liter-
ature. We spatially average the output of ResNet-50 which makes the output of
the encoder a 2048-dimensional embedding. The projection MLP is composed of
3 fully connected layers having output sizes [2048, 2048, d], where d is the feature
dimension applied in the loss, d = 256 if not specified. The projection MLP is
fc-BN-ReLU for the first two MLP layers, and fc-BN for the last MLP layer.
The architecture of the MLP predictor is 2 fully-connected layers of output size
[4096, d], which can be formulated as fc2(ReLU(BN(fc1))).
Training. For fair comparison, we train our relative contrastive learning method
on the ImageNet2012 dataset [14] which contains 1,281,167 images without using
any annotation or class label. In the training stage, we train for 200, 400 and
800 epochs with a warm-up of 10 epochs and cosine annealing schedule using
the LARS optimizer [49] by the relative contrastive loss Eq. 2. The base learning
rate is set to 0.3. Weight decay of 10−6 is applied during training. As is common
practice, we do not use weight decay on the bias. The training settings above are
the same as BYOL. We also use the same data augmentation scheme as BYOL.
For loss computation, we set temperature τ in Eq. 2 to 0.1.

5.2 Comparison with State-of-the-art Methods

Linear Evaluations. Following the standard linear evaluation protocol [46, 57,
21, 9], we train a linear classifier for 90 epochs on the frozen 2048-dimensional
embeddings from the ResNet-50 encoder using LARS [49] with cosine annealed
learning rate of 1 with Nesterov momentum of 0.9 and batch size of 4096.
Comparison with state-of-the-art methods is presented in Tab. 1. Firstly, our
proposed RCL achieves better performance compared to other state-of-the-art
methods using a ResNet-50 encoder without multi-crop augmentations. Specifi-
cally, RCL improves MoCo v2 by 4.7% and MoCo v3 by 2.0%, which generates
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Method Arch. epochs Top1 Top5 Method Arch. epochs Top1 Top5
ODC [52] R50 100 57.6 - PIRL [32] R50 800 63.6 -
InstDisc [46] R50 200 58.5 - MoCo v2 [9] R50 800 71.1 -
LocalAgg [57] R50 200 58.8 - SimSiam [10] R50 800 71.3 90.7
MSF [39] R50 200 71.4 - SimCLR [7] R50 800 69.3 89.0
MSF w/s [39] R50 200 72.4 - SwAV [5] R50 800 71.8 -
CPC v2 [22] R50 200 63.8 85.3 BYOL [19] R50 1000 74.3 91.6
CMC [42] R50 240 66.2 87.0 InfoMin Aug. [43] R50 800 73.0 91.1
Adco [36] R50 200 68.6 - MoCo v3 [11] R50 800 73.8 -
NNCLR [16] R50 200 70.7 - NNCLR [16] R50 800 75.4 92.4
RCL (Ours) R50 200 72.6 90.8 RCL (Ours) R50 800 75.8 92.6

Table 1: Comparison with other self-supervised learning methods under the linear
evaluation protocol [21] on ImageNet. We omit the result for SwAV with multi-crop
for fair comparion with other methods.

Method
ImageNet 1% ImageNet 10%

Top1 Top5 Top1 Top5

Supervised baseline [51] 25.4 48.4 56.4 80.4

Pseudo label [29] - - 51.6 82.4
UDA [47] - - 68.8† 88.5†
FixMatch [38] - - 71.5† 89.1†
MPL [35] - 73.5† - -

InstDisc [46] - 39.2 - 77.4
PCL [30] - 75.6 - 86.2
SimCLR [7] 48.3 75.5 65.6 87.8
BYOL [19] 53.2 78.4 68.8 89.0
SwAV (multicrop) [5] 53.9 78.5 70.2 89.9
Barlow Twins [50] 55.0 79.2 69.7 89.3
NNCLR [16] 56.4 80.7 69.8 89.3
RCL (Ours) 57.2 81.0 70.3 89.9

Table 2: Comparison with the state-of-the-art methods for semi-supervised learning.
Pseudo Label, UDA, FixMatch and MPL are semi-supervised learning methods. † de-
notes using random augment [13]. We use the same subset as in SwAV.

positive samples by implementing a different augmentation on the query image.
Furthermore, our method is better than InfoMin Aug., which carefully designs
the “good view” in the contrastive learning for providing positive samples, by
2.8%. The significant improvements empirically verifies one of our motivation
that manually designed augmentations cannot cover the visual variations in a
semantic class. Compared with other state-of-the-art methods, our method also
achieves higher performance than BYOL by 1.5%. Clustering-based methods,
e.g., SwAV [5], and nearest-neighbor-based methods go beyond single positives.
Clustering-based methods utilize the cluster prototypes as the positive samples.
However, our method also achieves 4.0% improvement without the multi-crop
augmentation. SwAV leverages an online clustering algorithm and uses only its
cluster centers as its positives, which ignores the relative proximity built by
our relative contrastive loss. NNCLR [16] is the recent states-of-the-art method,
which utilizes the nearest neighbor as the positive sample. Our method is better
than NNCLR at 200 epochs are comparable at 800 epochs, because NNCLR
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Fig. 5: Ablation studies. (a) Comparison with state-of-the-art methods when training
200, 400 and 800 epochs under linear evaluation on ImageNet. (b) ImageNet top-1
accuracy with different sizes of the support queue. (c) Top-1 Accuracy drop (Y-axis)
by removing augmentations (X-axis).

defines positive samples without relativeness. Furthermore, our RCL can be the
same as NNCLR when we set only one criterion and only cluster the nearest
neighbor. We also compare our method with existing methods in various epochs,
which is presented in Fig 5 (a). Our method achieves better performance than
SimCLR, Simsiam, MoCo-v3 and BYOL for 200, 400, 800 epochs.
Semi-Supervised Learning Evaluations. To further evaluate the effective-
ness of the learned features, we conduct experiments in a semi-supervised setting
on ImageNet following the standard evaluation protocol [8, 7], thus fine-tuning
the whole base network on 1% or 10% ImageNet data with labels without regular-
ization after unsupervised pre-training. The experimental results are presented
in Tab. 2. Firstly, our method outperforms all the compared self-supervised
learning methods with the semi-supervised learning setting on ImageNet 1%
subset, even when compared with the SwAV method with strong multi-crop
augmentation (our RCL does not use multi-crop augmentation). Second, in the
ImageNet 10% setting, our method still leads to a better result than most pop-
ular self-supervised learning methods, such as SimCLR, BYOL, Barlow Twins
and NNCLR. The results indicate the good generalization ability of the features
learned by our relative contrastive loss.

5.3 Ablation Study

Default Settings. The size of the support set S is set to be 1.5× 216 and the
batch size of our algorithm is 4096. We train for 200 epochs with a warm-up of
10 epochs. The learning rate is 0.3 and we leverage cosine annealing schedule
using the LARS optimizer [49]. The results in this section are tested by linear
evaluations on ImageNet.
Different Clustering Methods. To illustrate the effectiveness of our online
hierarchical clustering method, we compare it with K-means and DBSCAN. Be-
cause both K-means and DBSCAN are offline clustering methods, we extract
the features of all images in ImageNet-1K, and conduct clustering on these fea-
tures before each epoch. For K-means, we set the number of clusters to (250000,
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No. #Predictors #Hierarchies Top1

1 1 1 70.2
2 1 2 71.3
3 1 3 71.8
4 1 4 71.4
5 3 3 72.6

Table 3: Ablation studies on multiple predictions and the number of levels in the hier-
archical clustering. #Predictors: number of criterion-specific predictors. #Hierarchies:
number of levels in the hierarchical clustering.

Method Hierarchy Online Top1 Time / Ep

No (NNCLR [16]) x x 70.7 659s
K-means low x 71.8 1056s
DBSCAN high x 72.3 986s

Online Hierarchical Clustering ✓ ✓ 72.6 776s

Table 4: Ablation studies on different clustering methods. Mixed precision time for
training 1 epoch using 64 GeForce GTX 1080 Tis with 64 samples in each GPU is
reported.

500000, 1000000), where we verify there are about 73.88% samples that con-
form the hierarchy in Sec. 4.3. For DBSCAN, we keep the minimum number
of samples within r to 4, and select r = 0.8, 0.7, 0.6 to construct hierarchical
label banks, leading to 97.3% samples conforming the hierarchy. As shown in
Tab. 4, we can see that K-means improves the NNCLR by 1.1%, which verifies
the effectiveness of relativeness. DBSCAN is better than K-means, which verifies
the effectiveness of the hierarchical labels. Our online hierarchical clustering is
better than above methods, because it can refine labels along with network opti-
mization, which avoids the problem that label refinement is slower than network
optimization when using offline clustering. Our online hierarchical clustering is
faster than offline clustering algorithms, e.g., kmeans and DBSCAN, because it
only deals with samples in the current mini-batch while kmeans and DBSCAN
needs to operate on the whole dataset. Compared with NNCLR, our method is
about 18% slower, but shows better performance on 200 epochs setting.

Number of Levels in Online Hierarchical Clustering. To assess the effec-
tiveness of relativeness, we ablate on different number of levels in the hierarchical
label bank. As illustrated in Tab. 3, the top-1 accuracy improves from 70.2% to
71.3% by 1.1% when we change the number of levels, which indicates the adding
relativeness can benefit the contrastive learning in self-supervised image classifi-
cation tasks. When we continue to increase the number of levels, we can see the
top-1 accuracy improves by 0.5% from 2 levels to 3 levels, but will decrease to
71.4% when we changes 3 levels to 4 levels. This phenomenon motivates us to
design more appropriate criteria as the future work when implementing relative
contrastive loss in the feature.

Multiple Predictors. Multiple predictors are used to predict the multiple pro-
jection expectations {ET1

(zθ),ET2
(zθ), ...,ETH

(zθ)} based on the various image
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transformations that wilBl not change the label under different criteria. When
implementing a single predictor after the projection, we actually impose to pre-
dict the expectation of the projection regardless of the semantic criterion. When
using multiple predictors, we impose each predictor to predict the projection ex-
pectation based on the image transformation that will not change the label under
a specific criterion. Comparing Exp. 3 and Exp. 5 in Tab. 3, we can conclude
that multiple predictors can outperform single predictor by 0.7%.
Size of Support Queue. Similar with MoCo that utilizes a memory bank to
store the representations of other samples, our method has a support queue to
provide diverse image variations. We evaluate the performance of our method
with different support queue size in Fig. 5(b). As can be observed, when the size
of the support queue increases to 98304, the performance of our method also
improves, reflecting the importance of using more diverse variation as positive
samples. Specifically, increasing the size from 65536 to 98304 leads to 0.36%
top-1 accuracy improvement. However, further increasing the size of the support
queue does not provide further improvement.
Sensitivity to Augmentations. Previous methods leverage the manually de-
signed augmentations to model the visual variation between a semantic class,
and therefore augmentations are very critical to their self-supervised learning
methods. In contrast, we utilize similar samples/images in the dataset to be
positive samples. As illustrated in Fig. 5(c), Our proposed RCL is much less
sensitive to image augmentations when compared with SimCLR and BYOL.

6 Limitations and Conclusions

In this paper, we propose a new relative contrastive loss for unsupervised learn-
ing. Different from typical contrastive loss that defines query-key pair to be
absolutely positive or negative, relative contrastive loss can treat a query-key
pair relatively positive, which is measured by a set of semantic criteria. The
semantic criteria are instantiated by an online hierarchical clustering in our pa-
per. Representations learnt by the relative contrastive loss can capture diverse
semantic criteria, which is motivated by human recognition and fit the rela-
tionship among samples better. Extensive results on self-supervised learning,
semi-supervised learning and transfer learning settings show the effectiveness of
our relative contrastive loss. While our relative loss largely benefits from multiple
criteria, the optimal criteria design is still under-explored.
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