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Supplementary Materials

1. Additional Experiment Detail

1.1. Experiment Parameter Settings. The proposed MODC is a general
framework that can adopt any multi-task deep network. In our experiments,
we employ the network from three baselines (ASEN, ASENv2, and ASEN++)
respectively. All three baselines use a ResNet50 [4] pretrained on ImageNet [2]
as the shared backbone network. ASEN++ contains an additional ResNet34
backbone network for the local branch. The training processes follow the design
in Section 4 in the main paper. During training, for ASEN and ASENv2, we apply
the Adam optimizer with a learning rate of 2× 10−4, and the decay rate is 0.985
per epoch. For ASEN++, we follow the setting of [3]. For image augmentation,
We employ the same image augmentation methods as [1]. Particularly, the scale
of random image cropping and resizing is in [0.8-1.0] to prevent attribute feature
loss, and the color distortion is removed for color-related attributes.

1.2. Baseline Performance To get the baseline performance, for ASEN++, we
utilize the pretrained weights. On DARN, the performance is slightly different
because we only successfully download 203,990 images due to broken URLs.
For ASEN and ASENv2, because the pretrained weights are not provided, we
train the networks using the original source code, following the original setting.
However, in our reported results, the baseline may perform slightly differently
from their original report. For example, the work [5] reports the overall MAP@all
of ASEN on Fashion is 61.02 and ASEN and ASENv2 have similar performance,
while we observe a slightly lower and higher performance on ASEN and ASENv2,
respectively.

1.3. MODC Training The training of MODC(Net) can be separated into three
stages: warm-up stage, supervised-learning stage, and semi-supervised learning

Model MAP@100 for each attribute Overall
skirt length sleeve length coat length path length collar length lapel length neckline length neck

ASEN 72.20 56.74 58.87 70.48 75.43 68.57 61.82 63.73 64.70
MODC(ASEN)top1 81.09 70.58 74.28 80.68 85.33 78.94 76.32 75.61 77.10

ASENv2 72.57 61.33 60.14 71.67 75.70 71.82 69.42 66.48 67.85
MODC(ASENv2)top1 80.97 74.67 72.02 80.10 86.20 82.88 81.86 81.60 79.29

ASEN++ 73.65 63.90 63.90 74 76.81 71.29 73.82 72.53 70.62
MODC(ASEN++)top1 81.53 73.88 76.23 82.10 84.52 80.86 84.18 82.39 80.29

Table 1: Performance comparison on MAP@100 of each attribute on FashionAI.

Model MAP@100 for each attribute Overall
clothes category clothes button clothes color clothes length clothes pattern clothes shape collar shape sleeve length sleeve shape

ASEN 42.57 53.58 58.47 62.62 61.91 65.04 42.43 80.71 62.25 58.72
MODC(ASEN)top1 57.02 70.60 69.42 70.18 71.00 73.04 56.08 90.09 68.56 69.45

ASENv2 43.16 55.87 56.97 65.23 62.33 64.78 44.03 83.08 62.86 59.66
MODC(ASENv2)top1 55.51 69.99 68.23 72.13 72.81 71.16 56.45 87.99 70.36 69.25

ASEN++ 45.12 56.40 57.71 65.22 65.08 65.81 45.47 85.45 64.93 61.09
MODC(ASEN++)top1 59.20 72.08 67.96 74.56 74.43 74.59 61.66 91.14 75.07 72.16

Table 2: Performance comparison on MAP@100 of each attribute on DARN.
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Model 1% labeled 5% labeled 50% labeled
MAP@100 MAP@all Recall@100 MAP@100 MAP@all Recall@100 MAP@100 MAP@all Recall@100

ASEN 29 22.23 8.92 40.52 32.30 13.15 61.24 53.37 21.36
MODC(ASEN)top1 39.60 30.83 13.84 58.64 48.84 21.47 75.20 69.11 28.12

MODC(ASEN)top2 35.45 29.05 11.81 51.36 45.48 17.99 68.25 64.12 24.81

ASENv2 30.32 22.86 9.19 42.85 34.35 13.92 64.88 57.63 22.84
MODC(ASENv2)top1 40.66 31.83 14.28 57.32 47.97 20.25 75.93 70.26 28.38

MODC(ASENv2)top2 36.52 30.68 12.44 50.01 44.50 17.68 69.41 65.40 25.33

ASEN++ 29.33 22.45 8.93 39.66 31.44 12.72 62.86 55.75 22.21
MODC(ASEN++)top1 37.49 28.41 12.77 52.37 42.44 18.87 75.25 68.39 28.77

MODC(ASEN++)top2 33.67 27.35 11.05 45.27 39.10 15.70 67.40 62.88 24.57

Table 3: Overall semi-supervised learning performance comparison on all at-
tributes of FashionAI.

stage. As introduced in Section 4, the warm-up stage only includes the instance-
level loss, while the supervised-learning stage adds the cluster-level loss. The
semi-supervised learning stage can be further separated into 4 steps: (1) adding
self-supervision for labeled data; (2) adding self-supervision for unlabeled data
to introduce unlabeled data; (3) adding instance-level loss with pseudo labels for
unlabeled data; (4) adding cluster-level loss with pseudo labeled for unlabeled
data. Each step is trained to converge before starting the next.

Model Query label 100% labeled 10% labeled
MAP@100 MAP@all Recall@100 Acc MAP@100 MAP@all Recall@100 Acc

ASEN 64.70 57.37 22.77 - 49.68 41.35 16.81 -
ASENv2 67.85 61.13 24.14 - 50.20 41.89 17.06 -
ASEN++ 70.62 64.27 25.30 - 45.12 36.66 14.90 -

MODC(ASEN)top1 unknown 67.00 60.54 23.62 71.99 54.64 46.77 18.78 61.56

MODC(ASENv2)top1 unknown 69.94 63.57 24.75 73.59 54.56 46.59 18.66 62.30

MODC(ASEN++)top1 unknown 71.83 65.73 25.76 74.58 50.80 42.49 17.20 58.07

MODC(ASEN)top1 known 77.10 70.02 28.89 71.99 65.29 56.64 24.32 61.56

MODC(ASENv2)top1 known 79.29 72.51 29.78 73.59 64.78 56.36 24.13 62.30

MODC(ASEN++)top1 known 80.29 74.32 30.26 74.58 61.61 52.00 22.73 58.07

Table 4: Overall MAP@100, MAP@all, Recall@100, and Acc (pseudo label gener-
ation accuracy) on all attributes of FashionAI. Baselines cannot generate pseudo-
labels.

Model Query label 100% labeled 10% labeled
MAP@100 MAP@all Recall@100 Acc MAP@100 MAP@all Recall@100 Acc

ASEN 58.72 52.75 20.26 - 51.35 45.10 16.03 -
ASENv2 59.66 54.29 20.88 - 55.34 50.02 18.00 -
ASEN++ 61.09 55.78 21.51 - 54.83 49.85 17.63 -

MODC(ASEN)top1 unknown 59.45 54.57 20.95 41.74 55.24 49.65 18.15 34.64

MODC(ASENv2)top1 unknown 59.53 54.99 20.95 46.94 56.68 52.32 19.13 48.76

MODC(ASEN++)top1 unknown 60.88 56.23 21.94 50.02 56.23 51.54 18.70 47.42

MODC(ASEN)top1 known 69.45 59.61 25.36 41.74 61.67 53.21 21.53 34.64

MODC(ASENv2)top1 known 69.25 60.43 25.65 46.94 64.94 57.60 23.86 48.76

MODC(ASEN++)top1 known 72.16 62.56 26.76 50.02 65.35 57.07 23.05 47.42

Table 5: Overall MAP@100, MAP@all, Recall@100, and Acc (pseudo label gen-
eration accuracy) on all attributes of DARN.
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The initiative training of ASEN and ASENv2 uses Adam optimizer with
2× 10−4 lr and 0.985 decay rate each epoch. The training on further stages and
steps inherits the optimizer. The initial training of ASEN++ global branch uses
Adam optimizer with 2 × 10−4 lr and 0.9 decay rate every 3 epochs. The local
branch applies a new Adam optimizer with 1× 10−5 lr and 0.9 decay rate every
1 epoch. The fine-tuning of ASEN++ with MODC applies a new optimizer with
1× 10−5 lr and 0.985 decay rate every 1 epoch.

2. Additional Experiment Results

2.1. MAP@100 of Each Attribute Table 1 and Table 2 present the MAP@100
on each attribute on FashionAI and DARN. According to the tables, MODC
improves the top 100 retrieval performance on each attribute, for each network
respectively. The best performers on each network are in bold. The global best
performers are underlined.

2.2. MODC Performance on Semi-supervised Learning On FashionAI,
we conduct various ratios of “labeled”/“unlabeled” subset split, including 1%/99%,
5%/95%, 10%/90%, 50%/50%. Except the performance comparison of 10%/90%
that is shown in the main paper, the rest is shown in Table 3. The improvement
is consistent with the observations in Section 5 in the main paper. Particularly,
we observe MODC(ASEN++) performs better when employing more labeled
data, which offers insights on why it performs the best in supervised learning
but not the best in semi-supervised learning.

2.3. MODC Performance with Unknown Query Image Labels MODC
allows us to leverage the query image labels and enable the prioritized retrieval
strategy for fashion retrievals. When query image labels are known, the per-
formance is significantly improved with MODC, as analyzed in Section 5 in
the main paper. When query image labels are unknown, MODC can generate
pseudo-labels. Table 4 and Table 5 demonstrate the performance of leveraging
generated pseudo-labels for query images for fashion retrieval. We observe that
based on generated pseudo-labels, MODC is still able to introduce improvement
when applying various networks, compared with the baseline methods. We also
observe that when the query image labels are unknown, the better quality of
the generated pseudo-labels leads to larger improvement on the performance of
fashion retrieval.

2.4. Limitations One of the key factors of our performance boost can be de-
rived from the prioritized retrieval in class-specific embedding spaces. It relies
on the quality of the query image labels/pseudo-labels for accurate prioritiza-
tion. For fashion retrieval, query image labels are usually available. However, in
some cases, the query image labels may be missing, requiring MODC to generate
pseudo labels. In these cases, the quality of the generated pseudo labels affects
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the fashion retrieval performance. According to Table 4 and Table 5, the per-
formance of fashion retrieval when query image labels are known is significantly
better than unknown cases, and higher accuracy of pseudo label prediction tends
to yield larger performance improvement on fashion retrieval. Another way to
address the missing query image label situation is to extract query image labels
from the text descriptions, which requires further exploration.

3. Fine-grained Representation Distribution
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Fig. 1: The fine-grained representation distribution on universal embedding
space, attribute-specific embedding spaces, and class-specific embedding spaces.
The representations are conducted by MODC(ASENv2) on FashionAI test split.
Best viewed in color and zoomed in.

The t-SNE visualization of the fine-grained representation on FashionAI test
split is shown in Figure 1. It includes three-scale spaces and demonstrates that
the learned fine-grained representations are well-distributed on all three-scale
spaces.

4. More Examples of Attribute-Specific Fashion Retrieval with
MODC
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Fig. 2: Examples of attribute-specific fashion retrieval. The retrieval is conducted
by MODC(ASEN++) on FashionAI test split. Green shows positive retrieves,
while red shows negatives. Best viewed in color and zoomed in.
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