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Abstract. Fashion designs are rich in visual details associated with var-
ious visual attributes at both global and local levels. As a result, effective
modeling and analyzing fashion requires fine-grained representations for
individual attributes. In this work, we present a deep learning based
online clustering method to jointly learn fine-grained fashion represen-
tations for all attributes at both instance and cluster level, where the
attribute-specific cluster centers are online estimated. Based on the simi-
larity between fine-grained representations and cluster centers, attribute-
specific embedding spaces are further segmented into class-specific em-
bedding spaces for fine-grained fashion retrieval. To better regulate the
learning process, we design a three-stage learning scheme, to progres-
sively incorporate different supervisions at both instance and cluster
level, from both original and augmented data, and with ground-truth
and pseudo labels. Experiments on FashionAI and DARN datasets in
the retrieval task demonstrated the efficacy of our method compared
with competing baselines.

Keywords: fine-grained fashion representation learning, online deep clus-
tering, image retrieval, semi-supervised learning

1 Introduction

The pursuit of fashion is one of the most prominent incentives for consumers.
Therefore, modeling and analyzing fashion is an essential step to understand
customer preferences and behaviors. In online shopping, it facilitates fashion
trend prediction, fashion search, fashion recommendation, fashion compatibility
analysis, etc. Many previous works attempt to learn a generic representation [29,
17, 9, 12, 21, 28] to establish a metric embedding for fashions. However, they
often fail to capture the subtle details of different fashion styles and hence are
not sufficient to support fine-grained downstream applications, such as attribute
based fashion manipulation [33, 2, 1] and search [27, 26, 20].

Indeed, fashion designs are rich in visual details associated with a variety
of fashion attributes at both global and local levels. Therefore, effective model-
ing and analyzing fashion necessitates fine-grained representations for individual



2 Y. Jiao et al.

attributes. A fashion attribute represents a specific aspect of fashion products.
An example of a global fashion attribute is “skirt length”, depicting the over-
all characteristic of the fashion product. “Neckline style”, on the other hand, is
a local attribute, which reflects the fashion design for a local product area. A
naive way of learning such representations is to learn representations on each
attribute independently. It is not ideal as it ignores the shared visual statistics
among the attributes. A better way is to formulate it as a multi-task learning
problem, such that the different fine-grained attribute-specific fashion represen-
tations may share a common backbone with a companion computing process to
tailor to each specific attribute.
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Fig. 1: Fine-grained representation learning by MODC. In each attribute-specific
embedding space, a representation is learned by constraining it using the repre-
sentations of the cluster centers (prototypes), other instances, and the augmented
images. Based on the embedding similarity with cluster centers, class-specific
embedding spaces for Midi and Maxi are segmented from Length. Solid arrow:
the cluster-level constraint between instances and prototypes; dashed arrow: the
instance-level constraint between instances; two-way arrow: the augmentation
constraint between the two augmented images. More details are discussed in
Section 3.

Attribute-Specific Embedding Network (ASEN) [20] and its extension ASEN
++ [8] are the most recent prior state-of-the-art research to learn attribute-
specific representations in the fashion domain. They address the problem by
two attention modules, i.e., an attribute-aware spatial attention module and an
attribute-aware channel attention module, and learn fine-grained representations
by a triplet loss, which is widely adopted in fashion related problems [33, 13,
2, 1, 20]. Notwithstanding their demonstrated efficacy, these works regularize
multiple attribute embedding spaces with the triplet loss only at the instance
level. We speculate the instance level loss is insufficient to learn representations
that can well capture a global view of the cluster structure, and the performance
can be further improved by constructing an attribute-specific clustering method.

Therefore, we propose a Multi-task Online Deep Clustering (MODC) method
to learn fine-grained fashion representations. MODC leverages the generic repre-
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sentation power via multi-task learning, while simultaneously integrating cluster-
level constraints with the global structure. In addition to the instance-level triplet
loss, we further introduce a cluster-level triplet loss between cluster centers and
instances, which strives for an explicit optimization of the global structures of
the clusters. We treat cluster centers to be class prototypes, akin to that of
prototypical networks [25], and use a memory bank to compute the prototypes.
The cluster centers can be further leveraged in the inference stage to segment
the fine-grained fashion retrieval space. As shown in Figure 1, retrieval in class-
specific embedding spaces prioritizes the positives (positives/negatives are as-
signed based on the embedding similarity to the given cluster center) compared
with that in attribute-specific embedding spaces. Our proposed MODC is able to
effectively leverage both labeled and unlabeled data for training, and we design
a three-stage learning scheme to progressively guide the learning of the network
parameters.

In summary, our contributions are:

– We propose the Multi-task Online Deep Clustering (MODC) method for
efficient attribute-specific fine-grained representation learning for fashion
products. MODC combines the instant-level loss function and a cluster-level
triplet loss function to explicitly optimize the local and global structure of
the fine-grained representation clusters in individual attribute-specific em-
bedding spaces, which leads to improved clustering results.

– Using the cluster centers learned via MODC, we further segment the attribute-
specific embedding spaces to class-specific embedding spaces to boost the
fine-grained fashion retrieval.

– Our experiments on attribute-specific fashion retrieval, including supervised
and semi-supervised learning, achieve state-of-the-art results, on the Fash-
ionAI [34] and DARN [15] datasets, demonstrating the efficacy of our pro-
posed method.

2 Related Work

2.1 General Fashion Representation Learning

Fashion representation learning is a popular task-driven problem. In recent years,
many researchers propose to learn representations by deep convolutional neural
networks used for multiple tasks including in-shop fashion retrieval [24, 29, 17],
street-to-shop fashion retrieval [12, 15, 5, 19, 9, 18], compatibility search [28, 21,
14, 16], etc. One of the common approaches is to learn general representations
[12, 21, 24]. The general fashion representations usually capture the patterns
for the entire image, and are commonly used for general fashion image retrieval
via conducting k nearest neighbor in the general representation space. Effective
general fashion representations benefit tasks with similarity search for entire
images.
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2.2 Attribute-Specific Fashion Representation Learning

For fine-grained level tasks such as attribute-specific fashion retrieval, the fashion
representations are asked to focus on specific attributes rather than the entire
image. Therefore, for these tasks, instead of learning general representations, it
is natural to involve attributes during the modeling stage. The attribute-specific
fashion representation learning is usually formulated as a multi-task learning
problem.

Attribute region proposal, classification, and ranking are popular compo-
nents to involve attributes [15, 13, 33, 2, 1]. Huang et al. [15] proposes attribute
region by Network-in-network, while [13, 2, 1] use global pooling layers to pro-
pose attribute activation maps. After extract attribute-specific representations,
[33] further average the representations as the attribute prototypes to store in
memory bank and achieve attribute manipulation. Although the aforementioned
studies learn attribute-specific representations, region proposal with image crop-
ping may result in losing global view. Furthermore, attribute-specific fully con-
nected layer is the key component of these approaches, which is not scalable
because it requires increased parameters with more attributes added.

To learn better representations and handle the scalability issue, another
group of studies [27, 20, 8] apply attention masks to learn attribute-specific rep-
resentations. Attention masks dynamically assign weights to different dimensions
of the general representations for specific attributes. For instance, the state-of-
the-art methods [20, 8] enhance the participation of attribute in representation
learning by attaching attribute-aware spatial and channel attention modules to
the feature extraction network. In aforementioned works, attribute classification
and attribute-specific triplet ranking is commonly applied.

In fact, most of the existing works focus on handling the fashion represen-
tation learning by optimizing the instance representation relationships such as
optimizing the relative distance between a triplet instances, while ignoring the
global structure and patterns of the attribute-specific embedding spaces. In our
work, we propose the Multi-task Online Deep Clustering (MODC) method that
models the global structure in the representation learning procedure.

2.3 Unsupervised Fashion Representation Learning

Learning attribute-specific fashion representations demands attribute annota-
tions that is expensive because a fashion item could associate with many at-
tributes. Therefore, unsupervised learning becomes a potential solution to re-
lief this demand. Deep clustering [3], online deep clustering [32, 4], and self-
supervision [10, 31, 22, 30, 6, 11, 4, 7] are commonly adopted techniques for
unsupervised representation learning. Particularly in the fashion domain, Kim
et al. [16] define pretexts such as color histogram prediction, patch discrimina-
tion, and pattern discrimination to conduct self-supervised learning. However,
the representations learned via task-specific pretexts may not be generalizable to
other tasks. Revanur et al. [23] build a semi-supervised representation learning
with item ranking and self-supervision for labeled and unlabeled data. Similar to
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previous works [27, 20, 8], the method proposed by [23] optimizes the instance
representation distribution but ignores the global representation distribution.
In our work, the Multi-task Online Deep Clustering can effectively exploits un-
labeled data via constructing online clustering with attribute-specific memory
bank.
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Fig. 2: The overall structure of the proposed Multi-task Online Deep Clustering
(MODC), where M tasks are involved, yielding M accounts in the representation
bank (RB) and prototype bank (PB). MODC can adopt any multitask network
that is denoted by fθ. The proposed method works for both supervised learning
and semi-supervised learning, which leverages two training schemes. The scheme
details are shown in Algorithm 1 in Section 4, where the steps (for supervised
learning: step 1 to 4 on the left side; for semi-supervised learning: step 1 to 6 on
the right side) are consistent.

3 Multi-task Online Deep Clustering

To address the fine-grained fashion representation learning, each attribute is as-
sociated with its own embedding space to yield attribute-specific representations
for a given input image. In order to provide an effective and scalable solution to
capture visual details, we propose Multi-task Online Deep Clustering (MODC).
MODC unifies classes and clusters for all attributes, and forms cluster centers as
class prototypes. Furthermore, it learns not only the similarity between instances
but also the similarity between instances and all class prototypes to constrain
the fine-grained representations in a global manner. MODC is able to adopt
unlabeled samples by assigning pseudo-labels and consequently can perform in
both supervised and semi-supervised learning. Figure 2 illustrates the structure
of MODC, and the training schemes for supervised and semi-supervised learning,
which will be elaborated in Section 4.

3.1 Online Process with A Memory Bank

For a given attribute, a prototype is the “averaged” representation of samples
belonging to the same class/cluster. Offline clustering methods like [3] commonly
update prototypes after every training epoch, which have two drawbacks (1) the
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representation generated during training is not reused when updating proto-
types; (2) prototypes cannot accommodate the latest training outcome so that
the loss computation is always based on outdated prototypes. Online clustering,
however, addresses the drawbacks by storing and reusing the representations to
update cluster centers every n mini-batch. In this way, the training efficiency and
computational cost are optimized. In this work, we create a multi-task memory
bank in MODC to store the prototypes for each attribute separately.

The multi-task memory bank has two components: a representation bank
(RB) and a prototype bank (PB). Each attribute owns an individual “bank
account” in RB and PB respectively. The RB accounts store the attribute-specific
representations corresponding to each (sample ID, attribute, sample label) tuple.
The PB accounts store the class prototypes w.r.t. each attribute, which are
generated from the RB accounts based on the sample labels on attributes. The
structure of the multi-task memory bank is shown in Figure 2.

Let’s use {I, {l1, l2, ..., lM}} to denote a set of images and the corresponding
labels of each image for M different attributes. Km is the total number of classes
in attribute m, where m ∈ [1,M ]. The attribute-specific representation for an
arbitrary image I on a given attribute m is denoted as F I

m, which is generated
via F I

m = fθ(I,m).

During training, when a new representation F I
m is generated, we retrieve the

existing F I
m from RB by (sample id, attribute, sample label) tuple. The F I

m in
RB is then updated by

F I
m ← λF I

m + (1− λ)fθ(I,m), (1)

where λ is a momentum coefficient for memory bank updating, and is set as 0.5
in our experiments. The storage limit of each attribute label is 1k.

PB is updated along with RB. Suppose there are Nk
m representations belong

to class k (k ∈ Km) in attribute m, we update the prototypes by

Ck
m =

1

Nk
m

∑
{Fm|lm = k}, (2)

where Ck
m is the prototype of class k for attribute m, and {Fm} is the represen-

tation set for a group of images w.r.t. attribute m. We compute Eq. 2 every n
mini-batch, where n is set as 100 in our experiment. Only the representations of
labeled samples are stored into RB and used to update PB in the experiment.

For unlabeled samples, MODC generates pseudo-labels by searching for the
nearest prototype. For an unlabeled image sample Iu on attribute m, the repre-
sentation is denoted as F Iu

m , and the pseudo-labels ˆlum is calculated by

ˆlum = arg min
k∼Km

{d(F Iu

m , Ck
m)}, (3)

where d is the cosine similarity distance d(a, b) = − a·b
∥a∥∥b∥ .
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3.2 MODC Learning Objectives

To learn the attribute-specific representations, we design three objective func-
tions (defined by Eq. 4, 6, 7) covering both cluster-level and instance-level simi-
larity learning, guiding the training of MODC in supervised and semi-supervised
manners. If labels are involved in the objective function, MODC uses the ground
truth label for labeled data, while using generated pseudo-labels for unlabeled
data via Eq. 3.
Cluster-Level Similarity Objective: We define the cluster-level objective
function in the form of a cluster-level triplet loss called prototypical triplet loss,
which constructs triplet losses between a representation, the positive prototype,
and the negative prototypes defined below. Let’s use (I, lm) to denote an image
and label pair corresponding to attribute m, and the attribute-specific represen-
tation for this image I is F I

m. In the embedding space of attribute m, there exist
a positive prototype C+

m = Clm
m , and a negative prototype set with Km − 1 pro-

totypes {C−m} = {C0
m, C1

m, ..., CKm
m }\{Clm

m }. We propose the prototypical triplet
loss by averaging Km − 1 triplet losses between the representation F I

m, the pos-
itive prototype C+

m, and the negative prototypes {C−m},

LC(I,m|lm) =
1

Km − 1

{C−
m}∑
c

max{0, α+ d(F I
m, C+

m)− d(F I
m, c)}, (4)

where α is a predefined margin, which is 0.2 in our experiment.
Given that a prototype is the representation of a class “center”, learning a

cluster-level similarity implies learning the similarity between an instance and
the “center” of all instances in a class. The prototypical triplet loss learns the
similarity between an instance and all class prototypes in an attribute, and
consequently constrains the representation learning in a global manner.

The prototypical triplet loss has two major benefits. First, it considers the
global distribution of all class prototypes and efficiently pushes a representation
closer to its positive class prototype. Second, unlike the objective function in [25],
it allows a margin rather than intensely forcing a representation to its positive
prototype. As a result, when learning with a tiny labeled dataset, it reduces
over-fitting in semi-supervised learning.
Instance-Level Similarity Objective: For fashion representation learning,
learning instance-level similarity is a popular training approach. While the cluster-
level objective function aids in the learning of similarities between instances and
class abstracts, the instance-level objective function aids in the learning of subtle
similarities between single instances.

For an image and a label pair (I, lm) on attribute m, to construct a set of
instance triplets, we select a set of (image, label) pairs,

T = {(I, lm), (I+, l+m), (I−, l−m)|m}, (5)

where lm = l+m ̸= l−m on attribute m, indicating I and I+ are more similar than
I and I− on attribute m. The instance-level similarity objective is defined as,

LI(I, I+, I−,m) = max{0, α+ d(F I
m, F I+

m )− d(F I
m, F I−

m }, (6)
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where α is a predefined margin.
Self-supervised Objective: When only limited labeled samples or unlabeled
samples are applied during training, regularizing the representations through im-
age augmentations often helps the learning. We further explore some recent re-
search on data augmentation and self-supervised learning. Similar to [7], we build
a simple Siamese network to leverage the self-supervised learning constraint. For
an image I, we employ a set of image augmentation methods {TAUG}, from which
we randomly select t1, t2 ∼ {TAUG} to generate image augmentations I1 = t1(I),
and I2 = t2(I). The self-supervised objective function is,

LA(I1, I2,m) =
1

2
d(F I1

m ,⊘F I2
m ) +

1

2
d(⊘F I1

m , F I2
m ), (7)

where⊘ is the stop-gradient operation , and⊘F I
m is generated using the gradient-

detached network in an iteration, as [7] defined.

3.3 Class-Specific Representation Space Segmentation

After the model is well trained via MODC, the cluster centers can be further
leveraged during the inference stage to segment the attribute-specific embedding
space into class-specific embedding spaces. Ideally, the class-specific embedding
space only includes fine-grained representations that belong to this class, denoted
as space-positives, while in practice, it may also include representations that do
not belong to this class, denoted as space-negatives. Subsequently, the space
construction finds the optimum trade-off between the accuracy of inclusion and
coverage of space-positives.

We design a topn segmentation strategy to allow elastic inclusion. Given an
attributem that hasKm classes, the prototypes (cluster centers) in the attribute-
specific embedding space is denoted as {Ck

m}, which have been optimized by
MODC. For a given image Inew, the attribute-specific image representation is
F Inew
m . Following the topn segmentation strategy, F Inew

m is allowed to be assigned
to n class-specific embedding spaces,

F Inew
m → Sp1

m , ..., F Inew
m → Spn

m , (8)

where {p1, ..., pn} is the classes whose prototypes are the top n closest to F Inew
m ,

and Sp
m is the class-specific embedding space of class p (p ∈ Km) in the attribute-

specific embedding space of m. Therefore, a small n leads to high inclusion accu-
racy but low space-positive coverage because representations are only assigned
to high-confident spaces. On the other hand, a large n leads to lower accuracy
but higher coverage.

4 The Training Scheme

In this section, we explain the training scheme which integrates the cluster-
level and instance-level objective constraints for attribute-specific fine-grained
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representation learning. The training steps for supervised and semi-supervised
learning are also illustrated in Figure 2.

The overall training scheme contains three stages: i) a warm-up stage, ii) a
supervised stage, and iii) a semi-supervised stage. The warm-up stage is leveraged
to form good initial representations for the prototypes, as the representations
yielded based on a randomly initialized network may not be able to group im-
ages with the same labels closer in the representation space. In the warm-up
stage, we only start with instance-level triplet loss on labeled samples to model
convergence. The adopted network is updated using the loss function defined in
Eq. 9.

After the warm-up, the supervised stage involves MODC with only labeled
samples. To prepare for the MODC training, we initialize RB by pre-computing
the representations for all training samples w.r.t. each attribute, and initialize
PB by Eq. 2. To avoid immense memory bank but keep prototypes efficient,
we limit the size of each RB account to 2,000 representations and refuse any
extra representations. The cluster-level and instance-level objective functions
are optimized together to learn the representations. An example of a supervised
MODC iteration is shown in Algorithm 1 (line 6-14 ).

After the supervised stage, unlabeled samples are added to further guide
the training in the semi-supervised stage. We incorporate the cluster-level and
instance-level similarity learning for unlabeled data and also add the self-supervised
learning constraints on augmented images. An example of a semi-supervised
MODC iteration is shown in Algorithm 1 (line 15-25 ).

Algorithm 1 An MODC iteration

1: A multi-task embedding network Net.
2: A targeted attribute m, labeled image set Sl, and unlabeled image set Su

3: A batch of image (with label) triplets {(I, lm), (I+, l+m), (I−, l−m)|m} ∼ Sl

4: A batch of unlabeled images {Iu|m} ∼ Su

5: Image augmentation methods t1, t2
6: if supervised stage then
7: for I, I+, I− do
8: 1○ Obtain representations ← fθ
9: end for
10: for I, I+, I− do
11: 2○ Obtain positive and negative prototypes
12: end for
13: 3○ Update Net by Eq. 10
14: 4○ Update RB by Eq. 1, update PB by Eq. 2 every n mini-batch
15: else if semi-supervised stage then
16: for I, I+, I−, Iu do
17: 1○ Obtain augmentations ← t1, t2, obtain representations ← fθ
18: end for
19: 2○ Assign pseudo-label ˆlum to Iu

1 by Eq. 3

20: 3○ Based on ˆlum, randomly index a pseudo-positive and a pseudo-negative image ( ˆIu+| ˆ
lu+
m =

ˆlum), ( ˆIu−| ˆ
lu−
m ̸= ˆlum) ∼ Sl

21: for I1, I
+
1 , I−

1 , Iu
1 do

22: 4○ Obtain positive and negative prototypes
23: end for
24: 5○ Update Net by Eq. 11
25: 6○ Update RB by Eq. 1, update PB by Eq. 2 every n mini-batch
26: end if
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Supervised learning involves the first two stages, while semi-supervised learn-
ing involves all three stages. The next stage starts when the previous one con-
verges. Eq. 9, 10, 11 are the full objective functions for the warm-up, supervised,
and semi-supervised stage, respectively,

Lwarm = λ1LI(I, I+, I−,m), (9)

LSL = λ1LI(I, I+, I−,m) + λ1(LC(I,m|lm)

+ LC(I+,m|l+m) + LC(I−,m|l−m))/3,
(10)

LSSL = LSL + λ1LI(Iu1 , ˆIu+, ˆIu−,m) + λ2LC(Iu1 ,m| ˆlum)

+ λ1(LA(I1, I2,m) + LA(I+1 , I+2 ,m)

+ LA(I−1 , I−2 ,m))/3 + λ1LA(Iu1 , Iu2 ,m),

(11)

where λ1 is set to 100 and λ2 is set to 10−1.

5 Experiments

5.1 Datasets

FashionAI [34] is a public dataset for fashion challenges. It contains 180,335
fashion images and 8 fine-grained attribute annotations on coat length, dress
length, collar design, and so on, with 5-10 classes. We adopt the labeled train/val/test
split of [20], which contains 144k/18k/18k samples.
DARN [15] is a fashion attribute prediction and retrieval dataset with 253,983
images. DARN has 9 attributes with class numbers varying from 7 to 55. We fol-
low the labeled train/val/test split of [20], which contains 163k/20k/20k images
after excluding unavailable ones1.

For semi-supervised learning, we further partition the full set of training
split into “labeled”/“unlabeled” subsets by ratio 10%/90% and the ground truth
labels for the “unlabeled” subsets is not used during model training, even though
they are available in the original dataset.

5.2 Experimental Settings

We compare our proposed method with the state-of-the-art solutions [20, 8] on
the aforementioned two datasets.
Baselines. ASEN [20] attaches an attribute-aware spatial attention and an
attribute-aware channel attention to a backbone network, and learns 1024 di-
mensional attribute-specific representations Compared with ASEN, ASENv2 [20]

1 Note: Only 203,990 images are available due to broken URLs.
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Model 100% labeled 10% labeled
MAP@100 MAP@all Recall@100 MAP@100 MAP@all Recall@100

ASEN 64.70 57.37 22.77 49.68 41.35 16.81
MODC(ASEN)top1 77.10 70.02 28.89 65.29 56.64 24.32

MODC(ASEN)top2 68.91 64.30 24.95 57.33 51.99 20.46

ASENv2 67.85 61.13 24.14 50.20 41.89 17.06
MODC(ASENv2)top1 79.29 72.51 29.78 64.78 56.36 24.13

MODC(ASENv2)top2 72.00 67.77 26.34 57.61 52.27 20.72

ASEN++ 70.62 64.27 25.30 48.37 39.51 16.16
MODC(ASEN++)top1 80.29 74.32 30.26 61.61 52.00 22.73

MODC(ASEN++)top2 72.99 68.75 26.75 53.98 47.96 19.05

Table 1: Overall performance comparison on all attributes of FashionAI.

updates the attention module structures and achieves similar performance as
ASEN with fewer training iterations. ASEN++ [8] is an extension of ASENv2

that further utilize the multi-scale information with a global branch and a local
branch. The final representation is the composition of global and local represen-
tations with 2,048 dimensions.
Evaluation Tasks and Metrics. Mean Average Precision (MAP) and Re-
call are commonly used performance metrics for retrieval-related tasks [20, 8].
We further utilize these at different scales, including MAP@100, MAP@all, and
Recall@100, to comprehensively evaluate the performance. MAP@100 and Re-
call@100 are the evaluations for top 100 retrieval results. In the e-commerce
fashion retrieval domain, customer satisfaction is usually influenced by the qual-
ity of top retrieval results. MAP@all further reports the evaluation considering
all retrieval results.

5.3 Experimental Results

In this section, we discuss the experimental results of different models for two
datasets2. Table 1 and Table 2 summarize the overall performance of baselines
and MODC on supervised and semi-supervised learning. Table 3 and Table 4
show the detailed performance on each attribute of FashionAI and DARN. The
best performers on each network are in bold. The global best performers are
underlined.

In the experiment, MODC allows us to leverage the query image labels that
are usually available in e-commerce fashion retrieval domain. With MODC,
we prioritize the retrieval in class-specific embedding spaces to retrieve space-
positives, and subsequently, process the retrieval in attribute-specific embedding
spaces to retrieve all the rest candidates. If the query image labels are unknown,
the prioritized retrieval strategy can still be applied by assigning the pseudo-label
to the query image3.

2 MODC(Net) means MODC build upon a specific multi-task network Net. The sub-
script topn means using top n similarity to segment class-specific embedding spaces.

3 More experimental result of leveraging query image with pseudo labels is included
in the Supplementary.
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Model 100% labeled 10% labeled
MAP@100 MAP@all Recall@100 MAP@100 MAP@all Recall@100

ASEN 58.72 52.75 20.26 51.35 45.10 16.03
MODC(ASEN)top1 69.45 59.61 25.36 61.67 53.21 21.53

MODC(ASEN)top2 65.85 58.67 25.04 59.17 53.55 21.72

ASENv2 59.66 54.29 20.88 55.34 50.02 18.00
MODC(ASENv2)top1 69.25 60.43 25.65 64.94 57.60 23.86

MODC(ASENv2)top2 65.80 59.14 24.95 60.91 56.25 23.15

ASEN++ 61.09 55.78 21.51 54.83 49.85 17.63
MODC(ASEN++)top1 72.16 62.56 26.76 65.35 57.07 23.05

MODC(ASEN++)top2 67.76 61.37 26.01 61.26 55.52 22.47

Table 2: Overall performance comparison on all attributes of DARN.

Model MAP@all for each attribute Overall
skirt length sleeve length coat length path length collar design lapel design neckline design neck design

ASEN 64.61 49.98 49.75 65.76 70.30 62.86 52.14 63.73 57.37
MODC(ASEN)top1 74.77 62.79 64.70 76.62 80.50 74.33 66.99 69.52 70.02

ASENv2 65.58 54.42 52.03 67.41 71.36 66.76 60.91 59.58 61.13
MODC(ASENv2)top1 73.56 66.95 64.76 76.09 81.63 76.56 73.88 74.01 72.51

ASEN++ 66.31 57.51 55.43 68.83 72.79 66.85 66.78 67.02 64.27
MODC(ASEN++)top1 74.54 67.48 68.25 77.69 81.11 76.90 77.46 77.10 74.32

Table 3: Performance comparison on MAP@all of each attribute on FashionAI.

Model MAP@all for each attribute Overall
clothes category clothes button clothes color clothes length clothes pattern clothes shape collar shape sleeve length sleeve shape

ASEN 36.62 46.01 52.76 56.85 54.89 56.85 34.40 79.95 58.08 52.75
MODC(ASEN)top1 47.45 54.52 59.37 63.30 58.95 64.77 41.24 86.54 61.53 59.61

ASENv2 37.97 49.24 52.26 59.13 55.32 59.06 36.86 81.54 58.82 54.29
MODC(ASENv2)top1 46.67 59.13 58.94 64.60 61.49 65.95 42.25 84.61 61.58 60.43

ASEN++ 40.21 50.04 53.14 59.83 57.41 59.70 37.45 83.70 60.41 55.78
MODC(ASEN++)top1 49.94 60.75 58.79 66.34 62.24 68.41 45.14 87.41 65.32 62.56

Table 4: Performance comparison on MAP@all of each attribute on DARN.

Performance of MODC on Supervised Learning: Table 1 shows the exper-
imental results on FashionAI dataset. When trained on 100% labeled FashionAI
data, MODC with top1 segmentation strategy shows significant improvement on
all evaluation metrics (MAP@100, MAP@all, Recall@100) consistently for all
adopted baseline networks (ASEN, ASENv2, ASEN++). Specifically, the best
MAP@all is 74.32, which is achieved by MODC(ASEN++)top1, exceeding the
corresponding baseline model ASEN++ by 15.64%. We observe the top1 segmen-
tation results consistently outperform those of top2 segmentation. The potential
reason is, MODC with top1 segmentation achieves 75% inclusion accuracy and
75% space-positive coverage, which is a better trade-off compared with the 46%
inclusion accuracy and 91% space-positive coverage of top2 segmentation. On
DARN, we observe a similar improvement, as shown in Table 2. In supervised
learning, the best MAP@all reaches to 62.56. Table 3 and Table 4 demonstrates
the MAP@all is improved for each attribute on FashionAI and DARN, respec-
tively.

Performance of MODC on Semi-supervised Learning: Similar perfor-
mance improvement trend of adopting our method is also observed for semi-
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Component 10% labeled w. MODC(ASEN) 100% labeled w. MODC(ASEN++)
MAP@100 MAP@all Recall@100 MAP@100 MAP@all Recall@100

1 baseline network 49.68 41.35 16.81 70.62 64.27 25.30
2 +cluster-level loss 51.17 42.34 17.19 71.64 65.07 25.63
3 +augmentation 53.07 44.85 18.05 - - -
4 +pseudo label 54.19 46.25 18.66 - - -
5 +top1 segmentation 65.29 56.64 24.32 80.29 74.32 30.26
6 +top2 segmentation 57.33 51.99 20.46 72.99 68.75 26.75

Table 5: Ablation study on MODC components. Study on the overall perfor-
mance on semi-supervised/supervised learning on FashionAI. Models are selected
based on the best performers on these cases as we show in Table 1.

....

universal embedding space attribute-specific embedding space
Space of sleeve length

class-specific embedding space

skirt length
sleeve length
coat length
pant length
collar design
lapel design
neckline design
neck design

invisible
sleeveless
cup sleeveless
short sleeves
elbow sleeves
3/4 sleeves
wrist sleeves
long sleeves
extra long sleeves

Fig. 3: Fine-grained representation distribution in the universal embedding space,
attribute-specific embedding space, and class-specific embedding space. Model:
MODC(ASENv2)top1.

supervised settings4, with an even larger margin. The potential reason of large
margin performance improvement is, MODC is able to effectively leverage the
global view and fully utilize the rich amount of unlabeled data via the designed
objectives. On FashionAI, as shown in Table 1, MODC with top1 segmentation
improves the most, compared with baseline approaches. MODC(ASEN)top1 per-
forms the best and reaches to 56.64 on MAP@all. On DARN, as shown in Table
2, the best MAP@all reaches to 57.60, which is 15.15% higher than the best base-
line performance. Particularly, MODC(ASEN)top2 on MAP@all and Recall@100
surpasses the top1 MODC. With a deep-diving study, in this particular case, we
find MODC with top2 segmentation has a better trade-off. MODC with top2
segmentation includes 57% space-positives with 28% accuracy, while the top1
segmentation only includes 35% space-positives with 35% accuracy.

Ablation Study of MODC: To show the effectiveness of each component of
MODC, we conduct an ablation study for the case of semi-supervised/supervised
learning on FashionAI, and the results are shown in Table 5. This case lever-
ages all the components of MODC. We observe that in the supervised learning
stage (row 1 and 2), the cluster-level triplet loss helps improve the representa-
tion learning, as we hypothesized. Row 3 and 4 show the data augmentation and
pseudo-label assignment in semi-supervised learning is able to effectively utilize
the rich amount of unlabeled data, leading to further performance improvement.

4 More results on various labeled and unlabeled data ratio are in Supplementary.
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Query Retrieved candidates

sleeve length - sleeveless

coat length - knee length

neckline design - off shoulder

Fig. 4: Fine-grained fashion retrieval examples by MODC(ASENv2)top1 on Fash-
ionAI. Green shows positive retrieves, while red shows negatives.

Furthermore, row 5 and 6 illustrate the performance boost introduced by the
class-specific embedding space segmentation, which is benefit from better repre-
sentation learning in rows 1-4.
Class-Specific Embedding Space and Retrieval Examples: We perform
the t-SNE algorithm for the three-scale embedding spaces and generate 2D visu-
alizations as shown in Figure 3. The left part is the universal multi-task embed-
ding space that contains the representations of all attributes. The middle one
shows the attribute-specific embedding space for a given attribute, where the
instance-level and cluster level losses constrain the representation distribution.
The right part is the class-specific embedding space for a given class belong to
a specific attribute, which is generated based on the segmentation strategy in-
troduced in Section 3.3. More detailed three-scale embedding spaces illustration
is included in the supplementary. Figure 4 shows the fashion retrieval results
in class-specific embedding spaces. We observe that most retrieved results share
the same attribute class as the query image.

6 Conclusion

In this paper, we introduce Multi-task Online Deep Clustering (MODC), which
learns at cluster-level and instance-level to optimize the representation distri-
bution comprehensively. We design a three-stage training scheme to guide fine-
grained representation learning in both supervised and semi-supervised fash-
ion. MODC is able to fully utilize the rich amount of unlabeled data for per-
formance boosting. By leveraging the cluster centers learned via MODC, the
attribute-specific embedding spaces can be segmented into class-specific embed-
ding spaces, enabling the prioritized retrieval strategy for fashion retrievals. We
conduct experiments on FashionAI and DARN datasets, using evaluation met-
rics of MAP@100, MAP@all, and Recall@100. According to the experimental
results, our proposed MODC is able to exceed the state-of-the-art solutions by a
large margin, demonstrating the effectiveness of our method on fashion retrieval
tasks.
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