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Limitations

Like other unsupervised disentanglement methods such as β-VAE [3] or β-
TCVAE [1], some random initializations of the NashAE method resulted in
better disentanglement scores than others, and training can fail in some very
rare cases. This may be related to the findings of Locatello et al. [11], mentioned
in the paper. Poor choices of hyperparameters such as a learning rate that is
far too large can cause more frequent failures. No ”outliers” were removed from
the reported data in the paper, and the reported scores for all algorithms reflect
honest averages.

Furthermore, each algorithm is trained with the same amount of data, and
each autoencoder (AE) or variational AE (VAE) has roughly the same amount of
parameters in each experiment (VAE has marginally more to implement the µ,
log(σ2) parallel latent space). However, the NashAE method tends to collectively
take more parameters and computations due to its use of the predictor ensemble.
We observe that training for NashAE takes longer than VAE-based approaches
due to the iterative predictor training. This process could be sped up by training
the m predictors in parallel.

Another limitation of NashAE is that it is not a generative model; it does
not explicitly have a method to compute the likelihood of the data observations.

MinMax Formulation

Showing z′ → E[z]. If z and z′ are independent, z′ → E[z]. Consider z′ = E[z]+
δz′ , where E[δz′ ] = 0. Plugging this into MSE(z, z′), we get: 1
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z′). Since σ2
z′ ≥ 0, this implies that SGD on z′ reduces σz′ → 0 to

minimize the MSE objective. Hence, under these conditions, z′ → E[z].
Partial Derivative of Cov(A,B). Consider taking the partial derivative

of the covariance between K samples of two jointly distributed random vari-
ables A and B with respect to an observation bq, where 1 ≤ q ≤ K. Hence,
∂

∂bq
Cov(A,B) = ∂

∂bq
1
K

∑K
i=1(ai−E[A])(bi−E[B]). If E[A] and E[B] are computed

as empirical averages across the K samples, we have ∂
∂bq

1
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K [(aq −E[A])−E[A] +E[A]] =
1
K (aq −E[A]). Without loss of generality, this result can be applied to the state-
ment of the next section.

Equivalence between MSE and Covariance Objectives. The fixed
point of minimizing λ

∑m
i=1 Cov(z

′
i, zi) is equivalent to minimizing E− λ

2 ||z
′−z||22

(i.e., maximize the MSE between z and z′). This is because when a represen-
tation is disentangled, knowledge of other latent variables lends no useful in-
formation to the predictor. To minimize the MSE on its regression task, the
uninformed i-th predictor will output E[zi] everywhere, making the gradient of
− λ

2K ||z′ − z||22 equal to λ
K (z− E[z]), which is equivalent to the gradient term of

minimizing λ
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i, zi) with respect to the elements of an observation of

z′. In other words, ∂
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are independent. Note that the AE uses the above gradient term along with ∂z′

∂z
(evaluated at each sample in the batch) to adjust its representations z during
the adversarial game (gradients are taken through the predictors only).

Experiment Setup

All experiments were conducted using the PyTorch environment [12]. Each al-
gorithm is trained with the same amount of data - enough to ensure that both
are converged for the given task. The learning rate is 0.001 for the AE and the
VAEs, and 0.01 for the predictors in every experiment. We choose k = 5 for
the number of predictor update iterations per AE update. It is likely that k
can be reduced from 5, but we did not explore other values of k in this work.
The details for each task are reported in table 1. SELU means self-normalizing
activation function, from Klambauer et al. [7]. The signature for Conv is (width
x height)Conv(in channels, out channels, pad, stride). Recall that m denotes
the latent space size. The predictor architecture for every experiment is the fol-
lowing: Linear(m, 40), SELU, Linear(40, 40), SELU, Linear(40, 1). The ReLU
networks (for dSprites) are initialized via a Kaiming normal distribution [2]. We
employ the Adam optimizer [5] with β1 = 0.9, β2 = 0.999 for all AEs, VAEs,
and predictors.

Table 1: Network architecture and hyperparameters for each experiment
Dataset NashAE Architecture VAE Architecture
Beamsynthesis Linear(1000, 200), SELU Linear(1000, 200), SELU
Mean/STD Data Norm. Linear(200, 80), SELU Linear(200, 80), SELU

Linear(80, 40), SELU Linear(80, 40), SELU
BS ← 100 Linear(40, m), Sigmoid 2× Linear(40, m), (see VAE [6])

Linear(m, 40), SELU Linear(m, 40), SELU
Linear(40, 80), SELU Linear(40, 80), SELU
Linear(80, 200), SELU Linear(80, 200), SELU

Linear(200, 1000) Linear(200, 1000), Gaussian
dSprites [3] Linear(4096, 1200), ReLU Linear(4096, 1200), ReLU
Flatten Tensor Linear(1200, 1200), ReLU Linear(1200, 1200), ReLU

Linear(1200, m = 10), Sigmoid 2× Linear(1200, m = 10), (see VAE [6])
BS ← 200 Linear(m = 10, 1200), ReLU Linear(m = 10, 1200), Tanh (see [3])

Linear(1200, 1200), ReLU Linear(1200, 1200), Tanh
Linear(1200, 4096) Linear(1200, 1200), Tanh

- Linear(1200, 4096), Bernoulli
CelebA [10] 4× 4 Conv(3, 32, 1, 2), SELU 4× 4 Conv(3, 32, 1, 2), SELU
Resize width to 96 4× 4 Conv(32, 32, 1, 2), SELU 4× 4 Conv(32, 32, 1, 2), SELU
Center Crop 64× 64 4× 4 Conv(32, 64, 1, 2), SELU 4× 4 Conv(32, 64, 1, 2), SELU
Mean/STD Data Norm. 4× 4 Conv(64, 64, 1, 2), SELU 4× 4 Conv(64, 64, 1, 2), SELU

Linear(1024, 256), SELU Linear(1024, 256), SELU
BS ← 200 Linear(256, m = 32), Sigmoid 2× Linear(256, m = 32), (see VAE [6])

Linear(m = 32, 256), SELU Linear(m = 32, 256), SELU
Linear(256, 1024), SELU Linear(256, 1024), SELU

4× 4 ConvT(64, 64, 1, 2), SELU 4× 4 ConvT(64, 64, 1, 2), SELU
4× 4 ConvT(64, 32, 1, 2), SELU 4× 4 ConvT(64, 32, 1, 2), SELU
4× 4 ConvT(32, 32, 1, 2), SELU 4× 4 ConvT(32, 32, 1, 2), SELU

4× 4 ConvT(32, 3, 1, 2) 4× 4 ConvT(32, 3, 1, 2), Gaussian

For FactorVAE training, the learning rate for the VAE and discriminator are
both set to 10−4 for all experiments, following [4]. The architecture of the dis-
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criminator in all experiments is Linear(m, 1024), SELU, Linear(1024, 1024),
SELU, Linear(1024, 1024), SELU, Linear(1024, 1), sigmoid. We employ the
Adam optimizer [5] with β1 = 0.5, β2 = 0.9, following [4].

NashAE Algorithm

See algorithm 1 for a detailed description of the NashAE training algorithm.

Algorithm 1 Training Algorithm for NashAE

for data minibatch b in dataloader do
z ← ϕ(b) ▷ z is a minibatch of latent representations
for predictor ρi in ρ do

zi ← z · (1− Ii); ∀z ∈ z ▷ Ii is the i-th column of the identity matrix
for number of predictor training iterations k do
Lρi ← 1

2
Ez∼z

(
ρ(zi)i − zi

)2
▷ reconstruction loss for the predictors

ρi ← ρi − νρ∇ρiLρi ▷ SGD update for the i-th predictor’s MSE objective
using learning rate νρ

end for
z′i ← ρ(zi)i ▷ prediction for the i-th latent variable, concatenates into z′

end for
b′ ← ψ(z) ▷ b′ is the reconstructed data minibatch

LR ← 1
2
Ex∼b

∣∣∣∣x′ − x
∣∣∣∣2

2
▷ reconstruction loss for the autoencoder

LA ←
∑m
i=1 Cov(z

′
i, zi) ▷ covariance of latent and prediction (across batch)

LR,A ← (1− λ)LR + λLA ▷ combined loss for the AE
(ϕ, ψ)← (ϕ, ψ)− νϕ,ψ∇ϕ,ψLR,A ▷ SGD update for the AE, adversarial

gradients are taken through ρ, learning rate νϕ,ψ
end for

dSprites Dimensionality Experiment

We present a dimensionality learning experiment similar to the one conducted
with Beamsynthesis, but with the dSprites dataset in Table 2. We include the
VAE algorithms that were most competitive on Beamsynthesis. NashAE is still
the most reliable in recovering the true number of data generating factors. Fol-
lowing the precedent of past works, we do not normalize the dSprites data, lead-
ing to ideal hyperparameter (e.g., λ & β) settings that differ from Beamsynthesis
and CelebA.

Beamsynthesis Dataset Description

This dataset is generated by a synthetic beamline model, which models the
generation, acceleration and tuning of ion beams in the LINAC (linear particle
accelerator) portion of high-energy particle accelerators. A more comprehensive
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Table 2: Average absolute difference between the number of factors learned by
each algorithm and the true number of data generating factors (5) on the dSprites
dataset

Algorithm m=10 m=20

NashAE λ = 0.0 5 15
NashAE λ = 0.004 0.375 1
NashAE λ = 0.006 0.25 0.375
NashAE λ = 0.008 0.625 0.875

FactorVAE β = 4 0.875 1.875
FactorVAE β = 8 0.5 0.875

β-TCVAE β = 1 4.875 9.25
β-TCVAE β = 4 0.5 1.125
β-TCVAE β = 8 1.5 1.375

description of the LINAC can be found in references such as [9]. Here we only
provide a brief description on its underlying mechanism.

The synthetic beamline model has three main components, which covers ion
injection, the chopper and the RF acceleration respectively. The ion injection
component is based on the first-principle physics model of ion sources, where
particles are generated. The ion source cannot be turned on instantaneously,
therefore, there is a ramp-up phase of the ion beam, as depicted in the illustrative
figures. This part of physics is modeled by six parameters. They are kept constant
when the data were generated.

The chopper component models the beam chopper, which “chops” the ion
beams into multiple “pulses” before they can be accelerated by the RF (radio
frequency) cavities in the LINAC. The speed the chopper rotates and relative
opening determine the number of pulses as well as the the active region of each
pulse. They are modeled by two parameters in the synthetic model: frequency
and duty cycle. In the generated waveform, parameter frequency represents a
categorical latent space, while duty cycle represents a continuous latent space.
These two parameters were permuted when the dataset were generated.

The RF acceleration component models the acceleration of the pulses by the
RF cavities. The cavities not only accelerate the particles to high speed, but also
groups them into separate bundles. This component is modeled by five param-
eters, and were kept constant in the data generation. A set of beam waveform
generated by the synthetic model is shown in Figure. 1. A small amount of white
noise has been added to reflect the stochastic nature of particle physics. Note
that both x-axis (time) and y-axis (amplitude) have been normalized. Although
only a handful of pulses are shown in the figure, hundreds of thousands of pulses
can be present in a real accelerator.

The Beamsyntheiss dataset has a few advantages. Since it is based on well-
understood particle physics, one can adjust the parameters to reflect the under-
lying physics to control the latent space represented in the data. Moreover, since
the synthetic model is quick to run, it is possible to generate large quantity of
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data for training and validation. We have found this dataset to be highly valu-
able in the development of the NashAE method. The dataset can be found at:
https://github.com/ericyeats/nashae-beamsynthesis.

Fig. 1: Depiction of varying frequency (across a row) and duty cycle (down a
column) on the Beamsynthesis dataset. Freq: frequency, DC: duty cycle

Details on Learning Latent Feature Dimensionality (Beamsynthesis
Dataset)

A total of 8 independent trials are run for each algorithm and each set of hy-
perparameters. The absolute difference between the number of learned latent
features and the ground truth (2) is averaged between the 8 trials.

For this experiment, the presence of a learned latent feature is determined
in the following manner. For NashAE, the difference between the maximum and
minimum latent scores for each latent feature is recorded. If the difference is
larger than or equal to 0.2, it is considered a learned latent feature. Otherwise
it is not counted. Likewise, for β-TCVAE and FactorVAE, a latent variable is
considered learned if the µ component of the VAE has a range greater than 2.0.
The β-VAE approach is inspired by how the authors count learned latent features
in the original work [3]. If the average learned variance across the dataset is less
than or equal to 0.8, the latent is counted as a learned latent feature. Otherwise,
if the average learned variance is greater than 0.8, it is not counted. We also
tried thresholding the maximum µ score minus the minimum µ score (similar to

https://github.com/ericyeats/nashae-beamsynthesis
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the criterion used for NashAE, β-TCVAE, and FactorVAE), but that resulted in
consistently worse scores for β-VAE than the ones reported. We attribute this
preferred method difference between β-VAE, β-TCVAE, and FactorVAE to the
different weighting of the ELBO loss components during training.

β-VAE Metric Details

Like in Higgins et al. [3], we classify for x-position, y-position, scale, and orien-
tation on the dSprites dataset. The linear classifier is initialized with a Kaiming
Normal distribution [2] and trained until convergence on batches of 100 exam-
ples each on a categorical crossentropy objective with a learning rate of 1.0.
For good measure, the learning rate is set to 0.05 for the last 5% of batches.
The linear classifier converges in all tests. For training and testing, the constant
data generating factor used to craft the batch is chosen with uniform probability
(e.g., each factor gets a probability of 0.25 to be used to craft the batch). The
linear classifier accuracy scores are collected over 1000 batches of size 100 each.
Recall from Higgins et al. [3] that only the average absolute difference across
each difference-batch is used to train and evaluate the classifier.

We also evaluated the algorithms with the β-VAE disentanglement metric on
the Beamsynthesis dataset. Both methods achieved a 100% score nearly 100%
of the time. This was also true for NashAE λ = 0 and β-VAE β = 1, and even
when only one latent variable was learned by either method on this dataset
that has two independent data generating factors. In the latter case, only one
of the two factors was captured, but the linear classifier could tell which of the
factors was held constant by the presence of variation or lack of variation in the
single learned variable. In general, the high accuracy is due to the dataset being
relatively simple.

Total AUROC Difference Details

Checking Reasonableness of TAD We design a simple experiment for two
synthetic latent variables zα and zβ and one bernoulli data generating factor c
in which p(zα|c = 1) = N (µ, 1) and p(zα|c = 0) = N (−µ, 1). p(zβ) is distributed
similarly to p(zα), but it is correlated to c with strength r. When µ = 1 and
r = 0.0, TAD is 0.417. When µ = 0.1 and r = 0.0, TAD is 0.07. When µ = 1
and r = 0.9, TAD is 0.043. When µ = 1 and r = −0.9, TAD is 0.046. When
µ = 1 and r = 0.0, but there is a 1:50 true vs. false imbalance, TAD is 0.412.
These experiments indicate that TAD increases for a confident, independent
latent space, and it is not sensitive to class imbalance. We used 10k samples to
compute TAD in each trial.

TAD on CelebA We measured TAD on the CelebA dataset [10]. Since we
are interested in measuring the TAD for only independent attributes, we mea-
sure the proportion of entropy reduction of each attribute given knowledge of any
other single attribute, and we disqualify any attribute with an entropy reduction
greater than 0.2 from counting towards TAD. This disqualified attributes with
high mutual information such as male, wearing lipstick, and wearing earings.
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Furthermore, we are interested in measuring TAD for attributes which the algo-
rithm is a good detector for. The algorithm is considered a good detector for an
attribute if it has a maximum AUROC score of 0.75. If the attribute does not
make this cutoff, it is not considered “learned” by the algorithm and does not
count. Lower thresholds for the maximum AUROC (e.g. 0.7) still resulted in the
same general trends as those presented in the paper.

How AUROC is Calculated We test 100 evenly spaced detector threshold
values from the minimum value to the maximum value for each latent on a large
number of samples (e.g., 5000). We calculate the TPR and FPR for each of these
100 thresholds and both potential orientations (+ is increasing in latent values
or + is decreasing in latent values) and take the maximum of the two AUROCs
to ensure that the minimum AUROC score is 0.5.

Comparison with other Work The TAD metric is akin to the SAP metric
proposed by Kumar et al. [8], which uses difference in the factor classification
accuracy of latent representations to measure the degree to which information of
a single data generating factor is isolated in a single latent variable. However a
key difference between SAP and TAD is that TAD is built off the AUROC score,
which is threshold-independent and more informative for data with significant
class imbalance (e.g., CelebA [10]).

Reconstruction Quality of Different Methods

We note that the reconstruction of NashAE tended to be better than that of the
VAE-based methods, especially when β >> 1 in β-VAE. This is likely due to
the information bottleneck component of the VAE loss, which both β-TCVAE
and FactorVAE address by enhancing the total correlation (TC) component of
the loss only.

Learned Latent Spaces on CelebA

We include full learned NashAE latent space traversals for the interested reader.
See figures 2, 3, 4, and 5. Each row of 10 images corresponds to traversing
a feature in the latent space while all others are held constant. Empty rows
correspond to “unused” latent features.
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Fig. 2: Depiction of the latent space for NashAE λ = 0.0 (Part A)
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Fig. 3: Depiction of the latent space for NashAE λ = 0.0 (Part B)
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Fig. 4: Depiction of the latent space for NashAE λ = 0.2 (Part A). Blank rows
correspond to unused latent features
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Fig. 5: Depiction of the latent space for NashAE λ = 0.2 (Part B). Blank rows
correspond to unused latent features


