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Abstract. We present a self-supervised method to disentangle factors of
variation in high-dimensional data that does not rely on prior knowledge
of the underlying variation profile (e.g., no assumptions on the number
or distribution of the individual latent variables to be extracted). In this
method which we call NashAE, high-dimensional feature disentangle-
ment is accomplished in the low-dimensional latent space of a standard
autoencoder (AE) by promoting the discrepancy between each encoding
element and information of the element recovered from all other encod-
ing elements. Disentanglement is promoted efficiently by framing this as
a minmax game between the AE and an ensemble of regression networks
which each provide an estimate of an element conditioned on an observa-
tion of all other elements. We quantitatively compare our approach with
leading disentanglement methods using existing disentanglement met-
rics. Furthermore, we show that NashAE has increased reliability and
increased capacity to capture salient data characteristics in the learned
latent representation.

Keywords: representation learning, autoencoder, adversarial, minmax
game

1 Introduction

Deep neural networks (DNNs) have proven to be extremely high-performing in
the realms of computer vision [7], natural language processing [26], autonomous
control [16], and deep generative models [5,13], among others. The huge successes
of DNNs have made them almost ubiquitous as an engineering tool, and it is
very common for them to appear in many new applications. However, as we
rush to deploy DNNs in the real world, we have also exposed many of their
shortcomings.

One such shortcoming is that DNNs are extremely sensitive to minute pertur-
bations in their inputs [6,25] or weights [8], causing otherwise high-performing
models to suddenly be consistently incorrect. Additionally, DNNs trained on im-
age classification tasks are observed to predict labels confidently even when the
image shares no relationship with their in-distribution label space [9,17]. Fur-
thermore, DNNs are known to perpetuate biases in their training data through
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Fig. 1: Depiction of the proposed disentanglement method, NashAE, for a latent
space dimensionality of m = 3. An autoencoder (AE), composed of the encoder
ϕ and decoder ψ, compresses a high dimensional input x ∈ Rn to a lower di-
mensional latent vector z ∈ Rm, and decompresses z to approximate x as x′.
An ensemble of m independently trained regression networks ρ takes m dupli-
cates of z which each have an element removed, and each independent regression
network tries to predict the value of its missing element using knowledge of the
other elements. Disentanglement is achieved through equilibrium in an adver-
sarial game in which ϕ minimizes the element-wise covariance between the true
latent vector z and concatenated predictions vector z′

their predictions, exacerbating salient issues such as racial and social inequity,
and gender inequality [1]. While this small subset of examples may appear to
be unrelated, they are all linked by a pervasive issue of DNNs: their lack of
interpretability [23,24]. The fact that DNNs are treated as black boxes, where
engineers lack a clear explanation or reasoning for why or how DNNs make
decisions, makes the root cause of DNNs’ shortcomings difficult to diagnose.

A promising remedy to this overarching issue is to clarify learning repre-
sentations through feature disentanglement: the process of learning unique data
representations that are each only sensitive to independent factors of the un-
derlying data distribution. It follows that a disentangled representation is an
inherently interpretable representation, where each disentangled unit has a con-
sistent, unique, and independent interpretation of the data across its domain.

Several works have pioneered the field of feature disentanglement, moving
from supervised [14] to unsupervised approaches [2,4,10,11], which we focus on in
this work. Chen et al. [4] present InfoGAN, an extension of the GAN framework
[5] that enables better control of generated images using special noise variables.
Higgins et al. [10] introduce β-VAE, a generalization of the VAE framework
[13] that allows the VAE to extract more statistically independent, disentangled
representations.
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While these highly successful methods are considered to be unsupervised,
they still have a considerable amount of prior knowledge built into their opera-
tion. InfoGAN requires prior knowledge of the number and form of disentangled
factors to extract, and β-VAE encounters bottleneck capacity issues and incon-
sistent results with seemingly innocuous changes to hyperparameters, requiring
finetuning with some supervision [2,10].

We propose a new method, NashAE, to promote a sparse and disentangled
latent space in the standard AE that does not make assumptions on the number
or distribution of underlying data generating factors. The core intuition behind
the approach is to reduce the redundant information between latent encoding
elements, regardless of their distribution. To accomplish this, this work presents
a new technique to reduce the information between encoded continuous and/or
discrete random variables using just access to samples drawn from the unknown
underlying distributions. We empirically demonstrate that the method can re-
liably extract high-quality disentangled representations according to the metric
presented in [10], and that the method has a higher latent feature capacity with
respect to salient data characteristics.

The paper makes the following contributions:

– We develop a method to quantify the relationship between random variables
with unknown distribution (arbitrary continuous or discrete/categorical),
and show that it can be used to promote statistical independence among
latent variables in an AE.

– We provide qualitative and quantitative evidence that NashAE reliably ex-
tracts a set of disentangled continuous and/or discrete factors of variation
in a variety of scenarios, and we demonstrate the method’s improved latent
feature capacity with regard to salient data characteristics.

– We release the Beamsynthesis disentanglement dataset, a collection of time-
series data based on particle physics studies and their associated data gen-
erating factor ground truth.

The code for all experiments and the Beamsynthesis dataset can be found
at: https://github.com/ericyeats/nashae-beamsynthesis.

2 Related Work

Autoencoders. Much of this work derives from autoencoders (AE), which con-
sist of an encoder function followed by a decoder function. The encoder trans-
forms high-dimensional input x ∼ X into a low-dimensional latent representa-
tion z, and the decoder transforms z to a reconstruction of the high-dimensional
input x′. AE have numerous applications in the form of unsupervised feature
learning, denoising, and feature disentanglement [11,20,22]. Variational autoen-
coders (VAEs) [13] take AEs further by using them to parameterize probability
distributions for X. VAEs are trained by maximizing a lower bound of the likeli-
hood of X, a process which involves conforming the encoded latent space z ∼ Z
with a prior distribution P . Adversarial AEs [21], like VAEs, match encoded
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distributions to a prior distribution, but do so through an adversarial procedure
inspired by Generative Adversarial Networks (GANs) [5].

Unsupervised Disentanglement Methods. One of the most successful
approaches to feature disentanglement is β-VAE [10], which builds on the VAE
framework. β-VAE adjusts the VAE training framework by modulating the rela-
tive strength of the DKL(Z||P ) term with hyperparameter β, effectively limiting
the capacity of the VAE and encouraging disentanglement as β becomes larger.
Higgins et al. [10] note a positive correlation between the size of the VAE latent
dimension and the optimal β hyperparameter to do so, requiring some hyper-
parameter search and limited supervision. Another important contribution of
Higgins et al. [10] is a metric for quantifying disentanglement which depends on
the accuracy of a linear classifier in determining which data generating factor is
held constant over a pair of data batches.

Multiple works have augmented β-VAE with loss functions that isolate the
Total Correlation (TC) component of DKL(Z||P ), further boosting quantitative
disentanglement performance in certain scenarios [3,12]. Another VAE-based
work proposed by Kumar et al. [15] directly minimizes the covariance of the
encoded representation. However, simple covariance of the latent elements fails
to capture more complex, nonlinear relationships between the elements. Our
work employs regression neural networks to capture complex dependencies.

Chen et al. [4] present InfoGAN, which builds on the GAN framework [5].
InfoGAN augments the base GAN training procedure with a special set of in-
dependent noise inputs. A tractable lower bound on MI is maximized between
the special noise inputs and output of the generator, leading to the special noise
inputs resembling data generating factors. While the method claims to be unsu-
pervised, choosing its special noise inputs requires prior knowledge of the number
and nature (e.g. distribution) of factors to extract.

Limitations of Unsupervised Disentanglement. Locatello et al. [19]
demonstrate that unsupervised disentanglement learning is fundamentally im-
possible without incorporating inductive biases on both models and data [19].
However, they assert that given the right inductive biases, the prospect of unsu-
pervised disentanglement learning is not so bleak. We incorporate several induc-
tive biases in our method to achieve unsupervised disentanglement. First, our
approach assumes that disentangled learning representations are characterised
by being statistically independent. Second, we posit that breaking up the latent
factorization problem into multiple parts by individual masking and adversar-
ial covariance minimization helps boost disentanglement reliability. In terms of
models and data, we employ the network architectures and data preparation
suggested by previous works in unsupervised disentanglement. Under such con-
ditions, NashAE has demonstrated superior reliability in retrieving disentangled
representations.
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3 NashAE Methodology

Our approach starts with a purely deterministic encoder ϕ, which takes input ob-
servations x ∼ X and creates a latent representation z = ϕ(x). Where x ∈ Rn,
z ∈ Rm, and typically n ≫ m. Furthermore, ϕ employs a sigmoid activation
function σ at its output to produce z such that z = σ(ζ) and z ∈ [0, 1]m, where
ζ is the output of ϕ before it is passed through the sigmoid non-linearity. A de-
terministic decoder ψ maps the latent representation z back to the observation
domain x′ = ψ(z). To achieve disentanglement, the AE is trained with two com-
plementary objectives: (1) reconstructing the observations, and (2) maximizing
the discrepancy between each latent variable and predicted values of the vari-
able using information of all other variables. The intuitions behind each are the
following. First, reconstruction of the input observations x is standard of AEs
and ensures that they learn features relevant to the distribution X. Second, pro-
moting discrepancy between i-th latent element and its prediction (conditioned
on all other j ̸= i elements) reduces the information between latent element i
and all other elements j ̸= i.

For the reconstruction objective, the goal is to minimize the mean squared
error:

LR =
1

2
Ex∼X

∣∣∣∣x′ − x
∣∣∣∣2
2
. (1)

Reconstructing the input observation x ensures that the features of the latent
space are relevant to the underlying data distribution X. The following subsec-
tion describes the adversarial game loss objectives, which settle on an equilibrium
and inspire the name of the proposed disentanglement method, NashAE.

Adversarial Covariance Minimization

In general, it is difficult to compute the information between latent variables
when one only has access to samples of observations z ∼ Z. Since the underly-
ing distribution Z is unknown, standard methods of computing the information
directly are not possible. To overcome this challenge, we propose to reduce the
information between latent variables indirectly using an ensemble of regression
networks which attempt to capture the relationships between latent variables.
The process is computationally efficient; it uses simple measures of linear statis-
tical independence and an adversarial game.

Consider an ensemble of m independent regression networks ρ, where the
output of the i-th network ρi corresponds to a missing i-th latent element. The
objective of each ρi is to minimize the mean squared error:

Lρi =
1

2
Ex∼X

(
ρ(zi)i − zi

)2
, (2)

where zi is the i-th true latent element, and zi is the latent vector with
the i-th latent element masked with 0 (i.e., all elements of the latent vector are
present except zi).
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We call ρ the predictors, since they are each optimized to predict one missing
value of z given knowledge of all other z. If all their individual predictions are
concatenated together, they form z′ such that each z′i = ρ(zi)i.

For the disentanglement objective, we want to choose encodings z ∼ ϕ(X)
that make it difficult to recover information of one element from all others. This
leads to a natural minmax formulation for the AE and predictors:

min
ϕ,ψ

max
ρ

1

2
Ex∼X

[∣∣∣∣x′ − x
∣∣∣∣2
2
−

∣∣∣∣z′ − z
∣∣∣∣2
2

]
. (3)

In general, each predictor attempts to use information of zi to establish a one-
to-one linear relationship between z′ and z. Hence we propose to use covariance
between z′ and z across a batch of examples to capture the degree to which they
are related. In practice, we find that training the AE to minimize the summed
covariance objective between each of the z′i and zi random variable pairs,

LA =

m∑
i=1

Cov(z′i, zi), (4)

is more stable than maximizing 1
2Ex∼X ||z′ − z|| and leads to more reliable dis-

entanglement outcomes. Hence, in all the following experiments we train the AE
to minimize this summed covariance measure, LA. Furthermore, one can show
that the fixed points of the minmax objective (3) are the same as those of train-
ing ϕ to minimize LR +LA for disentangled representations (see supplementary
material).

In the adversarial loss LA, the optimization objective of the encoder ϕ is to
adjust its latent representations to minimize the covariance between each z′i and
zi. Using minibatch stochastic gradient descent (SGD), the encoder ϕ can use
gradient passed through the predictors ρ to learn exactly how to adjust its latent
representations to minimize the adversarial loss. Assuming that ρ can learn faster
than ϕ, each i-th covariance term will reach zero when E[zi|zj ,∀j ̸= i] = E[zi]
everywhere.

In the following experiments, we weight the sum of LR and LA with the
hyperparameter λ ∈ [0, 1) in order to establish a normalized balance between
the reconstruction and adversarial objectives:

LR,A(λ) = (1− λ)LR + λLA. (5)

Intuitively, higher values of λ result lower covariance between elements of z
and z′, and eventually the equilibrium covariance settles to zero. In the special
case where all data generating factors are independent, the AE can theoretically
achieve LR,A = 0.

Proposed Disentanglement Metric: TAD

In the following section, we find that NashAE and β-VAE could achieve equally
high scores using the β-VAE metric. However, the β-VAE metric fails to capture
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a key aspect of a truly disentangled latent representation: change in one indepen-
dent data generating factor should correspond to change in just one disentangled
latent feature. This is not captured in the β-VAE disentanglement metric since
the score can benefit from spreading the information of one data generating fac-
tor over multiple latent features. For example, duplicate latent representations
of the same unique data generating factor can only increase the score of the
β-VAE metric.

Furthermore, a disentanglement metric should quantify the degree to which
its set of independent latent axes aligns with the independent data generating
factor ground truth axes. In essence, a unique latent feature should be a confident
predictor of a unique data generating factor, and all other latents should be
orthogonal to the same data generating factor. Intuitively, the greater number
of latent axes that align uniquely with the data generating factors and the more
confident the latents are as predictors of the factors, the higher the metric score
should be.

For these reasons, we design a disentanglement metric for datasets with bi-
nary attribute ground truth labels called Total AUROC Difference (TAD). For
a large number l of examples which we collect a batch of latent representations
z of the shape (l,m), we perform the following to calculate the TAD:

1. For each independent ground truth attribute, calculate the AUROC score of
each latent variable in detecting the attribute.

2. For each independent ground truth attribute, find the maximum latent AU-
ROC score a1,i and the next-largest latent AUROC score a2,i, where i is the
index of the independent ground truth attribute under consideration.

3. Take
∑
i a1,i − a2,i as the TAD score, where i indexes over the independent

ground truth attributes.

The TAD metric captures important aspects of a disentangled latent repre-
sentation. First, each AUROC difference a1,i−a2,i captures the degree to which
a unique attribute is detected by a unique latent representation. Second, sum-
ming the AUROC difference scores for each independent ground truth attribute
quantifies the degree to which the latent axes confidently replicate the ground
truth axes. See the supplementary material for more details on how TAD is
calculated and for a discussion relating it with other work.

4 Experiments

The following section contains a mix of qualitative and quantitative results for
four unsupervised disentanglement algorithms: NashAE (this work), β-VAE [10],
FactorVAE [12], and β-TCVAE [3]. The results are collected for disentanglement
tasks on three datasets: Beamsynthesis, dSprites [10], and CelebA [18]. Please
refer to the supplementary material for details on algorithm hyperparameters,
network architectures, and data normalization for the different experiments.

Beamsynthesis is a simple dataset of 360 time-series data of current wave-
forms constructed from simulations of the LINAC (linear particle accelerator)
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portion of high-energy particle accelerators. The dataset contains two ground
truth data generating factors: a categorical random variable representing the
frequency of the particle waveform which can take on one of the three values
(10, 15, 20) and a continuous random variable constructed from a uniform sweep
of 120 waveform duty cycle values ∈ [0.2, 0.8). The Cartesian product of the two
data generating factors forms the set of observations. The challenge in disentan-
gling this dataset arises from the fact that both the frequency and duty cycle
of a waveform affect the length of the ”on” period of each wave. We visualize
the complete latent space of different algorithms and evaluate the reliability of
the algorithms in extracting the correct number of ground truth data generating
factors using this dataset.

dSprites is a disentanglement dataset released by the authors of β-VAE
- it is comprised of a set of 737, 280 images of white 2D shapes on a black
background. The Cartesian product of the type of shape (categorical: square,
ellipse, heart), scale (continuous: 6 values), orientation (continuous: 40 values),
x-position (continuous: 32 values), and y-position (continuous: 32 values) forms
the independent ground truth of the dataset. We measure the β-VAE disentan-
glement metric score for different algorithms using this dataset.

CelebA is a dataset comprised of 202, 599 images of the faces of 10, 177
different celebrities. Associated with each image are 40 different binary attribute
labels such as bangs, blond hair, black hair, chubby, male, and eyeglasses. We
measure the TAD score of different algorithms using this dataset.

Empirical Fixed Point Results

In section 3, we indicate that higher values of λ ∈ (0, 1) should result in a sta-
tistically independent NashAE latent space, and that redundant latent elements
will not be learned. This is supported by observations of the fixed point of the
optimization process for all experiments with nonzero λ: as λ is increased, the
number of dead latent representations increases, and the average R2 correlation
statistic between latent representations and their predictions decreases.

(a) λ = 0.0. The average
R2 statistic is 0.52, and 32
latent representations are
learned.

(b) λ = 0.1. The average
R2 statistic is 0.09, and 28
latent representations are
learned.

(c) λ = 0.2. The average
R2 statistic is 0.04, and 22
latent representations are
learned.

Fig. 2: Visualization of true latent representations (x-axis) vs predicted latent
representations (y-axis) on the CelebA dataset
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Figure 2 depicts each of the 32 true latent representations vs their predictions
for 1000 samples of the CelebA dataset after three different NashAE networks
have converged. When λ = 0 (standard AE), all latent elements are employed
towards the reconstruction objective, and the predictions exhibit a strong posi-
tive linear relationship with the true latent variables (average R2 is 0.52). When
λ = 0.1, only 28 latent representations are maintained, and the average R2 statis-
tic between true latents and their predictions becomes 0.09. The 4 unused latent
representations are each isolated in a dead zone of the sigmoid non-linearity, re-
spectively. When λ is increased to 0.2, only 22 latent representations are main-
tained and the average R2 statistic decreases even further to 0.04. Note also
that the predictions become constant and are each equal to the expected value
of their respective true latent feature. This is consistent with the conditional
expectation of each variable being equal to its marginal expectation everywhere,
and it indicates that no useful information is given to the predictors towards
their regression task.

Beamsynthesis Latent Space Visualization

Figure 3 depicts the complete latent space generated by encoding all 360 ob-
servations of the Beamsynthesis dataset for the different algorithms and their
baselines with a starting latent size of m = 4.

A standard AE latent space (leftmost) employs all latent elements towards
the reconstruction objective, and their relationship with the ground truth data
generating factors, frequency (categorical) and duty cycle (continuous), is un-
clear. Similarly, when a standard VAE (center right) converges and the µ com-
ponent of the latent space is plotted for all observations, all latent variables are
employed towards the reconstruction objective, and no clear relationship can be
established for the latent variables.

If an adversarial game is played with λ = 0.2 (center left), the correct number
of latent dimensions is extracted, and each nontrivial latent representation aligns
with just one data generating factor. In this case, L1 level-encodes the frequency
categorical data generating factor, and L2 encodes the duty cycle continuous data

NashAE λ = 0.0 NashAE λ = 0.2 β-VAE β = 1 β-VAE β = 100

Fig. 3: Visualizations of the learned latent space for the different algorithms on
the Beamsynthesis dataset
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generating factor with a consistent interpretation. The unused neurons remain
in a dead zone of the sigmoid non-linearity.

β-VAE with β = 100 (rightmost) can disentangle the 360 observations in a
similar fashion. In this example, L2 level-encodes the frequency categorical data
generating factor, and L3 encodes the duty cycle continuous data generating
factor with a consistent interpretation. The unused neurons each have approxi-
mately 0 variance in their µ component and an approximately constant value of
1 in their learned variance component.

Although all algorithms are capable of extracting a disentangled representa-
tion of the ground truth data generating factors, there is a stark difference in
the reliability of the methods in extracting the correct number of latent vari-
ables when the starting latent space size m is changed. Reliability in this aspect
is critical, as the dimensionality of the independent data generating factors is
often an important unknown quantity to recover from new data. To determine
this unknown dimensionality, one should start with a latent space size m which
is larger than the number of latent factors that should be extracted.

Table 1: Average absolute difference between the number of learned latent di-
mensions and the the number of ground truth factors for different starting latent
space sizes m on the Beamsynthesis dataset. Lower is better, and the lowest for
each latent space size configuration (m) are in bold. The results are averaged
over 8 trials

Method m = 4 m = 8 m = 16 m = 32

NashAE λ = 0 1.375 5.75 13.125 28.75
NashAE λ = 0.2 0 0 0.25 1
NashAE λ = 0.3 0 0 0.375 0.5

β-VAE β = 1 2 6 14 28.875
β-VAE β = 50 1.375 2 2.5 3.5
β-VAE β = 100 0 1 1.25 3.125
β-VAE β = 125 1.375 1.5 1.875 3.25

β-TCVAE β = 1 1.875 5.25 9.625 18.625
β-TCVAE β = 50 0.75 1.25 1 0.5
β-TCVAE β = 75 0.375 0.5 1 0.875
β-TCVAE β = 100 0.75 0.625 1.125 0.625

FactorVAE β = 50 0.5 1.25 0.875 0.625
FactorVAE β = 75 0.5 1 1.25 0.5
FactorVAE β = 100 0.25 0.75 1 0.75
FactorVAE β = 125 0.875 0.75 0.625 0.75

Table 1 depicts the results of an experiment in which all hyperparameters
are held constant except the starting latent size m as each of the algorithms
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are trained to convergence on the Beamsynthesis dataset. Each entry in the
table is the average absolute difference between the number of learned latent
representations and the number of ground truth data generating factors (2 for
Beamsynthesis), collected over 8 trials. Both NashAE λ = 0 and β-(TC)VAE
β = 1 learn far too many latent variables, and β-VAE β = 125 tends to learn
too few latent variables when m = 4 and m = 8. NashAE λ = 0.2 and NashAE
λ = 0.3 perform very well in comparison, keeping the average absolute difference
less than or equal to one in all configurations of m. β-TCVAE and FactorVAE
perform second-best overall, tending to learn too many latent variables. The
results indicate that NashAE is the most consistent in recovering the correct
number of data generating factors. See the supplementary material for a similar
experiment with the dSprites dataset and details on how learned latent repre-
sentations are counted.

β-VAE Metric on dSprites

Table 2 reports the disentanglement score of each algorithm averaged over 15
trials - please refer to Higgins et al. [10] for more details on the metric. In general,
the standard AE (NashAE, λ = 0) and standard VAE (β-VAE, β = 1; β-TCVAE,
β = 1) performed the worst on the β-VAE disentanglement metric. As λ and
β are increased, the disentanglement score of NashAE and β-VAE increases to
over 96%. We do not observe the difference between NashAE and β-VAE in top
performance on this metric to be significant, so both are in bold. In general,
β-TCVAE performed slightly worse on this metric than β-VAE and NashAE,
achieving just over 95%. We observed that increasing λ or β beyond these values
leads to poorer performance for all algorithms. All algorithms achieve higher
disentanglement scores on some initializations than others, but no outliers are
removed from the reported scores (as is done in [10]). Overall, the results indicate
that NashAE scores at least as high as those of β-VAE and β-TCVAE algorithm
on the β-VAE metric.

Table 2: β-VAE Metric Scores on dSprites averaged over 15 trials. Higher is
better, and the highest scores of all models and hyperparameter configurations
are in bold. Optimal λ values for disentanglement are different for this dataset
because the dSprites image data is not normalized, following the precedent of
previous works [10]

NashAE λ = 0.0 λ = 0.001 λ = 0.002
91.41% 92.58% 96.57%

β-VAE β = 1 β = 4 β = 8
84.63% 93.68% 96.21%

β-TCVAE β = 1 β = 2 β = 4
84.64% 95.01% 93.95%
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Latent Traversals and TAD Metric on CelebA

Bangs NashAE λ =
0.0; Lat16 (0.788)

Bangs NashAE λ =
0.2; Lat2 (0.831)

Bangs β-VAE β =
1; Lat3 (0.701)

Bangs β-VAE β =
100; Lat19 (0.724)

Blond NashAE λ =
0.0; Lat28 (0.820)

Blond NashAE λ =
0.2; Lat12 (0.807)

Blond β-VAE β =
1; Lat18 (0.765)

Blond β-VAE β =
100; Lat11 (0.768)

Male NashAE λ =
0.0; Lat5 (0.664)

Male NashAE λ =
0.2; Lat15 (0.697)

Male β-VAE β = 1;
Lat6 (0.645)

Male β-VAE β =
100; Lat6 (0.632)

Fig. 4: Traversals of latent features corresponding to the highest AUROC score
for the bangs, blond , and male attributes for the different disentanglement
algorithms. Each latent representation with maximum AUROC score and its
corresponding score are reported

We include traversals of latent representations that have the highest AUROC
detector score for a small set of attributes on CelebA in Figure 4. In each case, we
start with a random image from the dataset and hold all latent representations
constant except the one identified to have the highest AUROC score for the
attribute of interest. We vary that representation evenly from its minimum to
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its maximum (as observed across 1000 random samples) and decode the resulting
latent representation to generate the images reported in Figure 4.

Note that in all cases, employing disentanglement methods (NashAE λ > 0
or β-VAE β ≫ 1) leads to a visual traversal that intuitively matches the at-
tribute that the latent representation is a good detector for. Furthermore, the
visual changes are significant and obvious. Contrarily, when there is no effort to
disentangle the representations (λ = 0 or β = 1), the relationship between the
representation’s high AUROC score and its traversal visualization become far
less clear. In some cases, the traversal does not make meaningful change or even
causes odd artifacts during decoding. We hypothesize that this is due to redun-
dant information being shared between the latent features, and changing just
one may have either no significant effect or the combination will be ”out of dis-
tribution” to the decoder, leading to unnatural decoding artifacts. The idea that
standard latents hold redundant information is supported by Figure 2, where the
predictors establish a high average R2 value on CelebA when λ = 0. We employ
the TAD metric to quantify disentanglement on the CelebA dataset. Table 3
summarizes the TAD results and number of captured attributes for each of the
algorithms averaged over three trials. An attribute is considered captured if it has
a corresponding latent representation with an AUROC score of at least 0.75. The
resulting scores indicate that the NashAE consistently achieves a higher TAD
score, suggesting that its latent space captures more of the salient data charac-
teristics (determined by the labelled attributes). Furthermore, NashAE achieves
high scores over a broad range for λ ∈ (0, 1). β-TCVAE performs second best,
achieving a TAD score of 0.446 when β = 15, yet it does not capture as many
attributes as NashAE. In general, β-VAE and FactorVAE tend to capture fewer
attributes and score lower TAD scores, suggesting that their latent spaces cap-
ture fewer of the salient data characteristics.

Table 3: TAD Scores on CelebA (averaged over 3 trials). Higher TAD scores are
better, and the highest average score is in bold

Method TAD # Attributes

NashAE λ = 0 0.235 5.33
NashAE λ = 0.1 0.362 4
NashAE λ = 0.2 0.543 5
NashAE λ = 0.8 0.474 5

β-VAE β = 1 0.158 3.67
β-VAE β = 50 0.287 2.67
β-VAE β = 100 0.351 2.33
β-VAE β = 250 0.307 2

Method TAD # Attributes

β-TCVAE β = 1 0.165 3.33
β-TCVAE β = 8 0.359 4
β-TCVAE β = 15 0.446 4.33
β-TCVAE β = 25 0.403 3.67
β-TCVAE β = 50 0.362 3.67

FactorVAE β = 1 0.188 3
FactorVAE β = 8 0.208 2.33
FactorVAE β = 15 0.285 3
FactorVAE β = 50 0.276 3
FactorVAE β = 75 0.148 1.33
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5 Discussion

We have shown with our quantitative experiments that NashAE can reliably
extract disentangled representations. Furthermore, qualitative latent traversal
inspection indicates that the latent variables of NashAE which are the best
detectors for a given attribute indeed visually reflect independent traversals of
the attribute. Hence, the adversarial covariance minimization objective presented
in this work promotes learning of clarified, interpretable representations in neural
networks. We believe that improvements in neural network interpretability can
aid engineers in diagnosing and treating the current ailments of neural networks
such as security vulnerability, lack of fairness, and out-of-distribution detection.

Future work will investigate more sophisticated latent distribution modeling
and to make NashAE a generative model. This could further boost NashAE’s dis-
entanglement performance and provide deeper insight with information-theoretic
approaches. It could be interesting to apply the adversarial covariance minimiza-
tion objective to clarify the representations of DNNs for image classification.

6 Conclusion

We have presented NashAE, a new adversarial method to disentangle factors of
variation which makes minimal assumptions on the number and form of factors
to extract. We have shown that the method leads to a more statistically indepen-
dent and disentangled AE latent space. Our quantitative experiments indicate
that this flexible method is more reliable in retrieving the true number of data
generating factors and has a higher capacity to align its latent representations
with salient data characteristics than leading VAE-based algorithms.
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