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Abstract. Representation learning with Symmetric Positive Semi-definite
(SPSD) matrices has proven effective in many machine learning prob-
lems. Recently, some SPSD neural networks have been proposed and
shown promising performance. While these works share a common idea
of generalizing some basic operations in deep neural networks (DNNs) to
the SPSD manifold setting, their proposed generalizations are usually de-
signed in an ad hoc manner. In this work, we make an attempt to propose
a principled framework for building such generalizations. Our method is
motivated by the success of hyperbolic neural networks (HNNs) that have
demonstrated impressive performance in a variety of applications. At the
heart of HNNs is the theory of gyrovector spaces that provides a power-
ful tool for studying hyperbolic geometry. Here we consider connecting
the theory of gyrovector spaces and the Riemannian geometry of SPSD
manifolds. We first propose a method to define basic operations, i.e.,
binary operation and scalar multiplication in gyrovector spaces of (full-
rank) Symmetric Positive Definite (SPD) matrices. We then extend these
operations to the low-rank SPSD manifold setting. Finally, we present
an approach for building SPSD neural networks. Experimental evalua-
tions on three benchmarks for human activity recognition demonstrate
the efficacy of our proposed framework.

1 Introduction

SPSD matrices are computational objects that are commonly encountered in var-
ious applied areas such as medical imaging [2,35], shape analysis [42], drone clas-
sification [6], image recognition [10], and human behavior analysis [9,14,15,17,32,41].
Due to the non-Euclidean nature of SPSD matrices, traditional machine learning
algorithms usually fail to obtain good results when it comes to analyzing such
data. This has led to extensive studies on the Riemannian geometry of SPSD
matrices [2,3,4,24,30,36].

In recent years, deep learning methods have brought breakthroughs in many
fields of machine learning. Inspired by the success of deep learning and the mod-
eling power of SPSD matrices, some recent works [6,7,8,9,17,32,34,47] have pro-
posed different approaches for building SPSD neural networks. Although these
networks have shown promising performance, their layers are usually designed in
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an ad hoc manner1. For example, in [8], the translation operation that is claimed
to be analogous to adding a bias term in Euclidean neural networks is constructed
from the action of the orthogonal group on SPD manifolds. However, this oper-
ation does not allow one to perform addition of two arbitrary SPD matrices and
thus is not fully analogous to the vector addition in Euclidean spaces.

To tackle the above problem, we rely on the theory of gyrovector spaces [44,45]
that has been successfully applied in the context of HNNs [12,40]. However, in or-
der to apply this theory to the SPSD manifold setting, we first need to define the
basic operations in gyrovector spaces of SPSD matrices. Although there are some
works [1,16,18,19,20,21,28] studying gyrovector spaces of SPD matrices with an
Affine-invariant (AI) [36] geometry, none of them provides a rigorous mathemat-
ical formulation for the connection between the basic operations in these spaces
and the Riemannian geometry of SPD manifolds. In this paper, we take one step
further toward a deeper understanding of gyrovector spaces of SPD matrices by
proposing a principled method to define the basic operations in these spaces.
We focus on three different geometries of SPD manifolds, i.e., Affine-invariant,
Log-Euclidean (LE) [2], Log-Cholesky (LC) [24], and derive compact expressions
for the basic operations associated with these geometries. To extend our method
to low-rank SPSD manifolds, we make use of their quotient geometry [3,4]. We
show how to define the loose versions of the basic operations on these manifolds,
and study some of their properties. For SPSD matrix learning, we consider the
full-rank and low-rank learning settings, and develop a class of Recurrent Neural
Networks (RNNs) with flexible learning strategies in these settings.

2 Gyrovector Spaces

Gyrovector spaces form the setting for hyperbolic geometry in the same way
that vector spaces form the setting for Euclidean geometry [44,45,46]. We first
recap the definitions of gyrogroups and gyrocommutative gyrogroups proposed
in [44,45,46]. For greater mathematical detail and in-depth discussion, we refer
the interested reader to these papers.

Definition 1 (Gyrogroups [46]). A pair (G,⊕) is a groupoid in the sense
that it is a nonempty set, G, with a binary operation, ⊕. A groupoid (G,⊕) is a
gyrogroup if its binary operation satisfies the following axioms for a, b, c ∈ G:

(G1) There is at least one element e ∈ G called a left identity such that
e⊕ a = a.

(G2) There is an element ⊖a ∈ G called a left inverse of a such that ⊖a⊕a =
e.

(G3) There is an automorphism gyr[a, b] : G → G for each a, b ∈ G such that

a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b]c (Left Gyroassociative Law).

The automorphism gyr[a, b] is called the gyroautomorphism, or the gyration
of G generated by a, b.

1 In terms of basic operations used to build the network layers.
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(G4) gyr[a, b] = gyr[a⊕ b, b] (Left Reduction Property).

Definition 2 (Gyrocommutative Gyrogroups [46]). A gyrogroup (G,⊕) is
gyrocommutative if it satisfies

a⊕ b = gyr[a, b](b⊕ a) (Gyrocommutative Law).

The following definition of gyrovector spaces is slightly different from Defi-
nition 3.2 in [46].

Definition 3 (Gyrovector Spaces). A gyrocommutative gyrogroup (G,⊕) equipped
with a scalar multiplication

(t, x) → t⊙ x : R×G → G

is called a gyrovector space if it satisfies the following axioms for s, t ∈ R and
a, b, c ∈ G:

(V1) 1⊙ a = a, 0⊙ a = t⊙ e = e, and (−1)⊙ a = ⊖a.
(V2) (s+ t)⊙ a = s⊙ a⊕ t⊙ a.
(V3) (st)⊙ a = s⊙ (t⊙ a).
(V4) gyr[a, b](t⊙ c) = t⊙ gyr[a, b]c.
(V5) gyr[s⊙ a, t⊙ a] = Id, where Id is the identity map.

Note that the axioms of gyrovector spaces considered in our work are more
strict than those in [18,19,20,21]. Thus, many results proved in these works can
also be applied to our case, which gives rise to interesting applications.

3 Proposed Approach

For simplicity of exposition, we will concentrate on real matrices. Denote by
Sym+

n the space of n× n SPD matrices, S+n,p the space of n× n SPSD matrices
of rank p < n, Vn,p the space of n× p matrices with orthonormal columns, On

the space of n×n orthonormal matrices. Let M be a Riemannian homogeneous
space, TPM be the tangent space ofM at P ∈ M. Denote by exp(P) and log(P)
the usual matrix exponential and logarithm of P, ExpP(W) the exponential map
at P that associates to a tangent vector W ∈ TPM a point of M, LogP(Q) the
logarithmic map of Q ∈ M at P. Let TP→Q(W) be the parallel transport of W
from P to Q along geodesics connecting P and Q.

Definition 4. The binary operation P ⊕ Q where P,Q ∈ M is obtained by
projecting Q in the tangent space at the identity element I ∈ M with the log-
arithmic map, computing the parallel transport of this projection from I to P
along geodesics connecting I and P, and then projecting it back on the manifold
with the exponential map, i.e.,

P⊕Q = ExpP(TI→P(LogI(Q))). (1)
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Definition 5. The scalar multiplication t ⊗ P where t ∈ R and P ∈ M is
obtained by projecting P in the tangent space at the identity element I ∈ M with
the logarithmic map, multiplying this projection by the scalar t in TIM, and then
projecting it back on the manifold with the exponential map, i.e.,

t⊗P = ExpI(tLogI(P)). (2)

In the next sections, we will define gyrovector spaces of SPD matrices with
the Affine-invariant, Log-Euclidean, and Log-Cholesky geometries (see supple-
mentary material for a review of these geometries).

3.1 Affine-invariant Gyrovector Spaces

We first examine SPD manifolds with the Affine-invariant geometry. Lemma 1
gives a compact expression for the binary operation.

Lemma 1. For P,Q ∈ Sym+
n , the binary operation P⊕ai Q is given as

P⊕ai Q = P
1
2QP

1
2 . (3)

Proof. See supplementary material.

The identity element of Sym+
n is the n × n identity matrix In. Then, from

Eq. (3), the inverse of P is given by

⊖aiP = P−1.

Lemma 2. For P ∈ Sym+
n , t ∈ R, the scalar multiplication t⊗ai P is given as

t⊗ai P = Pt. (4)

Proof. See supplementary material.

Definition 6 (Affine-invariant Gyrovector Spaces). Define a binary op-
eration ⊕ai and a scalar multiplication ⊗ai by Eqs. (3) and (4), respectively.
Define a gyroautomorphism generated by P and Q as

gyrai[P,Q]R = Fai(P,Q)R(Fai(P,Q))−1, (5)

where Fai(P,Q) = (P
1
2QP

1
2 )−

1
2P

1
2Q

1
2 .

Theorem 1. Gyrogroups (Sym+
n ,⊕ai) with the scalar multiplication ⊗ai form

gyrovector spaces (Sym+
n ,⊕ai,⊗ai).

Proof. See supplementary material.
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3.2 Log-Euclidean Gyrovector Spaces

We now study SPD manifolds with the Log-Euclidean geometry.

Lemma 3. For P,Q ∈ Sym+
n , the binary operation P⊕le Q is given as

P⊕le Q = exp(log(P) + log(Q)). (6)

Proof. See supplementary material.
From Lemma 3, the inverse of P is given by

⊖leP = P−1.

Lemma 4. For P ∈ Sym+
n , t ∈ R, the scalar multiplication t⊗le P is given by

t⊗le P = Pt. (7)

Proof. See supplementary material.

Definition 7 (Log-Euclidean Gyrovector Spaces). Define a binary opera-
tion ⊕le and a scalar multiplication ⊗le by Eqs. (6) and (7), respectively. Define
a gyroautomorphism generated by P and Q as

gyrle[P,Q] = Id .

Theorem 2. Gyrogroups (Sym+
n ,⊕le) with the scalar multiplication ⊗le form

gyrovector spaces (Sym+
n ,⊕le,⊗le).

Proof. See supplementary material.
The conclusion of Theorem 2 is not surprising since it is known [2] that the

space of SPD matrices with the Log-Euclidean geometry has a vector space struc-
ture. This vector space structure is given by the operations proposed in [2] that
turn out to be the binary operation and scalar multiplication in Log-Euclidean
gyrovector spaces.

3.3 Log-Cholesky Gyrovector Spaces

In this section, we focus on SPD manifolds with the Log-Cholesky geometry.
Following the notations in [24], let ⌊A⌋ be a matrix of the same size as matrix
A whose (i, j) element is Aij if i > j and is zero otherwise, D(A) is a diagonal
matrix of the same size as matrix A whose (i, i) element is Aii. Denote by L (P)
the lower triangular matrix obtained from the Cholesky decomposition of matrix
P ∈ Sym+

n , i.e., P = L (P)L (P)T .

Lemma 5. For P,Q ∈ Sym+
n , the binary operation P⊕lc Q is given as

P⊕lc Q =
(
⌊L (P)⌋+ ⌊L (Q)⌋+ D(L (P))D(L (Q))

)
.(

⌊L (P)⌋+ ⌊L (Q)⌋+ D(L (P))D(L (Q))
)T

.
(8)
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Proof. See supplementary material.
From Eq. (8), the inverse of P is given by

⊖lcP =
(
− ⌊L (P)⌋+ D(L (P))−1

)(
− ⌊L (P)⌋+ D(L (P))−1

)T
.

Lemma 6. For P ∈ Sym+
n , t ∈ R, the scalar multiplication t⊗lc P is given as

t⊗lc P =
(
t⌊L (P)⌋+ D(L (P))t

)(
t⌊L (P)⌋+ D(L (P))t

)T
. (9)

Proof. See supplementary material.

Definition 8 (Log-Cholesky Gyrovector Spaces). Define a binary opera-
tion ⊕lc and a scalar multiplication ⊗lc by Eqs. (8) and (9), respectively. Define
a gyroautomorphism generated by P and Q as

gyrlc[P,Q] = Id .

Theorem 3. Gyrogroups (Sym+
n ,⊕lc) with the scalar multiplication ⊗lc form

gyrovector spaces (Sym+
n ,⊕lc,⊗lc).

Proof. See supplementary material.

3.4 Parallel Transport in Gyrovector Spaces of SPD Matrices

We now show a hidden analogy between Euclidean spaces and gyrovector spaces
of SPD matrices studied in the previous sections. In the following, we drop the
subscripts in the notations of the basic operations and the gyroautomorphism
in these gyrovector spaces for simplicity of notation.

Lemma 7. Let P0,P1,Q0,Q1 ∈ Sym+
n . If LogP1

(Q1) is the parallel transport
of LogP0

(Q0) from P0 to P1 along geodesics connecting P0 and P1, then

⊖P1 ⊕Q1 = gyr[P1,⊖P0](⊖P0 ⊕Q0).

Proof. See supplementary material.
Lemma 7 reveals a strong link between the Affine-invariant, Log-Euclidean,

and Log-Cholesky geometries of SPD manifolds and hyperbolic geometry, as
the algebraic definition [44] of parallel transport in a gyrovector space agrees
with the classical parallel transport of differential geometry. In the gyrolan-
guage [44,45,46], Lemma 7 states that the gyrovector ⊖P1⊕Q1 is the gyrovector
⊖P0 ⊕Q0 gyrated by a gyroautomorphism. This gives a characterization of the
parallel transport that is fully analogous to that of the parallel transport in Eu-
clidean and hyperbolic spaces. Note that this characterization also agrees with
the reinterpretation of addition and subtraction in a Riemannian manifold using
logarithmic and exponential maps [36]. In the case of Log-Euclidean geometry,
like the conclusion of Theorem 2, the result of Lemma 7 agrees with [2] which
shows that the space of SPD matrices with the Log-Euclidean geometry has a
vector space structure.
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3.5 Low-rank SPSD Manifolds

In this section, we extend the basic operations proposed in Sections 3.1, 3.2,
and 3.3 to the case of low-rank SPSD manifolds. We will see that defining a
binary operation and a scalar multiplication on these manifolds that verify the
axioms of gyrovector spaces is not trivial. However, based on the basic operations
in gyrovector spaces of SPD matrices, one can still define the loose versions of
these operations that are useful for applications.

We adopt the quotient manifold representation of S+n,p proposed by [3,4], i.e.,

S+n,p
∼= (Vn,p ×Sym+

p )/O(p).

This representation is based on the decomposition

P = UPPUT
P (10)

of any matrix P ∈ S+n,p, where UP ∈ Vn,p and P ∈ Sym+
p . Here, each element

of S+n,p can be seen as a flat p-dimensional ellipsoid in Rn [3]. The flat ellipsoid
belongs to a p-dimensional subspace spanned by the columns of UP , while the
p × p SPD matrix P defines the shape of the ellipsoid in Sym+

p . This suggests
a natural adaptation of the binary operations and scalar multiplications in gy-
rovector spaces of SPD matrices to the case of low-rank SPSD manifolds. That
is, for any P,Q ∈ S+n,p, the binary operation will operate on the SPD matrices
that define the shapes of P and Q. Note, however, that the decomposition (10)
is not unique and defined up to an orthogonal transformation

UP 7→ UPO,P 7→ OTPO,

where O ∈ On. In other words, (UPO,OTPO) also forms a decomposition of P
for arbitrary O ∈ On. This is problematic since in general, the binary operations
defined in the previous sections is not invariant to orthogonal transformations.
To resolve this ambiguity, we resort to canonical representation [3,4,11]. Our key
idea is to identify a common subspace and then rotate the ranges of P and Q to
this subspace. The SPD matrices that define the shapes of P and Q are rotated
accordingly based on the corresponding rotations in order to reflect the changes
of the ranges of P and Q. These rotations are determined as follows. For any
U,V ∈ Grn,p, among all geodesics joining U and V, we consider the one joining
their canonical bases. Let UV be the canonical base in the orbit of U, VU be
the canonical base in the orbit of V. These bases are given [3,4,11] by

UV = UOU→V,VU = VOV→U,

where OU→V and OV→U are orthogonal matrices computed from a singular
value decomposition (SVD) of UTV, i.e.,

UTV = OU→VΣΣΣOT
V→U,

where ΣΣΣ is a diagonal matrix whose diagonal entries are the singular values of
UTV.
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Let Ue be a common subspace used to define the loose versions of the basic
operations on S+n,p. In a special case where all matrices are supported by the same
subspace, then Ue can be identified as this subspace. By abuse of language, we
will use the same terminologies in gyrovector spaces to refer to the loose versions
in the following definitions.

Definition 9. Let P,Q ∈ S+n,p, P = UPPUT
P , and Q = UQQUT

Q. The binary
operation P⊕spsd Q is defined as

P⊕spsd Q = Ue(O
T
UP→Ue

POUP→Ue
⊕OT

UQ→Ue
QOUQ→Ue

)UT
e .

Let In,p =

[
Ip 0
0 0

]
be the identity element of S+n,p. The inverse of P ∈ S+n,p

where P = UPPUT
P is defined as

⊖spsdP = Ue

(
⊖ (OT

UP→Ue
POUP→Ue

)
)
UT

e .

Definition 10. Let P ∈ S+n,p, t ∈ R, and P = UPPUT
P . The scalar multiplica-

tion t⊗spsd P is defined as

t⊗spsd P = Ue(t⊗OT
UP→Ue

POUP→Ue)U
T
e .

Definition 11. Let P,Q,R ∈ S+n,p, P = UPPUT
P , Q = UQQUT

Q, and R =

URRUT
R. The gyroautomorphism in S+n,p is defined by

gyrspsd[P,Q]R

= Ue

(
gyr[OT

UP→Ue
POUP→Ue

,OT
UQ→Ue

QOUQ→Ue
]OT

UR→Ue
ROUR→Ue

)
UT

e .

It can be seen that spaces S+n,p, when equipped with the basic operations
defined in this section, do not form gyrovector spaces. However, Theorem 4
states that they still verify some important properties of gyrovector spaces.

Theorem 4. The basic operations on S+n,p verify the Left Gyroassociative Law,
Left Reduction Property, Gyrocommutative Law, and axioms (V2), (V3), and
(V4).

Proof. See supplementary material.

3.6 SPSD Neural Networks

Motivated by the work of [12] that develops RNNs on hyperbolic spaces, in this
section, we propose a class of RNNs on SPSD manifolds. It is worth mentioning
that the operations defined in Sections 3.1, 3.2, and 3.3 as well as those con-
structed below can be used to build other types of neural networks on SPSD
manifolds, e.g., convolutional neural networks. We leave this for future work.

In addition to the basic operations, we need to generalize some other oper-
ations of Euclidean RNNs to the SPSD manifold setting. Here we focus on two
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operations, i.e., vector-matrix multiplication and pointwise nonlinearity. Other
operations [12] are left for future work.
Vector-matrix multiplication. If P ∈ S+n,p and W ∈ Rp,W ≥ 0, then the
vector-matrix multiplication W ⊗v P is given by

W ⊗v P = U diag(W ∗V)UT ,

where P = U diag(V)UT is the eigenvalue decomposition of P, and ∗ denotes
the element-wise multiplication.
Pointwise nonlinearity. If φ is a pointwise nonlinear activation function, then
the pointwise nonlinearity φ⊗a(P) is given by

φ⊗a(P) = Udiag(max(ϵI, φ(V)))UT ,

where ϵ > 0 is a rectification threshold, and P = U diag(V)UT is the eigenvalue
decomposition of P. Note that the above operations preserve the range and the
positive semi-definite property.

We first consider the case of full-rank learning. In this case, we adapt a class of
models that are invariant to time rescaling [43] to the SPD manifold setting using
the gyro-chain-rule in gyrovector spaces of SPD matrices (see supplementary
material for the derivation). We obtain the following update equations:

Pt = φ⊗a(Wh ⊗v Ht−1 +Wx ⊗v ϕ(Xt)), (11)

Ht = Ht−1 ⊕ α⊗ ((⊖Ht−1)⊕Pt), (12)

where Xt ∈ Sym+
n is the input at frame t, Ht−1,Ht ∈ Sym+

n are the hidden
states at frames t − 1 and t, respectively, Wh,Wx ∈ Rn, Wh,Wx > 0, and
α ∈ R are learnable parameters, ϕ(Xt) is any mapping2 that transforms Xt into
a SPD matrix.

The above model can be extended to the low-rank case by viewing Ht−1 and
Ht as the SPD matrices that define the shapes of the SPSD matrices represent-
ing the hidden states at frames t − 1 and t, respectively. If we assume that the
hidden states are supported by the same subspace, then it is tempting to design
the mapping ϕ(Xt) such that it gives the SPD matrix that defines the shape of
Xt, once the range of Xt is rotated to that subspace. The algorithm in both the
full-rank and low-rank cases can be summarized in Algorithm 1. The procedure
SpdRotate() performs the computations of the mapping ϕ(.), and Xu[:, : p] de-
notes the matrix containing the first p columns of Xu. The parameter W can
be either learned or fixed up front which offers flexible learning strategies.
Complexity Analysis. In the full-rank learning setting, the most expensive
operations are performed at steps 1, 3, 4, and 5, each of them has O(n3) com-
plexity. In the low-rank learning setting, the most expensive operation is the
eigenvalue decomposition at step 1 that has O(n3) complexity, while steps 3, 4,
and 5 are O(p3) operations. Thus, when p ≪ n, the algorithm in the low-rank
learning setting is faster than the one in the full-rank learning setting.

2 We drop parameters to simplify notations.
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Algorithm 1: SPSD-RNN

Data: Xt ∈ S+
n,p,H

spd
t−1 ∈ Sym+

p ,W ∈ Vn,p

Result: Hspd
t ∈ Sym+

p

1 Xs,Xu ← EIG(Xt); /* Xs: eigenvalues, Xu: eigenvectors */

2 Xu ← Xu[:, : p]; /* Eigenvalues are arranged in descending order */

3 Xspd ← SpdRotate(Xt,X
u,W);

4 Pt = φ⊗a(Wh ⊗v Hspd
t−1 +Wx ⊗v Xspd);

5 Hspd
t = Hspd

t−1 ⊕ α⊗ ((⊖Hspd
t−1)⊕Pt);

4 Experiments

Our networks, referred to as SPSD-AI, SPSD-LE, and SPSD-LC were imple-
mented with Tensorflow framework. The networks were trained using Adadelta
optimizer for 500 epochs. The ReLU function was used for the pointwise non-
linearity. The learning rate and parameter ϵ for the pointwise nonlinearity were
set respectively to 10−2 and 10−4.

4.1 Datasets and Experimental Settings

We use HDM05 [31], FPHA [13], and NTU RBG+D 60 (NTU60) [39] datasets.
These datasets include three different types of human activities: body actions
(HDM05), hand actions (FPHA), and interaction actions (NTU60).

HDM05 dataset. It has 2337 sequences of 3D skeleton data classified into
130 classes. Each frame contains the 3D coordinates of 31 body joints. We use all
the action classes and follow the experimental protocol [15] in which 2 subjects
are used for training and the remaining 3 subjects are used for testing.

FPHA dataset. It has 1175 sequences of 3D skeleton data classified into
45 classes. Each frame contains the 3D coordinates of 21 hand joints. We follow
the experimental protocol [13] in which 600 sequences are used for training and
575 sequences are used for testing.

NTU60 dataset. It has 56880 sequences of 3D skeleton data classified into
60 classes. Each frame contains the 3D coordinates of 25 or 50 body joints. We
use the mutual (interaction) actions and follow the cross-subject (X-Sub) and
cross-view (X-View) experimental protocols [39]. For the X-Sub protocol, this
results in 7319 and 3028 sequences for training and testing, respectively. For the
X-View protocol, the numbers of training and testing sequences are 6889 and
3458, respectively.

4.2 Implementation Details

In order to retain the correlation of neighboring joints [5,49] and to increase
feature interactions encoded by covariance matrices, we first identify a closest
left (right) neighbor of every joint based on their distance to the hip (wrist)
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Dataset
HDM05 FPHA NTU60 (X-Sub) NTU60 (X-View)

FR LR FR LR FR LR FR LR

Accuracy (%) 81.32 74.19 96.58 90.94 95.86 89.78 97.44 90.15

Training time (min) 1.09 0.66 0.64 0.39 9.19 5.61 8.56 5.26

Table 1. Accuracies and training times (minutes) per epoch of SPSD-AI for the
full-rank (FR) and low-rank (LR) learning settings (the experiment is conducted on 1
NVIDIA 1080 GPU).

Dataset
HDM05 FPHA NTU60 (X-Sub) NTU60 (X-View)

C NC C NC C NC C NC

Accuracy (%) 74.19 41.37 90.94 63.41 89.78 56.82 90.15 58.34

Table 2. Accuracies of SPSD-AI when canonical representation is used (C) and not
used (NC).

joint3, and then combine the 3D coordinates of each joint and those of its left
(right) neighbor to create a feature vector for the joint. Thus, a 6-dim feature
vector is created for every joint. The input SPD data are computed as follows.
For any frame t, a mean vector µµµt and a covariance matrix ΣΣΣt are computed
from the set of feature vectors of the frame and then combined [29] to create a
SPD matrix as

Yt =

[
ΣΣΣt +µµµt(µµµt)

T µµµt

(µµµt)
T 1

]
.

The lower part of matrix log(Yt) is flattened to obtain a vector ṽt. All
vectors ṽt within a time window [t, t + c − 1] where c is a predefined value
(c = 10 in our experiments) are used to compute a covariance matrix as Zt =
1
c

∑t+c−1
i=t (ṽi − v̄t)(ṽi − v̄t)

T , where v̄t = 1
c

∑t+c−1
i=t ṽi. Matrix Zt is then the

input data at frame t of the networks.
For classification, the network output is projected to the tangent space at

the identity matrix using the logarithmic map. The lower part of the resulting
matrix is flattened and fed to a fully-connected layer. Cross-entropy loss is used
to optimize the network. Please refer to the supplementary material for more
implementation details.

4.3 Ablation Study

In this section, we discuss the impact of different components of SPSD-AI on its
performance.
Full-rank vs. low-rank learning. In this experiment, we compare the accura-
cies and computation times of SPSD-AI in the full-rank and low-rank learning

3 For joints having more than one left (right) neighbor, one of them can be chosen.
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Method Accuracy (%) #Param. (MB) Year

SPD-SRU [8] 42.26 0.05 2018

SPDNet [17] 58.44 0.12 2017

SPDNetBN [6] 62.54 0.13 2019

HypGRU [12] 55.47 0.23 2018

MS-G3D [27] 70.38 2.93 2020

ST-TR [38] 69.75 4.62 2021

SPSD-AI 81.32 0.31

SPSD-LE 77.46 0.31

SPSD-LC 73.52 0.31

Table 3. Accuracies of our networks and state-of-the-art methods on HDM05 dataset.

settings. The value of p is set to 14. Results are reported in Tab. 1 (see sup-
plementary material for more results w.r.t different settings of p). In terms of
accuracy, the network trained in the full-rank learning setting overpasses the one
trained in the low-rank learning setting. In terms of computation time, however,
the former is slower than the latter. This experiment highlights the advantage
of each of the learning settings. In practice, the value of p can be adjusted to
offer a good compromise between accuracy and computation time.
Canonical representation-based learning. This experiment is conducted to
illustrate the efficacy of canonical representation in the low-rank case. For a fair
comparison, we evaluate the accuracies of SPSD-AI in the two following settings.
In the first setting, canonical representation is used and the parameterW is fixed
up front (W = In,p). In the second setting, canonical representation is not used,
i.e., Xspd at line 3 of Algorithm 1 is computed as

Xspd = (Xu)T diag(Xs[: p])Xu, (13)

where Xs[: p] denotes the vector containing the first p elements of Xs, and
diag(.) forms a diagonal matrix from a vector. The value of p is set to 14. Results
are presented in Tab. 2. In all cases, canonical representation yields significant
improvements in accuracy. The average performance gain over all the datasets
is more than 30%.

In the following, we report results of our networks in the full-rank case.

4.4 Results on HDM05 Dataset

Results of our networks and state-of-the-art methods on HDM05 dataset are pre-
sented in Tab. 3. The implementations of SPD-SRU4, SPDNet5, SPDNetBN6,

4 https://github.com/zhenxingjian/SPD-SRU/tree/master
5 https://github.com/zhiwu-huang/SPDNet
6 https://papers.nips.cc/paper/2019/hash/6e69ebbfad976d4637bb4b39de261bf7-

Abstract.html

https://github.com/zhenxingjian/SPD-SRU/tree/master
https://github.com/zhiwu-huang/SPDNet
https://papers.nips.cc/paper/2019/hash/6e69ebbfad976d4637bb4b39de261bf7-Abstract.html
https://papers.nips.cc/paper/2019/hash/6e69ebbfad976d4637bb4b39de261bf7-Abstract.html
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Method Accuracy (%) #Param. (MB) Year

SPD-SRU [8] 78.57 0.02 2018

SPDNet [17] 87.65 0.04 2017

SPDNetBN [6] 88.52 0.05 2019

HypGRU [12] 58.61 0.16 2018

ST-TS-HGR-NET [33] 93.22 - 2019

SRU-HOS-NET [34] 94.61 - 2020

HMM-HPEV-Net [25] 90.96 - 2020

SAGCN-RBi-IndRNN [22] 90.26 - 2021

MS-G3D [27] 88.61 2.90 2020

ST-TR [38] 86.32 4.59 2021

SPSD-AI 96.58 0.11

SPSD-LE 91.84 0.11

SPSD-LC 89.73 0.11

Table 4. Accuracies of our networks and state-of-the-art methods on FPHA dataset.

HypGRU7, MS-G3D8, and ST-TR9 are rendered publicly available by the au-
thors of [8], [17], [6], [12], [27], and [38] respectively. HypGRU achieves the best
results when the data are projected to hyperbolic spaces before they are fed to
the networks, and all its layers are based on hyperbolic geometry. The hidden
dimension for HypGRU is set to 200. For SPDNet and SPDNetBN, we com-
pute a covariance matrix to represent an input sequence as in [17]. The sizes of
the covariance matrix are 93 × 93. Our networks outperform all the competing
networks. In particular, they beat the state-of-the-art MS-G3D for 3D skeleton-
based action recognition. Furthermore, our networks have about 9 times fewer
parameters than MS-G3D. Our networks also have superior performance than
the SPD and HNN models.

4.5 Results on FPHA Dataset

For SPDNet and SPDNetBN, the sizes of the input covariance matrix are 60×60,
and the sizes of the transformation matrices are set to 60 × 50, 50 × 40, and
40× 30. Results of our networks and state-of-the-art methods on FPHA dataset
are given in Tab. 4. SPSD-AI is the best performer on this dataset. SPSD-LE
gives the second best result among our networks. It is slightly better than HMM-
HPEV-Net and SAGCN-RBi-IndRNN, and outperforms MS-G3D and ST-TR
by more than 3%. SPSD-LC achieves the lowest accuracy among our networks.
However, it is superior to HypGRU and compares favorably to some state-of-the-
art SPD models, i.e., SPD-SRU, SPDNet, and SPDNetBN. Note that MS-G3D
is outperformed by our networks despite having 26 times more parameters.

7 https://github.com/dalab/hyperbolic_nn
8 https://github.com/kenziyuliu/MS-G3D
9 https://github.com/Chiaraplizz/ST-TR

https://github.com/dalab/hyperbolic_nn
https://github.com/kenziyuliu/MS-G3D
https://github.com/Chiaraplizz/ST-TR
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Method X-Sub X-View #Param. (X-Sub,MB) Year

ST-LSTM [26] 83.0 87.3 - 2016

ST-GCN [48] 87.05 91.02 - 2018

AS-GCN [23] 91.22 93.46 - 2019

LSTM-IRN [37] 90.5 93.5 - 2019

SPD-SRU [8] 66.25 68.11 0.004 2018

SPDNet [17] 73.26 74.82 0.03 2017

SPDNetBN [6] 75.84 76.96 0.04 2019

HypGRU [12] 88.26 89.43 0.013 2018

MS-G3D [27] 93.25 95.73 2.89 2020

ST-TR [38] 92.18 94.69 4.58 2021

2S-DRAGCNjoint [50] 93.20 95.58 3.57 2021

GeomNet [32] 93.62 96.32 - 2021

SPSD-AI 95.86 97.44 0.03

SPSD-LE 90.74 91.18 0.03

SPSD-LC 88.03 88.56 0.03

Table 5. Accuracies (%) of our networks and state-of-the-art methods on NTU60
dataset (interaction actions).

4.6 Results on NTU60 Dataset

For SPDNet and SPDNetBN, the sizes of the input covariance matrix are 150×
150, and the sizes of the transformation matrices are set to 150× 100, 100× 60,
and 60 × 30. Results of our networks and state-of-the-art methods on NTU60
dataset are reported in Tab. 5. Again, SPSD-AI gives the best results among the
competing methods. It outperforms the state-of-the-art methods 2S-DRAGCN
and GeomNet for 3D skeleton-based human interaction recognition. We observe
that on all the datasets, SPSD-AI trained in the low-rank learning setting (see
Tab. 1) competes favorably with SPD-SRU, SPDNet, and SPDNetBN. This
suggests that integrating our method for low-rank matrix learning into these
networks might also lead to effective solutions for SPSD matrix learning.

5 Conclusion

We presented a method for constructing the basic operations in gyrovector spaces
of SPD matrices. We then studied gyrovector spaces of SPD matrices with the
Affine-invariant, Log-Euclidean, and Log-Cholesky geometries. We proposed the
loose versions of the basic operations in low-rank SPSD manifolds by extending
those previously defined in gyrovector spaces of SPD matrices. Finally, we devel-
oped a class of RNNs for SPSD matrix learning, and provided the experimental
evaluations on three benchmarks for human activity recognition to demonstrate
the effectiveness of our networks.
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