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Supplementary material

Proof of Proposition 1 Let Y∗ = ŷ(Sm) be the solution of the optimal linear
assignment problem given the similarity matrix Sm. With this, we can rewrite
L(Sm,Ygt) as follows:

L(Sm,Ygt) =
∑
i

∑
j

([Ygt]ij − [Y∗]ij)[Sm]ij =
∑
i

∑
j

qij [Sm]ij (1)

Note that the term qij can only take the values in {−1, 0, 1} as both matrices
Ygt and Y∗ are binary. Consider the case when qij = 0, which indicates that the
objects i and j are matched correctly and that [S]ij +m ≤ [S]ik for any k ̸= j.
The latter implies that the distance between the positive pair (i, j) is at least m
smaller than the distance with all other pairs in the batch.

Next, note that the optimal value of the loss function L(Sm,Ygt) = 0 is
achieved when all qij equate to zero, which implies that at the optimum, distances
in all positives pairs are at least m smaller than the distances in all negative pairs.
This optimality condition reassembles the formulation of margin Triplet loss [6]. □

Proof of Proposition 2 Recall that the batch-hard mining emerges from
relaxing constraint Y ∈ Π into Y ∈ R, where R is a set of binary row-stochastic
matrices. We can rewrite Lτ (Sm,Ygt) with batch-hard mining as:

L̂τ (S,Ygt) =
∑

(p,k)∈Ygt

[S]pk + τ
∑
i

log
(∑

j

exp(−1

τ
[S]ij)

)
=

∑
(p,k)∈Ygt

ϕ(p, k) + τ
∑
i

log
(∑

j

exp(−1

τ
ϕ(i, j))

) (2)

where ϕ(p, k) is a distance measure between the samples p and k, and τ is the
parameter controlling a degree of smoothness. Note that in (2) we assume that
the distance ϕ(p, k) decreases when the similarity between the samples increases.

The first and the second terms in (2) relates to the alignment and distribution
terms [3] and reassemble the formulation of the normalized temperature cross
entropy loss (InfoNCE) [9, 1] up to a normalization constant. □

Formulations of contrastive losses with batch-hard mining

Here we present formulations of the contrastive losses with batch-hard mining
strategy. We show the derivation for the case of the structured linear assignment
loss, while the derivations for the smoothed structured linear assignment and
SparseCLR losses can be done analogously.
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We start from the original structured linear assignment loss with one-to-one
mining:

L(S,Ygt) = tr(SYT
gt)− min

Y∈Π
tr(SYT ) (3)

To derive the loss under the batch-hard mining strategy, the structural
constraint Y ∈ Π is relaxed to Y ∈ R, where R is a set of row-stochastic binary
matrices, i.e. [Y]ij ∈ {0, 1} for ∀(i, j) and

∑
j [Y]ij = 1 for ∀i. With this, the

structured linear assignment loss with the batch-hard mining is defined as follows:

L̂(S,Ygt) = tr(SYT
gt)− min

Y∈R
tr(SYT )

= tr(SYT
gt)− min

u1...uN

∑
i

(
∑
j

[S]ij [ui]j)

= tr(SYT
gt)−

∑
i

min
ui

(
∑
j

[S]ij [ui]j)

= tr(SYT
gt)−

∑
i

min
j

[Sij ]

(4)

where the first inequality follows from the fact that the rows u1...uN of Y ∈ R
are independent of each other, and the last inequality is due to ui is a binary
vector containing a one-hot encoding of the minimum index.

▶ Smoothed structured linear assignment loss Lτ (S,Ygt) with batch-hard-mining:

L̂τ (S,Ygt) = tr(SYT
gt) + τ

∑
i

log
∑
j

(−1

τ
[S]ij) (5)

▶ SparseCLR contrastive loss Lsparse(S,Ygt) with batch-hard mining:

L̂sparse(S,Ygt) = tr(SYT
gt)−

1

2

∑
i

∑
j∈Ω(hi)

(
[hi]

2
j − T 2(−hi)

)
(6)

where hi ∈ RN correspond to a i-th row of the similarity matrix S, and
Ω(X) = {j ∈ X : sparsemax(X)j > 0} is the support of sparsemax function [7].
The thresholding operator T is defined as:

T (z) =
(
∑

j∈Ω(z) zj)− 1

|Ω(z)|
(7)

And the sparsemax function is defined as:

sparsemax(z) = argmin
p∈∆N−1

||p− z||2 (8)

with ∆N−1 being N − 1 dimensional simplex.
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QARe for a positive similarity measure

In the derivations in the main paper, we adopt the metric notation commonly
used in assignment problems, where the maximum similarity between objects is
indicated by the minimum distance between their representations (e.g. Euclidean
distance). In practice, however, the task may require to use of other types of
similarity measures, for which the opposite holds (e.g. cosine distance). For this
case, the derivation takes the analogous path, but with a switch of signs in
Equation ?? and with min replaced by max in the LAP/QAP objectives. With
this, the structured quadratic assignment loss equates to:

LQAP = max
Y∈Π

{
tr(SYT ) + tr(SAYST

BY
T )

}
− tr(SYgt)

≤ ⟨λA, λB⟩+ + max
Y∈Π

{
tr(SYT )

}
− tr(SYgt)︸ ︷︷ ︸

structured linear assignment loss

(9)

where ⟨λA, λB⟩+ corresponds to a maximum dot product between eigenvalues
of the matrices SA and SB .

Practically, modifying the QARe computation presented in Algorithm 1 in the
main paper from the Euclidean distance to the cosine similarity requires 3 steps: (i)
similarities are scaled to be non-negative, (ii) computing a maximum dot product
instead of a minimum dot product, (iii) the maximum dot product of eigenvalues
is added to a contrastive objective. Note that step (i) is extra compared to the
Euclidean distance case and is needed because the QAP formulation requires
non-negative distances as an input. The algorithm is summarized in Algorithm 2.

Experiments

Time and memory complexity

Fig. 1. A training iteration time complexity of InfoNCE with and without the quadratic
assignment regularization.

In addition to computational complexity, we provide an empirical analysis
of how the proposed regularization influences the time and memory complexity
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of a baseline method (InfoNCE). We observe 13% increase in training time for
the batch size of 256, and up to 29% for the batch size of 2048 (Figure 1). The
increase in memory consumption is negligible (+0.78% for the batch size of 2048).

Instance matching

Augmentations. During the training, we apply a simple augmentation strategy:
horizontal flip with a 50% chance and color jittering. For the latter, the brightness,
contrast, saturation, and hue are sampled from a uniform distribution U [0, 0.1].

Hyper-parameters of the losses. We use 4 baseline contrastive losses: margin
Triplet [6], InfoNCE [9], NT-Logistic [8] and the proposed SparseCLR losses,
which we extend with the Quadratic Assignment Regularization (QARe). The
margin parameter for Triplet loss is set to 0.5, the temperature parameters for
InfoNCE and NT-Logistic are both set to 0.05. We combine QARe and the
backbone contrastive learning loss by taking their convex combination, where
the QARe term is weighted by the constant β ≥ 0. The exact values of β are
0.4/0.5/0.2/0.3 for margin Triplet / InfoNCE / NT-Logistic / SparseCLR.

Self-supervised classification

Encoder architectures. We use two models: Conv-4 and ResNet-32. The Conv-4
model involves 4 blocks. The first 3 blocks consist of 8, 16, and 32 feature maps
respectively. Each performs a convolution with a kernel size of 3, a stride of 1,
and a padding of 1 pixel, followed by a batch-normalization layer, a ReLU, and
an average pooling layer with a kernel size of 2 and a stride of 2 pixels. The
fourth block performs the same operations but instead of an average pooling, an
adaptive average pooling is used. For ResNet-32, we use off-the-shelf Pytorch
implementation as described in [5]. We initialize the model using standard Xavier
initialization [4] and set batch-normalization weights and biases to 1 and 0
respectively.

Augmentations. For self-supervised training we apply the following augmentations
to images: horizontal flip with a 50% chance, random crop-resize, grayscale
conversion with a 20% chance, and color jitter with an 80% chance. Random crop-
resize consists of cropping the given image from 0.08 to 1.0 of the original size,
then changing its aspect ratio from 3/4 to 4/3 of the original, and finally resizing

Conv-4 ResNet-32

Method CIFAR-10 CIFAR-100 tiny-ImageNet CIFAR-10 CIFAR-100 tiny-ImageNet

(β) SimCLR+QARe 0.5 0.375 0.875 1.125 1.125 1.125

(β) SparseCLR+QARe 0.125 1.25 0.5 1 0.875 1.25

Table 1. QARe weighting for the architectures and the datasets for self-supervised
classification experiment.
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to input shape using a bilinear interpolation. For color jitter, the brightness,
contrast and saturation are sampled from U [0, 0.8], and the hue is sampled from
U [0, 0.2].

Hyper-parameters of the losses. We combine quadratic assignment regularization
and the backbone contrastive learning loss by summing with weighting the QARe
term by a constant β ≥ 0. The values of β for each architecture and dataset
are listed in Table 1. The temperature parameter for both SimCLR [2] and
SimCLR+QARe is set to 0.05.

Algorithm 2 Pseudocode for set-based InfoNCE with cosine similarity and
Quadratic Assignment Regularization (QARe).

# f: encoder network
# alpha: weighting for the pairwise contrastive part (linear assignment)
# beta: weighting for the set contrastive part
# N: batch size
# E: dimensionality of the embeddings

for x in loader: # load a batch with N samples
# two randomly augmented views of x
y_a, y_b = augment(x)

# compute embeddings
z_a = f(y_a) # NxE
z_b = f(y_b) # NxE

# compute inter-set and intra-set similarities
S_AB = similarity(z_a, z_b) # NxN
S_A = similarity(z_a, z_a) # NxN
S_B = similarity(z_b, z_b) # NxN

# compute pairwise contrastive InfoNCE loss
pairwise_term = infonce(S_AB)

# shift to non-negative & compute eigenvalues
eigs_a = eigenvalues(1 + S_A) #N
eigs_b = eigenvalues(1 + S_B) #N

# compute QARe from maximum dot product of eigenvalues
eigs_a_sorted = sort(eigs_a, descending = True) #N
eigs_b_sorted = sort(eigs_b, descending = True) #N
qare = eigs_a_sorted.T@eigs_b_sorted

# combine pairwise contrastive loss with QARe
loss = alpha*pairwise_term + beta*qare/(Nˆ2)

# optimization step
loss.backward()
optimizer.step()
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