
Object discovery and representation networks:
supplementary material

A Appendix

A.1 Implementation: data pre-processing

Self-supervised pretraining. Each image is randomly augmented twice, re-
sulting in two views v1 and v2. The augmentations are constructed as composi-
tions of the following operations, each applied with a given probability:

1. random cropping: a random patch of the image is selected, whose area is
uniformly sampled in [0.08 ·A,A], where A is the area of the original image,
and whose aspect ratio is logarithmically sampled in [3/4, 4/3]. The patch is
then resized to 224 ×224 pixels using bicubic interpolation;

2. horizontal flipping;

3. color jittering: the brightness, contrast, saturation and hue are shifted by a
uniformly distributed offset;

4. color dropping: the RGB image is replaced by its grey-scale values;

5. gaussian blurring with a 23×23 square kernel and a standard deviation uni-
formly sampled from [0.1, 2.0];

6. solarization: a point-wise color transformation x 7→ x·1x<0.5+(1−x)·1x≥0.5

with pixels x in [0, 1].

The augmented images v1 and v2 result from augmentations sampled from distri-
butions T1 and T2 respectively. These distributions apply the primitives described
above with different probabilities, and different magnitudes. The following table
specifies these parameters for the BYOL framework [4], which we adopt without
modification.

Parameter T1 T2

Random crop probability 1.0
Flip probability 0.5
Color jittering probability 0.8
Color dropping probability 0.2
Brightness adjustment max 0.4
Contrast adjustment max 0.4
Saturation adjustment max 0.2
Hue adjustment max 0.1
Gaussian blurring probability 1.0 0.1
Solarization probability 0.0 0.2



2 O. Hénaff et al.

The “spanning view” v0 is chosen as the smallest crop spanning the spatial
extent of v1 and v2. When training ResNet or Swin, we resize v0 to 448×448
resolution. When training vision transformers, we resize it to 224×224 resolution.

Transfer to COCO. Resolutions used for Mask-RCNN and FCOS? are 1024×1024
and 800×1024, respectively. During testing, an image is resized by a factor s
while preserving the aspect ratio, such that it is tightly contained inside the
target resolution, and then padded. When fine-tuning, the image is rescaled by
a factor of u · s where u is uniformly sampled in [0.8, 1.25], and is then cropped
or padded to the target resolution.

Transfer to PASCAL. During training, images are randomly flipped and
scaled by a factor in [0.5, 2.0]. Training and testing are performed with 513×513-
resolution images.

Transfer to Cityscapes. During training, images are randomly flipped hori-
zontally and scaled by a factor in [0.5, 2.0]. Training is performed on 769×769-
resolution images and testing on 1025×2049-resolution images.

A.2 Implementation: details of FCOS?

Here we describe FCOS?, a fully convolutional single-stage object detector based
on FCOS [11] and its improvements [3, 12, 15].

At inference time, as in FCOS [11], an image is ingested by a backbone
network such as ResNet-50 or Swin transformer, followed by a feature pyramid
network [6] which produces dense feature maps at various scales (feature pyramid
levels). Each feature map is processed independently by prediction heads with
shared weights, producing three sets of dense outputs for each pyramid level:
classification logits (cls), quality logits (qual) and bounding box parameters.
Each location in each output map corresponds to a detection with the regressed
bounding box parameters (parametrized as distances to the 4 edges divided by
the level’s stride), where the score for the detection of class c is computed as√
σ(clsc)× σ(qual), and σ is the sigmoid function. Non-maximum suppression

is performed to produce the final set of detections.

The network is trained to 1) predict the correct class by minimizing the focal
loss [7] as in FCOS [11], 2) regress the bounding box parameters for positive
samples by minimizing the GIoU loss [10] as in FCOS [11], and 3) predict correct
detections using the quality logits as in [12] by minimizing the binary cross-
entropy loss. The positive samples are defined through the assignment of the
dense predictions to ground truth boxes via ATSS [15].

For all components and parameters of the method we use the default settings
from the respective papers. Slight departures consist of using 1) a lower resolution
(800×1024 instead of more standard 800×1333), 2) the cross-replica batch-norm
[9] in backbones where applicable, and 3) the T-Head for all three prediction
heads while [3] does not use it for the quality branch.
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A.3 Implementation: optimization

Self-supervised pretraining. We pretrain ResNet-50 and Swin-Transformers
on ImageNet for 1000 epochs using the LARS optimizer [14] with a batch size of
4096 split across 128 Cloud TPU v3 workers. We adopt the optimization details
of BYOL, scaling the learning rate linearly with the batch size and decaying it
according to a cosine schedule. The base learning rate is 0.2 and the weight decay
is 1.5 · 10−6. When pretraining Swin transformers we additionally use gradient
clipping with a maximum norm of 1. The contrastive loss temperature α is 0.1.

We pretrain vision transformers (ViT) on ImageNet for 300 epochs using
the Adam optimizer [5] with a batch size of 2048 split across 256 Cloud TPU v3
workers. We use a learning rate of 3 ·10−4, a weight decay of 0.1, and momentum
parameters β1 = 0.9 and β2 = 0.95.

When training ResNet-50 and Swin-Transformers, we fuse intermediate fea-
ture maps into a single high-resolution latent array using Feature Pyramid Net-
works, and segment these features using their projections z0. When training
vision transformers, we use the hidden vectors h0 for segmentation.

Transfer to COCO with Mask-RCNN. We fine-tune with stochastic gra-
dient descent, increasing the learning rate linearly for the first 500 iterations
and dropping twice by a factor of 10, after 2

3 and 8
9 of the total training time,

following [13] . We use a base learning rate of 0.3, a momentum of 0.9, a weight
decay of 4·10−5, and a batch size of 64 images split across 16 workers.

Transfer to COCO with FCOS?. The network is trained for 30 epochs with
batch size 128 split across 16 workers, with AdamW [8], weight decay 10−4 and
base learning rate of 10−3. The learning rate rises linearly for 1

4 of an epoch, and
is dropped twice by a factor of 10, after 2

3 and 8
9 of the total training time.

Transfer to PASCAL. We fine-tune for 45 epochs with stochastic gradient
descent, with a batch size of 16 and weight decay of 10−4. The learning rate is
0.02 and dropped by a factor of 10 at the 70th and 90th percentiles.

Transfer to Cityscapes. We fine-tune for 160 epochs with stochastic gradient
descent and a Nesterov momentum of 0.9, using a batch size of 2 and weight
decay of 10−4. The initial learning rate is 0.005 and dropped by a factor of 10
at the 70th and 90th percentiles.

A.4 Implementation: evaluating object discovery

We extract the central crop of COCO images and resize them to a target res-
olution of 1024×1024 for ResNet models, and 448×448 for vision transformers.
These images are encoded by the feature extractor, resulting in a 32×32 feature
grid for ResNet, 256×256 for ResNet equipped with FPN, and 56×56 for the
vision transformer. For ease of comparison with other forms of pretraining, when
evaluating ViT and ResNet we use the final hidden layer h (with 768 and 2048
channels, respectively) for unsupervised segmentation. When using the ResNet
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equipped with FPN, we use the projections z. In all cases, vectors are L2 nor-
malized before applying k-means clustering.

For each ground-truth segment gt we compute the overlap with all proposals
mk using their intersection-over-union (IoU), and record the best overlap (BO)
by taking the maximum across proposals:

IoU(gt,mk) =

∑
i,j min(gt,mk)[i, j]∑
i,j max(gt,mk)[i, j]

(1)

BO(gt) = max
k

IoU(gt,mk). (2)

For a given image with T ground-truth segments, we obtain the “average best
overlap” (ABO) metric [1] by averaging BO across ground-truth segments, and
the “object recovery” metric [2] by computing the fraction of “best overlaps”
greater than 50%:

ABO =
1

T

T∑
t=1

BO(gt) (3)

OR =
1

T

T∑
t=1

1BO(gt)>0.5 (4)

The ABOi and OR metrics use instance-based masks as ground-truth segments
gt. The ABOc metric merges instances of the same class into the same ground-
truth segment, before applying the same analysis. We average each of these
metrics across images.

In Table 4 we perform this analysis using the original COCO masks, without
modification. We notice however that some COCO masks are very small, making
them barely noticeable perceptually. We verified that these masks do not bias
our results by repeating the analysis while excluding these masks. Specifically,
we limit the number of masks to 16 per image, and remove masks whose area is
smaller than 100 pixels (in a 224×224-resolution image). Table A.1 shows that,
after this preprocessing of COCO masks, our results are very similar, and our
conclusions are unchanged.

A.5 Implementation: computational complexity

When continuously updating the discovery network, Odin requires an additional
forward pass relative to the usual 2-view contrastive setup. This results in a
+16% computational overhead when using the same resolution as the other two
views, or +67% when doubling the image resolution. The k-means clustering of
object-discovery features requires 0.25B FLOPS for standard-resolution images,
or 1B FLOPS when doubling the resolution. When using a ResNet-50 backbone,
these costs represent a +1.2% and +5% overhead respectively.

When using a sparse set of discrete updates, e.g. every 100 epochs as in
Table 6, the unsupervised segmentations can be cached in-between updates. This
reduces the computational overhead by a factor of 100×, making it negligible.



Object discovery and representation networks: supplementary material 5

Table A.1. Object discovery on COCO, with ground-truth mask filtering:
we apply the same object discovery analysis as in Table 4, after filtering COCO masks
to remove very small segments (see section A.4)

ResNet-50 ViT-B

Pretraining ABOi ABOc OR ABOi ABOc OR

Random init 29.6 33.6 16.7 29.5 34.2 18.0
Supervised 39.5 42.4 25.6 42.9 49.7 36.8

DINO 40.5 46.0 30.3 42.7 48.3 35.7

Odin 44.7 49.0 38.4 49.7 54.7 48.2

Odin† 47.2 53.9 46.2

A.6 Results: using object discovery or target networks for transfer
learning

Although the object discovery and target networks are designed to provide a
learning signal for the online network, we asked whether they could also be used
for transfer learning. We therefore fine-tuned these networks for object detection
on COCO and semantic segmentation on PASCAL and Cityscapes as before. We
found their performance to be similar, but slightly worse than that of the online
representation network (Table A.2). This is reasonable: once the online network
has converged, its exponential moving average will largely catch up with it. The
fact that they slightly underperform justifies our usage of the representation
network for transfer.

Table A.2. Transfer learning with different model parameters: fine-tuning on
COCO object detection and instance segmentation, and fine-tuning on PASCAL VOC
and Cityscapes semantic segmentation are the same as in Table 1 (left) and Table 2.

COCO VOC Citysc.

Model parameters APbb APmk mIoU

target: ξ 42.7 38.3 78.5 76.6
teacher: τ 42.8 38.4 78.4 76.9
online: θ 42.9 38.4 78.6 77.1
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Original image Human-annotated Random init.

k-means segmentation of ViT features 

DINO Odin

Fig. A.1. Object discovery with vision transformers. 1st column: original image, 2nd:
human-annotated COCO segmentations, 3rd, 4th, 5th: segmentations obtained from k-
means clustering on randomly intialized, DINO-, and Odin-trained vision transformer
features, respectively.
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